
fphar-08-00326 May 27, 2017 Time: 14:59 # 1

MINI REVIEW
published: 30 May 2017

doi: 10.3389/fphar.2017.00326

Edited by:
Chrishan S. Samuel,

Monash University, Australia

Reviewed by:
Timothy E. Cooney,

UPMC Hamot, United States
Gaetano Santulli,

Columbia University, United States
Xiao-jun Du,

Baker IDI Heart and Diabetes Institute,
Australia

*Correspondence:
Yi Liu

liuyihuaxiyiyuan@126.com

Specialty section:
This article was submitted to

Cardiovascular and Smooth Muscle
Pharmacology,

a section of the journal
Frontiers in Pharmacology

Received: 15 March 2017
Accepted: 16 May 2017
Published: 30 May 2017

Citation:
Xiong A and Liu Y (2017) Targeting

Hypoxia Inducible Factors-1α As
a Novel Therapy in Fibrosis.

Front. Pharmacol. 8:326.
doi: 10.3389/fphar.2017.00326

Targeting Hypoxia Inducible
Factors-1α As a Novel Therapy in
Fibrosis
Anji Xiong and Yi Liu*

Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China

Fibrosis, characterized by increased extracellular matrix (ECM) deposition, and
widespread vasculopathy, has the prominent trait of chronic hypoxia. Hypoxia inducible
factors-1α (HIF-1α), a key transcriptional factor in response to this chronic hypoxia, is
involved in fibrotic disease, such as Systemic sclerosis (SSc). The implicated function
of HIF-1α in fibrosis include stimulation of excessive ECM, vascular remodeling,
and futile angiogenesis with further exacerbation of chronic hypoxia and deteriorate
pathofibrogenesis. This review will focus on the molecular biological behavior of HIF-1α

in regulating progressive fibrosis. Better understanding of the role for HIF-1α-regulated
pathways in fibrotic disease will accelerate development of novel therapeutic strategies
that target HIF-1α. Such new therapeutic strategies may be particularly effective for
treatment of the prototypic, multisystem fibrotic, autoimmune disease SSc.
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INTRODUCTION

Fibrotic disease is a kind of chronic hypoxia related disease with pathogenesis that includes
increased extracellular matrix (ECM) deposition, and widespread vasculopathy (Gabrielli et al.,
2009). Fibrosis is increasingly seen as the result of deregulated tissue repair in response to chronic
hypoxia that results in the excessive accumulation of ECM. Severe chronic hypoxia is overt in
involved tissues of fibrotic disease patients (Distler et al., 2004). There are a variety of mechanisms
leading to persistent chronic hypoxia. First, continuous and extensive microangiopathy caused
by inflammation (Kahaleh, 2004; Cheung et al., 2017) or metabolic stress (Petersen et al., 2017;
Wang et al., 2017) is regarded as an early and possibly the earliest pathogenic event in the
fibrotic disease (Kahaleh et al., 1979) that leads to chronic hypoxia. Chronic hypoxia in turn
induces vascular remodeling ultimately giving rise to progressive luminal narrowing and blockage
(Flavahan et al., 2003) resulting in progressive exacerbation of the chronic hypoxic state. Moreover,
excessive deposition of ECM, the hallmark of fibrosis (Bhattacharyya et al., 2012), further worsens
hypoxia by increasing diffusion distances between blood vessels and tissue cells and increased tissue
pressure. Extensive microangiopathy, vascular remodeling, and ECM deposition leads to vascular
rarefaction and chronic hypoxia that directly contributes to progressive amplification of fibrosis.
Increasing evidence has demonstrated that chronic hypoxia is actively involved in the pathogenesis
of fibrosis (Ho et al., 2014) by stimulating the production of ECM including fibronectin-1,
IGF-binding protein 3 (Distler et al., 2007), collagens, and collagen-modifying enzymes such as
COL4A1, COL4A2, COL5A1, COL9A1, COL18A1, procollagen prolyl hydroxylases (P4HA1 and
P4HA2), and lysyl hydroxylases (procollagen lysyl hydroxylase and procollagen lysyl hydroxylase 2)

Frontiers in Pharmacology | www.frontiersin.org 1 May 2017 | Volume 8 | Article 326

