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ABSTRACT 

Genetic aberrations have become a dominant factor in the stratification of myeloid malignancies. 
Cytogenetic and a few mutation studies are the backbone of risk assessment models of myeloid 
malignancies which are a major consideration in clinical decisions, especially patient assignment for 
allogeneic stem cell transplantation. Progress in our understanding of the genetic basis of the pathogenesis 
of myeloid malignancies and the growing capabilities of mass sequencing may add new roles for the clinical 
usage of genetic data. A few recently identified mutations recognized to be associated with specific diseases 
or clinical scenarios may soon become part of the diagnostic criteria of such conditions. Mutational studies 
may also advance our capabilities for a more efficient patient selection process, assigning the most effective 
therapy at the best timing for each patient. The clinical utility of genetic data is anticipated to advance 
further with the adoption of deep sequencing and next-generation sequencing techniques. We herein 
suggest some future potential applications of sequential genetic data to identify pending deteriorations at 
time points which are the best for aggressive interventions such as allogeneic stem cell transplantation. 
Genetics is moving from being mostly a prognostic factor to becoming a multitasking decision support tool 
for hematologists. Physicians must pay attention to advances in molecular hematology as it will soon be 
accessible and influential for most of our patients. 
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INTRODUCTION 

Forty-one years ago Janet Rowley was the first to 
describe chromosomal translocation in leukemia.1 
Back in the 1970s, the concept that genetic aberra-
tions may be involved in cancer pathobiology was so 
revolutionary that her landmark report of t(8:21) in 
acute myeloid leukemia (AML) was rejected by the 
New England Journal of Medicine because review-
ers thought her findings were not important.2 Soon 
afterwards, the value of her findings was recognized, 
and her second report regarding t(9:22) in chronic 
myeloid leukemia (CML) was accepted by Nature.3 
During the last decades, scientists, oncologists, and 
hematologists have come a long way advancing our 
knowledge and understanding of the roles of genetic 
aberrations in cancer pathobiology. Numerous 
genetic aberrations were identified in each cancer-
ous disease. A current clinical challenge is to pick up 
aberrations that matter out of a huge haystack of 
genetic information. Doctors and health care 
providers are under continuous pressure to catch up 
with cutting-edge discoveries. The enormous 
number of possible combinations of coexisting 
mutations and the growing number of novel 
available therapies make clinical implications of 
genetic data complicated. As in many other fields of 
life, the public is a step ahead of governmental or 
authorized health care organizations. It is common 
that patients initiate additional comprehensive 
genetic testing, expecting their treating physicians to 
be equipped enough to interpret such results. 
Unfortunately, most identified mutations are either 
clinically meaningless, or their value in each clinical 
setting is still to be recognized. In the following 
review an up-to-date comprehensive approach for 
genetic stratification in myeloid diseases will be 
discussed in light of common clinical dilemmas. 

GENETIC CONSIDERATIONS IN THE 

EVALUATION OF MYELOID DISEASES 

Genetics as a Supportive Tool for Accurate 

Diagnosis of Myeloproliferative Disorders, 

Myelodysplasia, and Neoplasms 

Back in 1953 a pre-leukemic state was described in a 
series of 12 patients,4 yet a clear pathological 
definition, classification, and naming the syndrome 

as myelodysplastic were established only in 1982 by 
the French–American–British (FAB) group.5 During 
the 32 years that followed the FAB classification, 
myelodysplastic syndrome (MDS) was reclassified 
twice,6,7 based on morphology. Currently isolated 
deletion of 5q is the only genetic aberration that has 
implication for MDS diagnosis and classification.  

