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Simple Summary: Quantitative real-time fluorescent polymerase chain reaction (qRT-PCR) is a
momentous tool for calculating the expression levels of targeted genes across various experimental
conditions. The selection and evaluation of stable reference genes for qRT-PCR analysis is an
essential precondition for reliable expression assessment. Phthorimaea operculella is one of the most
serious Lepidopteran pests that attack potatoes around the world. In the present paper, a total of
10 commonly used reference genes, namely ACT, α-TUB, 18S, 28S, GAPDH, EF1α, RPL4, RPL13, RPL27
and SOD, were selected and validated for suitability under three treatments (developmental stages,
tissues/organs and temperatures) using five methods (Ct value, geNorm, NormFinder, BestKeeper
and RefFinder). These results indicated that EF1α and RPL13 were the best suitable reference genes for
diverse backgrounds. The relative transcript levels of the target gene chitin synthase A gene (PoChSA)
were abundantly expressed in epidermal cells, and lowly transcribed in the midgut. Our findings
will be beneficial for improving the accuracy of qRT-PCR analysis for future functional analysis of the
target gene expression in P. operculella.

Abstract: Due to a lack of effective internal references, studies on functional genes in Phthorimaea operculella,
a serious Lepidopteran pest attacking potatoes worldwide, have been greatly limited. To select suit-
able endogenous controls, ten housekeeping genes of actin (ACT), α-tubulin (α-TUB), glyceraldehyde-
3-phosphate dehydrogenase (GAPDH), elongation factor 1α (EF1α), 18S and 28S ribosomal RNA (18S,
28S), ribosomal protein genes RPL4, RPL13 and RPL27 and superoxide dismutase (SOD) were tested.
Their expression levels were determined under three different experimental conditions (developmen-
tal stages, tissues/organs and temperatures) using qRT-PCR technology. The stability was evaluated
with five methods (Ct value, geNorm, NormFinder, BestKeeper and RefFinder). The results clarified
that RPL13, EF1α and RPL27 are ranked as the best reference gene combination for measuring gene
expression levels among different developing stages and under various temperatures; EF1α and
RPL13 are recommended to normalize the gene expression levels among diverse tissues. EF1α and
RPL13 are the best reference genes in all the experimental conditions. To validate the utility of the
selected reference pair, EF1α and RPL13, we estimated the tissue-biased expression level of chitin
synthase A gene (PoChSA). As expected, PoChSA was abundantly expressed in ectodermally derived
epidermal cells, and lowly transcribed in the midgut. These findings will lay the foundation for
future research on the molecular physiology and biochemistry of P. operculella.

Keywords: Phthorimaea operculella; reference gene; ribosomal protein; elongation factor; chitin synthase

1. Introduction

Quantitative real-time fluorescent polymerase chain reaction (qRT-PCR) is a powerful
tool for the quantification of nucleic acids owing to its advantages of high specificity,
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sensitivity, accuracy and rapidity [1,2]. It has been widely used in scientific research [3,4].
When qRT-PCR is used to calculate the relative expression levels of target genes, it is
necessary to combine relatively stable reference genes for normalization to improve the
quantitative results [5]. If unsuitable references are applied, the nucleic acid quantitates
will be biased. In Locusta migratoria, for instance, inappropriate selection of the reference
genes results in significant differences in the expression level of the target gene chitin
synthase 1 [6]. Therefore, stably expressed reference genes should be selected under
different treatments, within different tissues or organs and at different developmental
stages [7,8].

In general, the reference genes are housekeeping genes (HKGs) that stably transcribe
in various cells or during diverse physiological states [9]. However, there is no single
universal reference gene [10]. To obtain accurate results, the exact experimental conditions
for the expression of each candidate reference gene must be verified [7,8].

The potato tuber moth, Phthorimaea operculella (Lepidoptera, Gelechiidae), is one of the
most serious Lepidopteran pests attacking potatoes around the world [11]. It reduces potato
production either via mining and damaging leaves and stems in fields or via burrowing and
destroying tubers in storage [4]. In P. operculella, the ACTIN (ACT) gene is used for qRT-PCR
studies when measuring the expression of two pheromone receptor genes OR1 and OR3 [4]
and the level of chitin synthase A genes [3]. However, the stability and effectiveness of
ACT have not been validated. This might significantly affect statistical analyses and might
result in false data interpretation [12]. Therefore, it is imperative to identify the optimal
endogenous controls for specific conditions in P. operculella.