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
https://doi.org/10.3389/fphar.2017.00326
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphar.2017.00326
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2017.00326&domain=pdf&date_stamp=2017-05-30
http://journal.frontiersin.org/article/10.3389/fphar.2017.00326/abstract
http://loop.frontiersin.org/people/415145/overview
http://loop.frontiersin.org/people/420350/overview
http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


fphar-08-00326 May 27, 2017 Time: 14:59 # 2

Xiong and Liu HIF-1α in Fibrosis

(Manalo et al., 2005). Hence, persistent and extensive chronic
hypoxia is a distinctive feature of fibrotic disease that definitely
aggravates tissue fibrosis.

Hypoxia inducible factors (HIFs) are regarded as the “master
regulators” (Imtiyaz and Simon, 2010) in response to the hypoxic
environment and are essential for mediating adaptive reactions to
hypoxia (Appelhoff et al., 2004; Farahani et al., 2012). HIFs are in
a family of basic–helix-loop-helix/Per-ARNT-Sim (bHLH/PAS)
DNA binding transcription factors (Greer et al., 2012) and are
heterodimers composed of two different subunits: HIF-α, that
is oxygen regulated, and HIF-β, that is expressed constitutively
in the nucleus (Wang et al., 1995; Semenza, 2003). There are
at least three α subunits-HIF-1α, HIF-2α, and HIF-3α, that
accumulate in the cytoplasm and translocate into the nucleus to
form heterodimers with a β subunit. After translocating to the
nucleus, the HIF heterodimers associate with co-activators and
bind to hypoxia response elements (HREs) in gene promoters to
initiate gene transcription (Kaelin and Ratcliffe, 2008; Semenza,
2009). Hypoxia induces stabilization and nuclear translocation
of HIF-α subunits and their transcriptional activity (Kaelin
and Ratcliffe, 2008) by inhibiting the activity of both prolyl
hydroxylases and factor-inhibiting HIF1. Hypoxia increases the
half-life of HIF-1α from 5 min to approximately 60 min (Huang
et al., 1998).

Compelling evidence indicates that HIF-1α plays a key role
in vascular remodeling under hypoxic conditions (Yu et al.,
1999). The extensive and cumulative vascular remodeling in
arterioles that accompanies chronic hypoxia results in multiple
internal organ fibrosis and pulmonary hypertension (PH). Of
note, PH associated with pulmonary fibrosis is the major cause
of mortality in individuals suffering from fibrotic disease, such
as SSc, and accumulating evidence has revealed that HIF-
1α is implicated in producing excessive ECM which was the
underlying cause of fibrosis (Distler et al., 2007; Higgins et al.,
2007; Halberg et al., 2009; Ueno et al., 2009; Zhou et al., 2009;
Gilkes et al., 2013; Nayak et al., 2016). Fibrosis is typically
characterized by prolonged and/or exaggerated activation of
fibroblasts (Ho et al., 2014). Strong and stable expression of
HIF-1α was found in fibrotic dermal fibroblasts cultured under
hypoxic conditions, 1% oxygen, equivalent to a PO2 value of
7 mmHg, which is close to the 10th percentile measured in
involved dermal areas of fibrotic disease patients (Hong et al.,
2006; Distler et al., 2007). Furthermore, increased expression
of HIF-1α occurred in subcutaneous fibroblasts from healthy
skin (Modarressi et al., 2010) and fibrotic skin (Hattori et al.,
2015) exposed to hypoxic conditions in vitro. Fibroblasts isolated
from human arteries also exhibited a remarkable up-regulation
of HIF-1α under hypoxic conditions (Krick et al., 2005). In a
more detailed study, HIF-1α completely translocated from the
cytosol into the nucleus (Wenger, 2002) in dermal fibroblasts
from fibrotic disease patients after hypoxic exposure (Distler
et al., 2004). HIF-1α expression is elevated in a number of
fibrotic diseases (Fine et al., 1998; Baan et al., 2003; Zhang
et al., 2003, 2004) and overt up-regulation of HIF-1α in the
skin of naïve SSc patients was observed compared with normal
skin (Ioannou et al., 2013) further suggesting that HIF1α is
involved in the pathogenesis of fibrotic disease, particularly in

SSc (Wipff et al., 2009). In addition, HIF-1α is particularly
related to subgroups of SSc patients with prominent vascular
manifestations (Wipff et al., 2009). Inhibition of HIF-1α is
therefore a rational strategy for novel therapeutic development
since effective therapies are not yet available for fibrotic disease,
such as SSc.