The torrent of novel genetic information is not 
yet reflected in the way MDS is being diagnosed and 
classified. The limitations of morphologic classifica-
tion lead to the recognition of ill-defined entities.7 
There is an unmet need for laboratory-supportive 
tools for the diagnosis and classification of morpho-
logically challenging entities.8,9 The potential of 
genetic data that can support current diagnostic 
tools is of special importance when morphologic 
diagnosis is difficult, inconclusive, or non-
reproducible by different morphologists. Newly 
identified driver mutations are found to be associ-
ated with otherwise poorly defined diseases and are 
likely to be included in future MDS or myelopro-
liferative neoplasm (MPN) classification. Examples 
for suggested driver mutations are the SET-binding 
protein 1 (SETBP1) in atypical chronic myeloid 
leukemia (aCML),10,11 SRSF2 in chronic myelomono-
cytic leukemia (CMML),12–14 and CSF3R in chronic 
neutrophilic leukemia.15,16 Another common diag-
nostic difficulty that can now be overcome using 
genetic information is the differentiation between 
primary myelofibrosis and other causes of bone 
marrow fibrosis. Either calreticulin (CALR) muta-
tion or JAK2 mutation is revealed in most cases of 
primary myelofibrosis.17 It is therefore reasonable to 
anticipate incorporation of these mutations into 
future diagnostic and classification criteria.18,19 

In low-risk MDS, criteria for quantitative 
enumeration of ring sideroblasts are available,20 but 
the techniques require well-trained morphologists 
and are time-consuming. One may consider that 
since the SF3B1 mutation has a positive predictive 
value for the presence of ring sideroblasts of 
97.7%,21 this mutation will soon be recognized as 
supportive to the diagnosis of refractory anemia 
with ring sideroblasts. Chronic myelomonocytic leu-
kemia (CMML) is currently classified, based on the 
level of the white blood cell count, into myelodys-
plastic and myeloproliferative subcategories. It was 
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recently suggested that such sub-classification could 
be better defined by specific genetic profiles.22,23  

Understanding of the genetic basis of myeloid 
malignancies will inevitably lead in the near future 
to the incorporation of some of the above-
mentioned genetic tests into the working schemes 
for hematologic diagnosis. Potentially, the identifi-
cation of pre-leukemic mutations in AML24 may be 
the first step towards accomplishing a more chal-
lenging task, that of determining the boundaries 
between high-risk MDS or MPN and AML. In the 
future, genetics may enable molecular identification 
of patients in whom leukemic transformation would 
ensue prior to the appearance of traditional clinical 
and laboratory signs and symptoms.  

Prognostication: Cytogenetics and Beyond 

For many years, cytogenetics has been the only 
genetic information that influenced clinical 
decisions in MDS. The international prognostic 
scores both in their primary and revised versions 
(IPSS and R-IPSS)25,26 consider only patients who 
received supportive therapy and describe the natural 
history of the disease providing valuable predictions 
of prognosis. Recent large-scale, comprehensive 
genetic studies have provided description of the 
mutation landscape of MDS,27–29 identification of 
new mechanisms involved in disease pathogene-
sis,30–32 and confirmed that MDS is a stem cell dis-
order.18 Results of such exciting scientific progress 
are still waiting to be incorporated into daily clinical 
practice.  

Unlike MDS, where cytogenetics allows segrega-
tion of patients into categories with a well-defined 
predicted outcome,33 the prognostic value of cyto-
genetics is much less prominent in CMML34–36 and 
primary myelofibrosis (PMF).37,38 In the absence of a 
strong cytogenetic influence, the prognostic value of 
specific mutations is recognized in these diseases. It 
is not clear whether these mutations have no effect 
in MDS or their prognostic value in this disease is 
masked by a strong cytogenetic influence. The 
ASXL1 mutation is most dominant in CMML39,40 
and PMF,41,42 while mutations in other genes may 
also affect patient prognosis. The interplay between 
cytogenetic profile and prognostic power of specific 
mutations is highlighted by the finding that most 
MDS patients presenting with a complex karyotype 
also carry a mutation or a deletion in the well-
known tumor suppresser gene TP53.43,44 Whether 
the aberrant karyotype or the TP53 mutation is 

responsible for the poor outcome of affected 
patients is still unknown.  