The stability of reference genes has widely been evaluated in Lepidopterans [7,13–20].
For instance, the most suitable reference genes have been documented in Tuta absoluta
(elongation factor 1α, EF1α; 60S ribosomal protein L28, RPL28) [7], Thitarodes armilicanus
(glyceraldehyde-3-phosphate dehydrogenase, GAPDH) [21], Diaphania caesalis (ACT and
60S ribosomal protein RPL13a across developing stages, ACT and eukaryotic initiation
factor EIF4A in various tissues) [22] and Sesamia inferens (18S ribosomal RNA, 18S; ribosomal
protein S20, RPS20; α-tubulin, α-TUB) [23]. Generally, at least two reference genes may be
necessary for each insect species as a single reference gene cannot satisfy all experimental
requirements [24].

Since the top 10 most frequently used reference genes include ACT, RPL, TUB, GAPDH,
RPS, 18S, EF1α, TATA, HSP and SDHA in insects [25], we accordingly selected ten HKGs,
i.e., ACT, α-TUB, 18S, 28S, GAPDH, EF1α, RPL4, RPL13, RPL27 and SOD, in P. operculella.
The objectives of this survey were to (i) evaluate the expression stability of the 10 candi-
date reference genes, (ii) screen/select the most stable internal reference genes expressed
in different developing stages and tissues/organs and under different temperatures and
(iii) to validate the stability and effectiveness of the selected reference gene pair by compari-
son with the published results. Our results provide the reference basis for further molecular
studies involving P. operculella.

2. Materials and Methods
2.1. Insects

P. operculella used for this study were collected from Solanum melongena L. in Guiyang
city, Guizhou Province, China in 2020. The larvae were routinely maintained in an insectary
at 26 ± 1 ◦C under a 12 h:12 h light-dark photoperiod and 60–80% relative humidity using
fresh potatoes as food. The adults were fed with a 10% honey solution.

2.2. Samples through Developing Stages

All stages of P. operculella were sampled: young and old larvae, pupae and adults. The
number of individuals for each replicate across the different developmental stage was as
follows: 10 young larvae, 5 old larvae, 5 pupae and 5 adults (3 males and 2 females). The
collection was repeated three times.
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2.3. Specimens among Various Tissues

Ten fully grown larvae were selected as a replicate. They were dissected and the head
capsule, foregut, midgut, hindgut, fat body, hemocytes and epidermis were collected. The
tissue collection was repeated three times. The tissue specimens were placed in RNAlater R
(Thermo Fisher Scientific Inc., Waltham, MA, USA) and stored for several weeks at −80 ◦C
before total RNA isolation.

2.4. Collections during Varied Temperature Incubation

The final instar larvae were transferred into three temperatures (4 ◦C, 26 ◦C and 35 ◦C).
Ten larvae as a replicate were collected after 2, 6 and 12 h. A total of nine treatments were
set. The collection was repeated three times and stored for several weeks at −80 ◦C before
total RNA isolation.

2.5. Samples for the Expression Analysis of PoChSA

The ultimate instar larvae were dissected and the head capsule, foregut, midgut,
hind gut and epidermis were collected. A total of 10 individuals were dissected for each
replicate. The tissue collection was repeated three times. The tissue specimens were placed
in RNAlater R (Thermo Fisher Scientific Inc., Waltham, MA, USA) and stored for several
weeks at −80 ◦C before total RNA isolation.

2.6. Selection and Authentication of Candidate HKGs

Ten HKG sequences (actin, ACT; α-tubulin, α-TUB; glyceraldehyde-3-phosphate dehy-
drogenase, GAPDH; elongation factor 1α, EF1α; 18S and 28S ribosomal RNA, 18S and 28S;
ribosomal proteins RPL4, RPL13 and RPL27; superoxide dismutase, SOD) were selected.
The accession numbers of these genes are listed in Table 1.

Table 1. A list of primers used for RT-PCR of the genes.