HIF-1α AND ECM (Figure 1A)

Fibrosis is characterized by excessive deposition of ECM
in organs or tissues including different kinds of collagens,
hyaluronic acid, fibronectin, and proteoglycans (Ho et al., 2014).
HIF-1α contributed to the up-regulated gene expression for
several ECM and non-ECM in fibroblast cultures in vitro.

Increased expression of pro α2 (I) collagen (COL1A2),
thrombospondin (TSP) 1, and transforming growth factor
β–induced protein (TGF βi) were observed in both mouse
embryonic and human dermal fibroblasts under hypoxic
conditions (Distler et al., 2007). Bentovim et al. (2012)
demonstrated that HIF-1α induced collagen hydroxylation and
normal collagen secretion in the hypoxic milieu by directly
activating transcription of the collagen prolyl 4-hydroxylase
enzyme (P4H) and pyruvate dehydrogenase kinase 1 (Pdk1).
HIF-1α deficiency resulted in impaired collagen secretion in
the presence of hypoxia. Similarly, HIF-1α mediates ECM
accumulation through NADPH oxidase (NOX) in vitro in
cultured renal mesangial cells (Nayak et al., 2016). Microarray
genome expression profiling from skin biopsies of fibrotic disease
patients revealed that a prominent alteration in gene expression
underlying fibrosis is within the transforming growth factor β

(TGF-β) pathway (Whitfield et al., 2003), and TGF-β was closely
involved in the induction of ECM (Falanga et al., 1987). However,
HIF-1α is upstream of TGF-β production, and hypoxia-induced
TGF-β production requires HIF-1α (Zhou et al., 2009). Qian et al.
(2015) demonstrated that inhibition of HIF-1α reduced TGF-β
expression in vivo as well.

Epithelial-to-mesenchymal transition (EMT) can be
characterized by acquisition of mesenchymal markers such
as α-smooth muscle actin (α-SMA). EMT results in the
production of more ECM including α-SMA and vimentin
(Strutz et al., 1995; Zeisberg and Kalluri, 2004) and requires
HIF-1α expression (Zhou et al., 2009). Higgins et al. (2007)
demonstrated that increased HIF-1α expression may promote
fibrogenesis by facilitating EMT. Plasminogen activator
inhibitor-1 (PAI-1), found in the ECM (Podor and Loskutoff,
1992) and a key inhibitor of fibrinolysis (Collen and Lijnen,
1991), inhibited proteolytic processes that were linked with
fibrosis (Eddy et al., 1995). HIF-1α heterodimers with HIF-1β

induced by hypoxia in vivo bind HRE in the PAI-1 promoter
and induce PAI-1 expression (Kietzmann et al., 1999). Lysyl
oxidase (LOX) is important for normal synthesis of collagen and
elastin (Giampuzzi et al., 2000; Oleggini et al., 2007). LOX is a
transcriptional target for HIF-1α-HIF-1β heterodimers (Halberg
et al., 2009) that translocate into the nuclear compartment
of fibrogenic cells (Li et al., 1997) and is up-regulated during
fibrogenesis. Higgins et al. (2007), Halberg et al. (2009) showed
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FIGURE 1 | Role of HIF-lα transcription factor in the production of (A) ECM and (B) vascular remodeling.

that HIF-1α could up-regulate the expression of LOX in vivo
and in vitro, leading to the accumulation of collagen and
other components involved in establishing and remodeling the
ECM. Halberg et al. (2009) pinpointed LOX as a key player in
HIF-1α mediated deposition of ECM. Furthermore, connective
tissue growth factor (CTGF) has been reported to enhance cell
proliferation and ECM production in fibroblasts (Frazier et al.,
1996). Mounting evidence has demonstrated that expression of
CTGF is upregulated during fibrotic disorders (Igarashi et al.,
1996; Ito et al., 1998; Leask et al., 2002; Higgins et al., 2003),
and in hypoxia, the induction of CTGF is directly mediated by
HIF-1α-HIF-1β heterodimer binding to the CTGF associated
HRE (Higgins et al., 2004). In summary, HIF-1α is ubiquitous in
many different tissues (Wang et al., 1995) and in fibrotic disease
contributes to persistent pathofibrogenesis in multiple organs by
stimulating production of excessive ECM.