The more we know about the genomic landscape 
of myeloid malignancies, the more complicated 
become the combinatorics of potential aberrations 
to be integrated for prediction of the outcome for a 
specific patient. Cytogenetics, mutations, micro-
deletions, methylation abnormalities, and micro-
RNA expression levels are all important players 
determining patient prognosis. It will therefore be 
challenging to create an ultimate prognostic model 
which will be much better than those available 
today. Physicians should focus on genetic aberra-
tions that can influence therapeutic decisions in 
every given clinical situation. Examples and sug-
gestions for such an approach are reviewed herein.  

THERAPEUTIC DECISIONS IN THE ERA 

OF MULTIPLE TREATMENT OPTIONS 

In previous years, allogeneic hematopoietic stem cell 
transplantation (allo-HCT) was the only disease-
modifying therapy available for MDS. Allo-HCT is 
indicated whenever the risk of death or leukemic 
transformation is projected to be lower following 
transplant than the equivalent risk anticipated by 
the Revised International Prognostic Scoring System 
(R-IPSS).45 The International Prognostic Scoring 
System (IPSS) and R-IPSS considered only patients 
who received no other therapy than supportive care, 
but nowadays, due to a tremendous progress in the 
area of MDS, most patients are candidates for novel 
disease-modifying drugs (e.g. azacitidine46,47 and/or 
lenalidomide48–50). Retrospective comparisons sug-
gest that allo-HCT may be superior to azacitidine in 
selected high-risk populations.51–53 However, 
patients’ specific consultation must be outlined with 
caution, because such retrospective data are subject 
to inherent biases.54 Allo-HCT may not be suitable 
for many AML/MDS patients presenting at older age 
and with co-morbidities.55–59 However, with modern 
reduced-intensity conditioning and supportive care, 
a large proportion of patients with myeloid diseases 
are considered fit and can survive through trans-
plant. Many of these potential candidates for allo-
HCT are classified as intermediate-risk, and, even 
when a survival benefit with allo-HCT compared to 
supportive care is predicted by R-IPSS, the actual 
clinical debate is whether allo-HCT will lead to an 
outcome better than that provided by novel ther-
apies. Notably, patients may prefer hypomethylation 
therapy over transplant in fear of hampered post-
transplant quality of life.  



 

Genetic Stratification in Hematology 
 

 

Rambam Maimonides Medical Journal 4 October 2014  Volume 5  Issue 4  e0025 
 

Novel Agents and Associated Dilemmas in 

Acute and Chronic Leukemia 

During the last decades, targeted therapies with 
tyrosine kinase inhibitors and all trans-retinoic acid 
have revolutionized the management of chronic 
myeloid leukemia (CML) and acute promyelocytic 
leukemia (APL). In 2014, promising results were 
reported on the use of additional novel targeted 
agents (e.g. FLT3-ITD and IDH1 inhibitors in 
AML,60,61 ibrutinib and ABT-199 in chronic lympho-
cytic leukemia (CLL)62,63). Approvals of many of 
these novel drugs are based on results of phase II 
studies with short follow-ups, making the incorpora-
tion of these agents into clinical algorithms 
challenging. Targeted therapies aim at specific 
mutations, but, since mutations in different genes 
often coexist, identification of the targeted mutation 
does not guarantee clinical response to its inhibitor. 
Even if a good response is achieved, its longevity is 
not known. Predicting the durability of the benefits 
of targeted therapies is essential, especially when 
traditional alternatives are associated with high 
morbidity and mortality rates. Imagine older adults 
with FLT3-ITD-positive AML and normal karyotype 
or fludarabine-resistant CLL, who responded well to 
quizartinib or ibrutinib consulting you whether to 
proceed to allo-HCT. Would your advice be different 
if a patient diagnosed with Ph+ acute lymphocytic 
leukemia were consulting you after achieving a good 
response with dasatinib? Firm clinical data will be 
available to support the selection of specific targeted 
therapies over allo-HCT only in another few years 
when follow-ups mature. However, with the pace 
that novel targeted therapies enter clinical practice, 
physicians should come up with rational thoughts 
guiding the best decisions even when available data 
are premature. Safety profiles of most targeted 
drugs are good, and thus they become attractive, 
which challenges the justification for using high-risk 
procedures like allo-HCT. Availability of novel 
agents is increasing, and, for those who achieved 
good responses, prediction of longevity and 
potential curability is important, especially for the 
growing population of older adults fit for reduced-
intensity conditioning allo-HCT.  