Gene Name Primer Sequences (5′ to 3′) Amplicon Size (bp) Accession Number

ACT Forward GTGTTCCCCTCCATCGTC
Reverse ACATCGCCTGGAAAGTAG 979 OL675412

α-TUB Forward GCCGTGTTTGTGGACTTG
Reverse TGATGGAGGATACGATTTGA 523 OL690519

18S Forward ATGCCCTTAGATGTCCTGG
Reverse GGATTTCTAACCCGTCTGC 557 OL655414

28S Forward ACGTCGTTGTCGATGTCC
Reverse CAAGCCTTCACTTTCGTT 212 OL672488

GAPDH Forward GACCACTGTCCACGCTAC
Reverse GATGACACGGCTGGAGTA 451 OL675413

EF1α
Forward CTTCTCGCCTTCACCCTT

Reverse GGCGAATCTACCCAGAGG 864 OL690518

RPL4 Forward TGAGAAGAGCGAGCAAGT
Reverse TTTTCCCTCAGTTTCTCG 1098 OL652885

RPL13 Forward ACAAGGATTGGCAAAGATT
Reverse ACCCTTGAGGACCTTCTT 365 OL690517

RPL27 Forward GAAGAACTACGACGAGGGG
Reverse TGTTCTTTCCGCTCTTGTAT 299 OL675414

SOD Forward ATGGTTGCTTTGCTGAAT
Reverse AGATAGCTTTGACATAGTCGG 370 OL675415

Reverse transcription PCR (RT-PCR) was performed to authenticate the HKGs using
the primers listed in Table 1. The amplified products were separated by electrophoresis
on 1.5% agarose gel and purified using the Wizard® PCR Preps DNA Purification System
(Promega, Madison, WI, USA). Purified DNA was ligated into the pGEM®-T easy vector
(Promega, Madison, WI, USA) and several independent subclones were sequenced from
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both directions. The resultant sequences were submitted to GenBank; the accession numbers
are listed in Table 1.

2.7. Quantitative Real-Time PCR (qRT-PCR)

The qRT-PCR primers were designed using Beacon Designer 7 (Premier Biosoft Inter-
national, Palo Alto, Santa Clara, CA, USA), and are given in Table 2. The qRT-PCR reactions
were performed using ChamQ Universal SYBR qPCR Master Mix (Vazyme Biotech Co.,
Ltd., Nanjing, China) and QuantStudio™ 7 Pro Real-Time PCR System (Applied Biosys-
tems, Life Technologies, Carlsbad, CA, USA) according to the manufacturer’s protocol. The
reaction mixture consisted of 1 µL of cDNA template, 10 µL of 2× ChamQ Universal SYBR
qPCR Master Mix, 0.4 µL of forward primer (10 µM), 0.4 µL of reverse primer (10 µM) in a
final reaction volume of 20 µL. A reverse transcription negative control (without reverse
transcriptase) and a non-template negative control were included for each primer set to
confirm the absence of genomic DNA and to check for primer dimers or contamination in
the reactions, respectively. The qRT-PCR protocol included an initial step of 95 ◦C for 30 s,
followed by 40 cycles of 95 ◦C for 5 s and then annealed at 60 ◦C for 34 s, followed by one
cycle of 95 ◦C for 15 s, 60 ◦C for 60 s and 95 ◦C for 1 s. PCR amplicons were subjected to
melting curve analysis. The specificity of the qRT-PCR reactions was monitored by melting
curve analysis using QuantStudio™ Design & Analysis Software (version 1.5.0) and gel
electrophoresis. Amplification efficiencies were determined by a 10-fold dilution series of
template. All experiments were repeated in triplicate.

Table 2. Primers of 10 candidate house-keeping genes used in qRT-PCR.

Gene Primer Sequences (5′ to 3′) Length (bp) Slope R2 Efficiency (%)