HIF-1α AND VASCULAR REMODELING
(Figure 1B)

Vascular remodeling is primarily composed of dysregulated
proliferation of endothelial cells (ECs) and an increase in the
number (hyperplasia) and volume (hypertrophy) of arterial
smooth muscle cells (ASMC) resulting in progressive vascular
occlusion and chronic hypoxia. High expression of HIF-1α within
endothelial plexiform lesions (Tuder et al., 2001) and ASMC
(Bonnet et al., 2006) suggests a strong correlation between HIF-
1α and proliferative vasculopathy.

Arterial smooth muscle cells hyperproliferation in the media
of the artery was suggested to be the key event in vascular
remodeling (Cheng et al., 2017). Transient receptor potential
channel (TRPC) 1, a non-selective cation channel, is permeable
to Ca2+ ions. Increase in levels of TRPC1 mediated by bone
morphogenetic protein4 (BMP4) (Wang et al., 2015) was HIF-1α

dependent in ASMC (Wang et al., 2006). Reduction in voltage-
gated K+ currents, resulting in membrane depolarization and
activation of voltage-dependent Ca2+ channels and subsequently
increasing Ca2+ influx, was regulated by HIF-1α as well
(Shimoda et al., 2001). Both voltage-gated K+ (Kv) channels
and TRPC1, mediated by HIF-1α, contributed to an increase
in cytosolic free Ca2+ which was a major trigger for ASMC
proliferation (Veith et al., 2016). ASMC proliferation may be
a consequence of up-regulated aquaporin 1 as a result of the
increased cytosolic free Ca2+ (Yun et al., 2015). Furthermore,
both TRPC1 silencing by small interfering RNA (siRNA) and
TRPC1 knockout impaired hypoxia-induced ASMC proliferation
in vitro, and TRPC1−/− mice had less vascular muscularization
compared with wild type mice (Malczyk et al., 2013). In
addition, hypoxic induction of the Na+/H+ exchanger isoform
1 (NHE1) expression and alkalinization of intracellular pH were
regulated by HIF-1α (Shimoda et al., 2006). Both activation of
the Na+/H+ exchanger and alkalinization of intracellular pH
were necessary for ASMC proliferation (Quinn et al., 1996).
Zeng et al. (2015) demonstrated that HIF-1α transcriptionally
upregulated the expression of miR-322 in hypoxia, which led
to proliferative responses of ASMC due to direct targeting of
BMPR1a and smad5. Similarly, Platelet derived growth factor
bb (PDGFbb) can induce proliferation of ASMC in vitro and
in vivo (Schermuly et al., 2005). PDGFbb-induced signaling gave
rise to the hypertrophy of ASMC both in vitro and in vivo (Ke
et al., 2016) via excessive deposition of hyaluronic acid (HA) in
smooth muscle cells (Pullen et al., 2001). The possible mechanism
is through tyrosine 31 (Y31) and 118 (Y118) phosphorylation
of paxillin, which was attenuated by HIF-1α knockdown (Veith
et al., 2014).

Similarly, HIF-1α is also involved in the proliferation
of ECs. Abnormally proliferating ECs are characterized by
low numbers of mitochondria (Xu et al., 2007). Knockdown
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FIGURE 2 | Simplified overview of HIF-1α implicated in fibrotic disease.

of HIF-1α increased the numbers of mitochondria in ECs
in vitro (Fijalkowska et al., 2010) and suggests that the reduced
mitochondria number in abnormally proliferating ECs may be
a consequence, at least in part, of increased HIF-1α expression.
HIF -1α inducible factors include hepatocyte growth factor
(HGF) (Kitajima et al., 2008) and stromal-derived factor-1a
(SDF-1a) (Ceradini et al., 2004). A special kind of hematopoietic
endothelial stem cell, CD34+CD133+hemangioblast, may
promote angioproliferative vascular remodeling (Asosingh et al.,
2008). Local production of chemoattractants, such as SDF-1α and
HGF, by diseased endothelium can recruit substantial numbers
of CD34+CD133+hemangioblasts to sites of angioproliferative
vascular remodeling (Farha et al., 2011). Both signal transducers
and activators of transcription (STAT) 3 (Xu and Erzurum, 2011)
and chloride intracellular channel 4 (CLIC4) (Wojciak-Stothard
et al., 2014) contribute to the hyperproliferative pathology of ECs
invoking another important role for HIF-1α in vascular fibrosis.