GENETIC DATA TO SUPPORT 

THERAPEUTIC DECISIONS IN THE LACK 

OF CLINICAL EVIDENCE 

Researchers, looking for the very first cancer-

initiating event, often concentrate on driver muta-

tions that have the power to transform a normal cell 

into a malignant one. Yet, some available and effect-

ive drugs target mutations which lack the capacity to 

kick off cancer by themselves but are essential for 

cancer growth and proliferation. Hematological 

malignancies vary in their genetic complexity. Not 

surprisingly, CML and APL, the two success stories 

of targeted therapies, are characterized by a single 

dominant oncogenic hybrid protein as their driver 

event. Pathogenesis of most other hematological 

malignancies is much more complex, with multiple 

coexisting combinations of genetic aberrations 

generating signals stimulating progression of the 

tumor. In AML, nucleophosmin (NPM1) and FLT3 

are the two most commonly mutated genes that 

have been studied extensively. Both have clinical 

significance, but biological differences between 

these mutations should be considered which may 

help outlining a scheme for translating basic genetic 

information into rational clinical moves. The most 

important biological difference between NPM1 and 

FLT3 mutations lies in the time point where they 

occur during leukemogenesis. The NPM1 mutation 

is likely to occur very early during the pathogenesis 

of leukemia. When injected to immunocompromised 

mice, NPM1-mutated leukemic cells can generate 

leukemia.64 The NPM1 mutation is stable at 

diagnosis and relapses and is therefore considered a 

potential marker for minimal residual disease 

(MRD).65 On the contrary, FLT3-ITD is recognized 

as a late event,66 may be sub-clonal,67 and is 

therefore not reliable as an MRD marker. Indeed, 

NPM1, but not FLT3-ITD, was recognized as a 

provisional entity in the 2008 World Health 

Organization classification of myeloid neoplasms.68 

However, although FLT3-ITD has no capacity of 

NPM1 mutation to transform a normal hemato-

poietic cell into a leukemic one, whenever both 

mutations coexist, the favorable prognostic effect of 

NPM1 mutation is overridden by the deleterious 

prognostic effect of FLT3-ITD.69,70 Similarly, t(8:21) 

is considered to be an early event which yields a 

well-characterized oncogenic hybrid protein and is 

stable to be used as an MRD marker.71,72 Yet, con-

comitant C-kit or ASXL1 mutations which are later 

events may significantly hamper the prognosis.73,74  

The clonal evolution nature of myeloid malignan-
cies75–77 is well established. Disease progression may 
be attributed to a late event resulting in a prolifera-
tion and/or survival benefit to a sub-clonal popula-
tion. Targeted therapies that could block such 
mutation may lead to a tremendous initial clinical 
response, but one should bear in mind that such 
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response may be short since the therapy is not 
targeting the primary pathological event. On the 
contrary, drugs that target the primary event may 
not be powerful enough to oppose a strong prolif-
erative signal derived from a “second hit” developed 
in the subpopulation that took over the entire 
tumor. As there is no reliable mechanism to predict 
who of the many patients presenting with similar 
diseases will respond to a specific agent, there is no 
model forecasting the duration of response in those 
who achieved a clinically meaningful response.  

NEXT-GENERATION SEQUENCING—DO 

CLINICIANS NEED SO MUCH 

INFORMATION? 

Genetic profiling of hematological diseases is part of 
standard assessment. This is particularly significant 
for acute leukemia, where clinical decisions some-
times depend on the presence or absence of specific 
mutations.78 The development of next-generation 
sequencing (NGS) techniques allows parallel quanti-
tative sequencing of large numbers of genes at an 
affordable price.  