ACT
F-AATTGTGCGAGACGTCAAGG

239 −3.480 0.998 93.80R-CGTCGCACTTCATGATGGAG

α-TUB
F-CACTGGTAAAGAAGACGCGG

194 −3.241 0.999 103.49R-AGAGACGTTCCATCAGCAGG

18S
F-CGTTTGCTGGGAAGTTGACC

199 −3.289 0.997 101.39R-GACACGACCGTAAACCCATC

28S
F-GATTCAGTTTCGGGCACTCG

154 −3.232 0.999 103.89R-CTAGACCGACGCTCCATCC

GAPDH
F-TGCCACCCAAAAGACTGTTG

240 −3.338 0.998 99.33R-ACCTTGGCTTTGATCGCATC

EF1α
F-TGTCAAGCAGCTGATCGTTG

164 −3.286 0.999 101.52R-CTCCGTGCCATCCAGAAATG

RPL4
F-GGTCTGACGTGCTCAAGGTA

183 −3.452 0.991 94.84R-GCAGGTTCAGCTTGTCAACA

RPL13
F-AACCAACCCGCTAGAAGACA

97 −3.294 0.999 101.18R-CCACAGGTCTCAATGGTCCA

RPL27
F-TGAAGAACTACGACGAGGG

199 −3.384 0.992 97.47R-TCGAAGCTGAAGTCTACGGA

SOD
F-CAACCTGTCTCCCTGCAAAA

159 −3.328 0.998 99.75R-TTCGCCAACTTGTTGTAGCC

2.8. Evaluation of Reference Gene Selection

ChSA of P. operculella was used to evaluate the stability of candidate reference genes. The
primer sequence of the target gene was as follows: forward (5′-GCCTGGAGTTCACAGTCAGA-
3′) and reverse (5′-GCCGGTCTTTCTTAAGTTGC-3′). The average relative levels of PoChSA
in different tissues were computed based on 2−∆∆CT method and from three replicates. We
used SPSS for Windows (Chicago, IL, USA) for statistical analyses. The averages (±SE)
were submitted to analysis of variance with the Tukey–Kramer test.
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2.9. Data Processing

The raw Ct values were obtained using the QuantStudio™ Design & Analysis Software
(version 1.5.0). The algorithms, including geNorm [26], BestKeeper [27] and Normfinder [28],
were used to analyze the stability of selected HKGs, strictly following the manuals of the
algorithms. Finally, the comprehensive ranking of each condition was obtained according
to RefFinder [29,30].

3. Results
3.1. Selection of Candidate HKGs

We selected ten HKG genes and designated them as ACT, α-TUB, 18S, 28S, GAPDH,
EF1α, RPL4, RPL13, RPL27 and SOD. The resultant sequences were submitted to GenBank;
the accession numbers were listed in Table 1. The correctness of the ten HKGs was proven
by RT-PCR.

The products from qRT-PCR were confirmed by sequencing. The primer specificity
for qRT-PCR was verified by melting curve analysis. All the primer pairs amplified a
single PCR product with the expected sizes and sequences, showed a slope less than −3.0
and exhibited regression coefficient (R2) and efficacy values ranging from 0.991–0.999
and 93.80–103.89% (Table 2). These data indicate that the amplification efficiencies of the
primers reached the standard requirements of conventional qRT-PCR [5].

3.2. Expression Variations of the Ten HKGs

The specimens were collected from four developmental stages (young and old larvae,
pupae and adults), seven larval tissues (head capsule, foregut, midgut, hindgut, fat body,
hemocytes and epidermis) and three temperature treatments (4 ◦C, 26 ◦C and 35 ◦C). Using
the products obtained by qRT-PCR for agarose gel electrophoresis, we found that all ten
genes had single amplicons of expected size (data not shown). Therefore, these ten genes
were expressed during different developmental stages, among different larval tissues and
under different temperatures.

The overall threshold cycle (Ct) values under different experimental conditions are
shown in Figure 1 and Table S1. Across developing stages, EF1α and RPL13 had the smaller
gene expression variation, whereas ACT and 18S had the higher expression difference
(Figure 1A). Among various tissues, except for GAPDH and SOD, the expression fluctua-
tions were small in selected HKGs (Figure 1B). Under different temperatures, the expression
fluctuations were small in selected HKGs except for SOD and GAPDH (Figure 1C). A com-
bination of these results revealed that the variations in RPL13, EF1α, RPL27 and α-TUB
were smaller, whereas the ranges in ACT, GAPDH, 18S and SOD were larger (Figure 1D).