TARGETING HIF-1α IN FIBROSIS

Studies to date indicate that HIF-1α is intimately involved in
persistent pathofibrogenesis, vascular remodeling, and PH in
fibrotic disease. Severe, multiple organ fibrosis associated with
the continuous accumulation of HIF-1α, caused by chronic
or prolonged hypoxia in fibrotic disease, suggests that HIF-1α

maybe a promising target for novel fibrotic disease treatments,
such as SSc.

Recently, hypoxic prodrugs, projecting to be specifically
activated in the low O2 milieu, deliver the active agent to
hypoxic tissues through reduction of the prodrug by cellular
reductases (Phillips, 2016). These hypoxic prodrug agents may
significantly alleviate off-target effects of the biological therapy
by limiting active drug to hypoxic tissue and only inhibiting
HIF-1α in hypoxic tissues. Gene therapy targeting HIF-1α may
also be effective for therapy in hypoxia-related diseases as well
(Tal et al., 2008; Wang et al., 2008; del Rey et al., 2009; Chen
et al., 2016). In addition, the therapeutic benefits of HIF-1α

inhibitors would be maximized in the presence of delivery
carriers that eliminate pharmacokinetic and stability problems
and minimize potential systemic toxicity. For example, liposomes

and nanoscale-based drug delivery systems may be applied as a
delivery assistant for HIF-1α gene therapy (Wang et al., 2008;
Chen et al., 2016). The most successful example of a successful
liposomal drug delivery system may be that for Amphotericin
B, which has been widely applied in the clinic for treating
invasive fungal infections. Amphotericin B is a highly effective
drug but with potential severe toxic side effects (Barratt and
Bretagne, 2007; Wasko et al., 2012). Amphotericin B encapsulated
in liposome has significantly reduced toxicity as well as increased
therapeutic benefit when administered systemically encapsulated
within liposomes (Torchilin, 2005; Allen and Cullis, 2013).
Antisense oligonucleotides targeted to HIF-1α mRNA combined
with doxorubicin were successfully delivered to oncocytes by poly
(ethylene glycol) polymer (PEGylated) liposomes as drug carriers
(Wang et al., 2008). Furthermore, YC-1 [3-(5′-hydroxymethyl-
2′-furyl)-1-benzyl indazole], a HIF-1α inhibitor, reduced ECM
accumulation in vivo (Nayak et al., 2016). Trichostatin A,
identified indirectly to down-regulate HIF-1α, has been applied
in clinical trials in patients with cancers (Kim et al., 2001) and has
been shown to reduce the release of collagen from fibrotic dermal
fibroblasts in vitro (Huber et al., 2005). In conclusion, a viable
therapy option for fibrotic disease may include agents that target
and inhibit HIF-1α since delivery vehicles may help reduce off-
target effects and enhance therapeutic efficiency (Sercombe et al.,
2015).

On the other hand, HIF-1α has been repeatedly observed
to assist wound healing through inflammation, angiogenesis,
vasculargenesis, and fibroplasia in acute injury (Semenza, 1998,
1999). The most prominent contraindication for systemic
administration of HIF-1α inhibitors, therefore, is trauma. An
analogy for adverse effects that may accompany biological
therapy to inhibit HIF-1α may be tumor necrosis factor-α
(TNF-α) inhibitors in rheumatic diseases. TNF-α inhibitors
inhibit inflammation that is necessary for tissue repair. HIF-1α is
required for repair in acute injury as well (Darby and Hewitson,
2016). In particular, we need to be vigilant about physiological
repair events such as menstruation within the context of HIF-1α