Next-generation sequencing yields an enormous 
amount of data which are difficult to interpret, thus 
requiring skilled bioinformatics expertise. In addi-
tion, there is no consensus regarding technical 
merits of NGS clinical use.79 Laboratories perform-
ing NGS usually provide a comprehensive report 
including data on multiple genetic aberrations, and 
in some cases deep sequencing gives information 
about sub-clonal mutations.  

Clinicians are usually familiar with traditional 
statistical analysis for prognostic evaluation based 
only on the most common mutation combinations in 
AML, leaving most patients in a heterogeneous 
“intermediate-risk” group.80,81 There is an unmet 
need for creating a clinically valid and meaningful 
“dictionary” for the growing NGS-derived data from 
private or academic NGS facilities. Clearly, from the 
clinical perspective not all mutations matter. Muta-
tions with a “weak” prognostic effect are anticipated 
to be recognized when data from a higher number of 
analyzed patients become available. Yet, would you 
recommend your patient spending money on private 
detailed NGS? 

CLINICAL POTENTIAL OF NEXT-

GENERATION SEQUENCING 

Genetics is perceived by the majority of hematolo-
gists as the most accurate prognostication tool. 

Next-generation sequencing is therefore acknowl-
edged for high-level prognostication which, unfor-
tunately, we have limited capacity to deal with. 
However, NGS is much more than a way of 
identifying all mutations at a reasonable price. This 
technique provides an opportunity for dynamic 
prognostication of patients presenting with myeloid 
malignancies who may experience leukemic trans-
formation. In recent years, sequential genetic evalu-
ation of the same patient demonstrated the dynam-
ics of progression from MDS to secondary AML.29,75 
Preliminary studies suggested that accumulation of 
sub-clonal mutations identified by sequential 
meticulous genetic follow-up can point out an 
evolving leukemic transformation.29,82 Even muta-
tions which in general have no prognostic value, 
such as those found in the RAS genes,83 may be 
alarming if they emerge in patients previously tested 
and found to be negative for these mutations, 
regardless of R-IPSS classification.84 Specific muta-
tions in ASXL1, BCOR, and IDH1 are also associated 
with a pending leukemic transformation.82,85–87 The 
complexity of leukemia genetics puts an obstacle to 
revealing the significance of every single mutation 
for therapeutic decisions. Next-generation sequen-
cing may bring a new dynamic attitude, in which not 
the presence of a specific mutation but the dynamics 
and acquisition of new mutations will be of clinical 
importance. For example, arguments in favor of 
allo-HCT may sound stronger for patients in whom 
deterioration toward leukemic transformation can 
be pre-identified.  

CONCLUSIONS 

Techniques for DNA sequencing are rapidly and 
constantly improving. Clinicians are facing a chal-
lenge to employ the new capacities of genetic labora-
tories to make sure that their patients will benefit 
most from the ongoing scientific progress. The 
current review has discussed the contribution of 
different genetic testing tools to clinical practice. 
Myeloid malignancies are among the most genetical-
ly studied cancerous diseases where genetics is 
recognized as an important player in diagnosis 
and/or classification. Our growing understanding of 
the underlying genetic mechanisms of leukemo-
genesis may help physicians in daily practice, 
especially when patients are facing questions where 
no firm evidence exists to support a specific 
decision. The explosion of novel targeted agents 
makes such circumstances frequent. Next-genera-
tion sequencing should be considered advantageous, 
not only because it provides access to a wide 
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spectrum of genetic testing for all patients, but also 
because it may allow recognition of genetics as a 
dynamic assessment tool of clonal evolution. It may 
be suggested that in the future, regardless of the 
presence of a specific mutation, a pending leukemic 
transformation may be predicted by sequential 
monitoring of the same patient for newly acquired 
mutations. Genetics is about to go beyond prog-
nostication and will soon be strongly incorporated 
into many aspects of clinical evaluation and 
therapeutic decisions. 
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