3.3. Expression Stability of the Ten HKGs during Developmental Stages

The geNorm algorithm evaluates the candidate reference genes based on their ex-
pression stability values (M-values) and pairwise variations (Vn/Vn+1). The expression
stability values revealed that EF1α, RPL13 and 28S were the better reference genes during
developing, with M-values below 0.5. The values of other genes were below 1, except for
ACT, and their stability values were similar (Figure 2A, Table 3). The pairwise variation
analysis showed that the V3/4 value was near 0.15; indicating three different reference
genes are needed for gene expression analysis during development (Figure 2B).
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represents the median. Abbreviation: ACT, actin; α-TUB, α-tubulin; GAPDH, glyceraldehyde-3-
phosphate dehydrogenase; EF1α, elongation factor 1α; 18S and 28S, 18S and 28S ribosomal RNA; 
RPL4, RPL13 and RPL27, ribosomal protein; SOD, superoxide dismutase. The abbreviations are ex-
actly the same as Figures 2–5. 
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for 10 candidate reference genes are shown in three independent experiments: developmental stage,
tissue, and temperature. Each box indicates the 25th and 75th percentiles. The line across the box
represents the median. Abbreviation: ACT, actin; α-TUB, α-tubulin; GAPDH, glyceraldehyde-3-
phosphate dehydrogenase; EF1α, elongation factor 1α; 18S and 28S, 18S and 28S ribosomal RNA;
RPL4, RPL13 and RPL27, ribosomal protein; SOD, superoxide dismutase. The abbreviations are
exactly the same as Figures 2–5.
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Figure 3. Expression stability of ten house-keeping genes among various tissues in
Phthorimaea operculella. Head capsule, foregut, midgut, hindgut, fat body, hemocytes and epidermis
were dissected from the fourth instar larvae. The expression stability rankings were determined by
geNorm, NormFinder and BestKeeper.
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Table 3. Expression stability of the candidate reference genes under different experimental conditions.

Conditions CRGs *
geNorm Normfinder BestKeeper ∆Ct

Stability Rank Stability Rank Stability Rank Stability Rank

Developmental stages ACT 1.542 9 3.751 10 2.987 10 3.819 10
EF 0.208 1 0.374 2 0.289 3 1.065 1
18S 0.973 8 1.214 9 1.097 9 1.728 9
28S 0.429 2 0.759 7 0.284 2 1.298 6

SOD 0.769 6 0.740 5 0.617 6 1.351 7
GAPDH 0.721 5 0.951 8 0.878 8 1.362 8
α-TUB 0.551 3 0.753 6 0.545 4 1.240 4
RPL4 0.818 7 0.573 4 0.699 7 1.278 5
RPL13 0.208 1 0.294 1 0.141 1 1.069 2
RPL27 0.650 4 0.560 3 0.609 5 1.211 3

Larvae tissues ACT 0.799 7 1.150 9 0.696 8 1.344 9
EF 0.338 1 0.007 1 0.200 1 0.833 1
18S 0.706 6 1.004 8 0.656 7 1.252 7

28S 0.445 3 0.383 5 0.328 3 0.934 4
SOD 1.161 9 2.131 10 2.088 10 2.217 10

GAPDH 0.897 8 0.972 7 0.997 9 1.302 8
α-TUB 0.607 5 0.608 6 0.493 5 1.043 6
RPL4 0.389 2 0.272 2 0.373 4 0.869 3
RPL13 0.338 1 0.293 3 0.279 2 0.868 2
RPL27 0.517 4 0.370 4 0.542 6 0.946 5

Temparature treatment ACT 0.614 3 0.759 6 1.293 8 1.137 5
EF 0.485 1 0.502 3 0.934 5 0.991 2
18S 0.903 7 0.928 8 0.755 3 1.322 8
28S 0.808 6 0.812 7 0.377 1 1.194 7

SOD 1.257 9 2.215 10 1.751 10 2.324 10
GAPDH 0.990 8 1.200 9 1.599 9 1.451 9
α-TUB 0.701 4 0.464 2 0.630 2 1.026 3
RPL4 0.743 5 0.734 5 0.989 7 1.144 6
RPL13 0.485 1 0.170 1 0.906 4 0.945 1
RPL27 0.567 2 0.527 4 0.963 6 1.0.36 4

* Candidate reference genes.

According to the NormFinder, those genes with low stability values, based on intra-
and inter-group expression variations, are considered to be the most stable reference genes.
Across different development stages, the stable genes were RPL13, EF1α and RPL27, with
the p value less than 1.0. The most unstable gene was ACT, with the p value of 3.8 (Figure 2C,
Table 3).

Based on the BestKeeper analysis, the stable orders of selected HKGs were RPL13,
28S, EF1α, α-TUB, RPL27, SOD, RPL4, GAPDH, 18S and ACT, from the most stable to
the least. The last two genes, 18S and ACT, had Cp values of more than 1 (Figure 2D,
Table 3), indicating that they should be excluded as reference genes for qRT-PCR to test the
expression level of the target gene.

The online tool RefFinder combines the three methods above to compare and rank the
tested reference genes [29]. It ranks the selected HKGs in the following order from the most to
least stable: RPL13 > EF1α > RPL27 > 28S > α-TUB > RPL4 > SOD > GAPDH > 18S > ACT
(Figure 5A). Therefore, RPL13, EF1α and RPL27 are ranked as the best reference gene
combination for measuring target genes among different developing stages.