inhibitor administration.
Persistent and remarkable up-regulation of vascular

endothelial growth factor (VEGF) has been observed
in all stages of fibrotic disease (Distler et al., 2004)
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and actively proliferating ECs of plexiform lesions (Tuder
et al., 2001). VEGF is the predominant proangiogenic factor
regulated by HIF-1α in other hypoxia related diseases, but
VEGF up-regulation and consequent massive and extensive
microangiopathy in fibrotic disease is HIF-1α independent,
even with hypoxia (Distler et al., 2004). HIF-1α expression
did not correlate with up-regulated VEGF in affected tissues
from patients suffering from fibrotic disease (Distler et al.,
2004). Since HIF-1α is critical for VEGF up-regulation in other
hypoxia related diseases, consideration must be given to the
question of whether deceased VEGF after systemic HIF-1α

inhibition may severely decrease and impair neoangiogenesis.
The worry may be unnecessary for fibrotic disease and its
associated massive and extensive microangiopathy in affected
tissues and organs. Up-regulated expression of VEGF is also
driven by interleukin-1β, PDGF, and TGF-β, all of which
are up-regulated in fibrotic disease and can stimulate the
expression of VEGF (Pertovaara et al., 1994; Kissin and Korn,
2003). Moreover, the role played by HIF-2α and HIF-3α in
the over-expression of VEGF has not yet been extensively
investigated. Above all, sufficient tissue vascularization depends
on strict regulation of VEGF expression rather than on persistent
up-regulated expression of VEGF (Distler et al., 2004). The
formation of chaotic vessels, feathered with glomeruloid and
haemangioma-like morphology, was partly due to chronic and
uncontrolled over-expression of VEGF (Drake and Little, 1995;
Sundberg et al., 2001). Dor et al. (2002) designed an animal
model system in which a source of VEGF could be specifically
induced and steadily maintained for a desired duration and
then subsequently switched off. Time-dependent regulation
of VEGF expression was necessary for adequate and normal
vascularization (Dor et al., 2002). Persistent, uninterrupted
exposure to VEGF led to formation of irregularly shaped,
sac-like vessels resulting in decreased blood flow compared to
normal, mature, functional blood vessel formation after short-
term over-expression of VEGF (Dor et al., 2002). Irregularly
shaped, sac-like vessels observed in nailfold, a prominent
character of the prototypic fibrotic disease-SSc (LeRoy, 1996),
may also suggest that persistent up-regulated expression of
VEGF is involved in fibrotic disease, and is harmful rather than
beneficial, regardless of whether VEGF is HIF-1α independent
in fibrosis (Distler et al., 2004). Other angiogenic factors
contribute less to neovascularization and have no effect on

irregular and sac-like vessels in the presence of persistent and
remarkable up-regulation of VEGF. The US FDA approved
FTY720 inhibits HIF-1α accumulation by inhibiting the S1P
signaling pathway. FTY720 transformed a chaotic vascular
network to vascular normalization while simultaneously and
subsequently redressing hypoxia in vivo and in vitro (Gstalder
et al., 2016). That result gives further credence to the suggestion
that HIF-1α is implicated in chaotic angiogenesis. This result
also suggests that targeting HIF-1α would be a viable strategy
for fibrotic disease, such as SSc, without impairing normal
angiogenesis.

CONCLUSION

HIF-1α per se is helpful in repairing injury and correcting
hypoxia via multiple mechanisms, however, prolonged
exposure to HIF-1α is harmful and contributes to persistent
pathofibrogenesis in fibrotic disease (Figure 2). Furthermore,
fibrosis in organs resulting in organ failure accounts for
much of the morbidity and mortality associated with fibrotic
disease. SSc is prototypic multisystem fibrotic disease and
present immunosuppressive therapy exhibits intolerable side
effects without selectively targeting the immunopathogenic
mechanisms responsible for SSc. In addition, fibrosis in SSc is not
restricted to a single organ, but rather involves multiple internal
organs and skin. Biotherapy targeting HIF-1α, therefore, is a
promising therapeutic alternative that is more likely to confer
therapeutic benefits specific to fibrotic disease, particularly to
SSc, by attenuating fibrosis and terminating or delaying vascular
remodeling.
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