3.4. Expression Stability of the Ten HKGs among Different Tissues

Among the three tissues, the stability of the selected HKGs were EF1α = RPL13 > RPL4
> 28S > RPL27 > α-TUB > 18S > ACT > GAPDH > SOD; based on the geNorm algorithm,
the M-values of EF1α, RPL4 and RPL13 were below 0.4 (Figure 3A, Table 3). The pairwise
variation analysis displayed that the V2/3 to V8/9 values were below 0.15, suggesting
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two reference genes are enough for gene expression determination within various tissues
(Figure 3B).

The NormFinder analysis revealed that the stability of the selected HKGs were
EF1α > RPL4 > RPL13 > RPL27 > 28S > α-TUB > GAPDH > 18S > ACT > SOD, with
the p value of 0.007, 0.272, 0.293, 0.370, 0.383, 0.608, 0.972, 1.004, 1.150 and 2.131, respec-
tively. Again, the p values of EF1α, RPL4, RPL13, RPL27 and 28S were below 0.4 (Figure 3C,
Table 3), indicating their similar stability.

The BestKeeper data uncovered that EF1α, RPL13, 28S, RPL4 were the most stable
because they showed Cp values of 0.200, 0.279, 0.328 and 0.373, respectively. The Cp values
of α-TUB, RPL27, 18S, ACT and GAPDH were less than 1.0., and the Cp value of SOD was
more than 2.0 (Figure 3D, Table 3).

The RefFinder showed a comprehensive ranking order from the most to the least
stable: EF1α > RPL13 > RPL4 > 28S > RPL27 > α-TUB > 18S > GAPDH > ACT > SOD
(Figure 5B). Thus, the two HKGs (EF1α and RPL13) are recommended to be used to test the
target gene expression levels among various tissues.

3.5. Stability of the Ten HKGs under Different Temperatures

The geNorm algorithm results showed that the comprehensive reference gene rankings
from the best to the least stable were EF1α, RPL13, RPL27, ACT, α-TUB, RPL4, 28S, 18S,
GAPDH and SOD (Figure 4A, Table 3). Except for SOD, the other genes in the selected HKGs
showed values below 1, indicating their stabilities were similar. Moreover, the pairwise
variation analysis showed that the V3/4 value was below 0.15, indicating three different
reference genes are needed for gene expression analysis under different temperatures
(Figure 4B).

By the NormFinder analysis, the stable orders of the selected HKGs from the most
stable to the least were RPL13, α-TUB, EF1α, RPL27, RPL4, ACT, 28S, 18S, GAPDH and SOD.
Again, the p values revealed by the NormFinder analysis indicated that RPL13, α-TUB,
EF1α, RPL27 were smaller, demonstrating that the genes have similar stability (Figure 4C,
Table 3).

The BestKeeper data unveiled that the steady orders were 28S, α-TUB, 18S, RPL13,
EF1α, RPL27 and RPL4 (Figure 4D, Table 3). Since the Cp values of ACT, GAPDH and SOD
were more than 1, they cannot be used as reference genes for qRT-PCR to test the expression
level of the target gene. The other genes showed values below 1, indicating their stability
values were similar (Figure 4D, Table 3).

According to the RefFinder results, the stability rankings were as follows:
RPL13 > EF1α > α-TUB > RPL27 > 28S > ACT > RPL4 > 18S > GAPDH > SOD (Figure 5C).

When the three different conditions were combined together, the RefFinder results
indicated that the stability rankings from the most to the least were RPL13, EF1α, RPL27,
α-TUB, 28S, RPL4, GAPDH, 18S, ACT and SOD (Figure 5D). Thus, the two HKGs (EF1α
and RPL13) can be selected as reference genes for measuring the target gene expression
levels among diverse backgrounds.

3.6. Validation of the Selected Reference Genes after Gene Expression

To demonstrate the utility of EF1α and RPL13 in accurate gene expression analysis, the
expressions of chitin synthase A gene (PoChSA) in the head capsules, epidermis, foregut,
midgut and hindgut were calculated after normalization with a combination of EF1α and
RPL13. The highest accumulated mRNA level of PoChSA was found in the head capsule
and epidermis, followed by those in the foregut and hindgut; the lowest level was detected
in the midgut (Figure 6).
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Figure 6. Tissue expression of the chitin synthase A gene (PoChSA) in Phthorimaea operculella. The
head capsule (Head), foregut (FG), midgut (MG), hindgut (HG) and epidermis (EP) were dissected
from the fourth-instar larvae. For each sample, 3 independent pools of 20–30 individuals were
measured in technical triplicate using qRT-PCR. The values were calculated using the 2−∆∆CT method,
using the selected reference genes EF1α and RPL13. The relative transcripts are the ratios of copy
numbers in different developing stages relative to the head capsule, which is set as 1. The columns
represent averages, with vertical lines indicating SE. Different letters indicate significant difference at
p value < 0.05 using analysis of variance with the Tukey–Kramer test.

4. Discussion

In the present paper, we investigated the expression stability of ten HKGs in P. operculella.
Out of the ten HKGs, ACT, RPL, TUB, GAPDH, 18S and EF1α are the top 10 most frequently
used reference genes [25].

It is widely accepted that moderately expressed HKGs should be chosen as poten-
tial reference genes because genes with extremely high or low expression levels are less
reliable [31]. According to the Ct value obtained in the present paper, ACT and SOD are
the less expressed and GAPDH and 18S are the most expressed. Even though the results
obtained using the BestKeeper, geNorm and NormFinder algorithms were not completely
consistent, the data still revealed that the mRNA levels of ACT and SOD are changed
dramatically throughout the developing stages among tissues and under different tempera-
tures, respectively. It appears that the four genes should be excluded as reference genes for
qRT-PCR.

Actin (ACT) plays an important role in cell secretion, motility cytoplasm flow and experimen-
tal cytoskeleton maintenance and is abundantly expressed in most cell types. Even though ACT
is used for qRT-PCR studies when measuring the expression of target genes in P. operculella [3,4],
it was verified to be one of the most unstable genes in the present paper. The transcript
level of ACT is also less stable in several Coleopteran insect species, such as Phaedon brassicae,
Henosepilachna vigintioctomaculata, Leptinotarsa decemlineata, Coleomegilla 11 aculate,
Coccinella septempunctata and Hippodamia convergens [32–37], although ACT is one of the most
stable reference genes across several developmental stages in Orthopteran (Schistocerca gregaria
and Chortoicetes terminifera), Hemipteran (Diuraphis noxia), Thysanopteran (Thrips tabaci),
Hymenopteran (Apis mellifera), Dipteran (Drosophila melanogaster and Liriomyza trifolii) and
Lepidopteran (Plutella xylostella and Chilo suppressalis) insects [13–20].

18S ribosomal RNA is a part of the ribosomal RNA (rRNA), which accounts for more
than 80% of the total RNA pool [38], whereas mRNA accounts for only 3 to 5%. This is con-
sistent with our data that 18S is the most expressed in P. operculella (this study). Therefore,
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the use of rRNAs as reference genes may mask subtle changes in target mRNAs [39]. More-
over, 18S shows a large variation in different development stages in Myzus persicae [40].

Superoxide dismutase (SOD) is known as an antioxidative stress protein by scavenging
the superoxide radicals, used to defend against reactive oxygen species (ROS) damage
caused by a variety of unfavorable environmental stressors in some insect species [41–43].
In this study, the SOD gene was verified to be one of the most unstable genes under
three different conditions.

Similarly, the instability of GAPDH expression has been documented in Colaphellus bowringi [44],
D. caesalis [22], Mythimna separata [45], Ophraella communa [46] and P. brassicae [37]. GAPDH
functions as a glycolytic enzyme involved in glycolysis and is associated with cell prolifera-
tion under adverse conditions where its catalytic activity is impaired [47]. It is presumed
that any perturbation toward energy metabolism or cell proliferation would have a poten-
tial impact on GAPDH expression. Considering these issues, it is inappropriate to adopt
GAPDH as a reference gene. Therefore, we focus on five genes, i.e., α-TUB, EF1α, RPL4,
RPL13 and RPL27, in P. operculella for the selection of a suitable reference gene combination.

It has been suggested that multiple reference genes should be used in order to
avoid biased normalization [48]. Additionally, from the present study, we recommended
two reference genes, EF1α and RPL13, to normalize the gene expression levels among
diverse conditions in P. operculella. Consistent with our results, the conserved nuclear
gene elongation factor 1 alpha (EF1α) plays an important role in translation by catalyz-
ing the GTP-dependent binding of aminoacyl-tRNA to the acceptor site of the ribosome.
EF1α is evaluated as the most stable gene under diverse conditions in D. melanogaster [15],
C. terminifera [13], Bombus terrestris and Bombus lucorum [49], Frankliniella occidentalis [50]
and Helicoverpa armigera [39].

Ribosomal proteins are known to play an essential role in ribosome assembly, and
they, in conjunction with four ribosomal RNAs (rRNAs), make up the ribosomal sub-
units responsible for cellular protein translation [51]. Similar to our results, ribosomal
protein genes are the most widely selected reference genes for expression studies in
insects during the past 10 years [25]. They are recommended as reference genes in
Coleopteran species P. brassicae (RPL32 and RPL19) [37], Dendroctonus frontalis (RPS18) [52],
H. vigintioctomaculata (RPL13 and RPS18) [36], L. decemlineata (RP18 and RP4) [32],
Lethrus apterus (RP18) [53], Mylabris cichorii (RPS22e) [54] and Tribolium castaneum (RPS3,
RPL13a and RPL18) [55,56], Hymenopterans such as A. mellifera (RPS18) [16] and
Aphidius gifuensis (RPL13, RPS18, RPL29) [57], Lepidopterans such as P. xylostella (RPS13 and
RPS23) [58] and H. armigera (RPS15 and RPL27) [39], Thysanopteran species F. occidentalis
(RPL32) [50], Hemipteran species Amrasca biguttula biguttula (RP13) [59], Aphis craccivora
(RPL11, RPS8 and RPL14) [60], Cimex lectularius (RPL18) [61], Lipaphis erysimi (RPL18 and
RPL13) [62], Phenacoccus solenopsis (RPL32) [63], Rhodnius prolixus (RPS18) [64] and Or-
thopteran S. gregaria (RP49) [19], as well as Acari Tetranychus cinnabarinus (RPS18 and
RP49) [65] and Tetranychus urticae (RP49) [66].

To sum up, in this study, the genes RPL13, EF1α and RPL27 are indicated to be
ranked as the best reference gene combination for measuring gene expression levels among
different developing stages and under various temperatures, while EF1α and RPL13 are
recommended to normalize gene expression levels among diverse tissues. EF1α and RPL13
are the best reference genes in all the experimental conditions in P. operculella (Lepidoptera:
Gelechiidae). Interestingly, in another Lepidoptera insect Spodoptera frugiperda (Noctuidae),
based on the online program RefFinder, SOD, RPL10 and RPS24 were reported to be
the most stable reference genes for different developmental stages, while α-TUB, RPL10
and ATP were for various tissues, AK, RPL10 and 18S for mating status, 18S and AK for
hormone treatment, 18S, RPL10 and SOD for diets treatment, and RPL10, 18S and RPS24 for
temperature treatment [67]. The results verified that the expression stability of the reference
genes varied under different treatments. Similarly, the ribosomal protein genes are also
the most stable reference genes selected under almost all the experimental conditions. In
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addition, the difference in housekeeping genes under similar treatments may be related to
the phylogenetic relationship and feeding habits of the two lepidoptera insects.

In order to demonstrate the utility of EF1α and RPL13 in accurate gene expression
analysis in P. operculella, we evaluated the relative gene expression level of PoChSA in the
head capsules, epidermis, foregut, midgut and hindgut. Our results showed that PoChSA
was abundantly expressed in the head capsule and epidermis, moderately transcribed
in the foregut and hindgut and lowly expressed in the midgut. Our expression data are
consistent with the fact that ChSA encodes an enzyme that catalyzes the biosynthesis of
chitin in the ectodermally derived epidermal cells forming epidermis, trachea, foregut
and hindgut [3,68–71]. Thus, the tissue-biased expression pattern of PoChSA demonstrates
that EF1α and RPL13 can be used as endogenous controls to assess gene expression in
P. operculella.

5. Conclusions

Our findings recommend EF1α and RPL13 as the optimal reference gene set under
three different experimental conditions. EF1α and RPL13 combinations can be proposed as
reference genes for measuring the target gene expression levels among diverse backgrounds
in P. operculella. To date, this is the first study to screen out candidate reference genes for
gene expression analysis in P. operculella. The results lay a foundation for molecular research.
Nevertheless, the application of these loci as reference genes under other physiological or
experimental conditions remains to be determined.
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