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Polyamorphism in Yb-based 
metallic glass induced by pressure
Liangliang Li1,2, Qiang Luo3, Renfeng Li1,2, Haiyan Zhao4,5, Karena W. Chapman5, 
Peter J. Chupas5, Luhong Wang1 & Haozhe Liu1,2

The Yb62.5Zn15Mg17.5Cu5 metallic glass is investigated using synchrotron x-ray total scattering method 
up to 38.4 GPa. The polyamorphic transformation from low density to high density with a transition 
region between 14.1 and 25.2 GPa is observed, accompanying with a volume collapse reflected by a 
discontinuousness of isothermal bulk modulus. This collapse is caused by that distortional icosahedron 
short range order precedes to perfect icosahedron, which might link to Yb 4f electron delocalization 
upon compression, and match the result of in situ electrical resistance measurement under high 
pressure conditions. This discovery in Yb-based metallic glass, combined with the previous reports 
on other metallic glass systems, demonstrates that pressure induced polyamorphism is the general 
behavior for typical lanthanide based metallic glasses.

Traditional network-forming glassy state materials1, such as ice2, silica3 and silicon4 have been reported to exhibit 
polyamorphism induced by pressure, which tends to be ascribed to an increase in atomic coordination. Whereas, 
metallic glasses are distinct from the traditional glasses due to the non-directional metallic bonds. Therefore, 
polyamorphism induced by pressure in metallic glass was supposed to be impossible for they are spatially 
densely-packing and have the maximum coordination number already. However, polyamorphic transitions were 
discovered in Ce-based metallic glasses attributed to 4f electron delocalization in Ce under high pressure5,6. This 
rises a question that it is the general behavior for all lanthanide based metallic glasses, or not.

Ytterbium, as an end member of the rare-earth lanthanides, behaves irregular in comparison with other mem-
bers of the lanthanide series owing to its special electronic configuration. At ambient conditions, ytterbium is 
considered as divalent with an electronic configuration close to 4f 14(5d6s)2, while the other lanthanides as tri-
valent state 4f n(5d6s)3, where n varies from 0 to 14 corresponding to lanthanum to lutetium. The special elec-
tronic configuration of ytterbium results in a special sequence of phase transitions at high temperatures as well as 
high pressures7–10. If Ce with electronic configuration of 4f 1(5d6s)3 could be looked as “n-type one electron” like 
beginning member, Yb, on the other hand, could be looked as 4f 14(5d6s)3+(−1), i. e. “p-type one hole like” ending 
member, which indeed results in a d- rather than an f differentiating electron behavior. Therefore, searching the 
potential polyamorphic transformation in Yb-based metallic glasses under compression conditions will be inter-
esting to reveal whether the generality of polyamorphism exists.

Generally, pressure-volume studies are particularly valuable in confirming whether polyamorphic transitions 
occur10. Such polyamorphic transformations derived from valence transitions should involve in changes of elec-
trical transport property. In this work, to shed some light on the nature of polyamorphic transitions induced by 
pressure in Yb-based metallic glass systems, a study was performed by means of synchrotron x-ray total scattering 
and resistance measurements, focusing on another side of ending member of this lanthanide base metallic glass 
family, namely Yb62.5Zn15Mg17.5Cu5 metallic glass.

Results and Discussion
X-ray total scattering under pressure.  The structure factor S(Q) and corresponding PDFs of the 
Yb62.5Zn15Mg17.5Cu5 metallic glass extracting from synchrotron x-ray scattering experiment as a function of pres-
sure are displayed in Fig. 1. Absence of sharp peaks in S(Q) and PDFs indicates that the sample remains fully 
amorphous state in the entire pressure range. As expected for the compression effect, first peak position Q1 of 
structure factor S(Q) in reciprocal space shifts towards higher momentum transfer and the nearest-neighbor 
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distance r1 in real space shifts to shorter distance with increasing pressure. The shifts of Q1 of structure factor S(Q) 
and the nearest-neighbor distance r1 reflect changes in volume or density induced by pressure, which is illustrated 
by a power law3,11–13. Using normalized first peak position Q1 with a power of 2.5 to estimate the relative volume 
change as a function of pressure, a fast decrease of the average atomic volume under pressure range from 14.1 to 
25.2 GPa, a transition region, is observed. Two amorphous states, low density amorphous states (LDAS) and high 
density amorphous states (HDAS), were separated by the transition region. Fitting the pressure-volume data by 
the second-order Birch-Murnaghan equation of state (EoS)14, the isothermal bulk modulus are determined as 
B0 =​ 24(1) GPa and 45(7) GPa at different state region respectively, presenting a discontinuousness of isothermal 
bulk modulus, as shown in Fig. 2. The volume difference between the two states is as large as 15.2% at ambient 
pressure. Furthermore, the volume collapse taking place continuously and undergoing a broad pressure range 
rather than abruptly at certain pressure point shows an anomalous compressed region, which is in agreement with 
polyamorphic transition in Ce55Al45 metallic glass with a smooth and continuous transition region between 2 and 
13.5 GPa5. This anomalous compressed curve is also observed in phase transition of ytterbium monotelluride 
under pressure15.

As shown in Fig. 3(a,b), both Q1 and r1 move with a relatively fast pace at transition region and the changes 
of both Q1 and r1 as a function of pressure exhibit a trend similar to that of volume, which suggest that the poly-
amorphic transformation is embodied as well in medium range and short range length scale besides long range 
length scale. Intuitive local structure change of Yb62.5Zn15Mg17.5Cu5 within short range length scale induced by 
pressure was reflected by gradually disappeared the low-r shoulder of the first peak in G(r), as shown in Fig. 1(b).

As is displayed in Fig. 1, the second peak in S (Q) and PDFs are of splitting at each pressure point which are 
characteristic for conventional amorphous alloy systems16,17. In real space, the changes splitting of second peak 
under pressure reflect structural changes of Yb62.5Zn15Mg17.5Cu5 in medium range length scale. Such change is 
consistent with phase transition characterized by shifts of Q1 which embody the medium range order. In recipro-
cal space the relationship between the first peak and splitting second peak as a function of pressure is indicative 
of short range order change18,19. Define position of the second peak and its shoulder as Q2 and Q2shoulder. Using two 

Figure 1.  (a) Structure factor S(Q) and (b) pair distribution function G(r) of the Yb62.5Zn15Mg17.5Cu5 metallic 
glass at various pressure conditions.
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Gaussian functions to fit the second peak, the ratios of peak position show Q2shoulder/Q1 = 1.93 and Q2/Q1 varying 
from 1.66 to 1.72 with increased pressure, as displayed in Fig. 4. In contrast to a perfect icosahedron short range 
order, Q2shoulder/Q1 =​ 2.04 and Q2/Q1 =​ 1.7120, short range order changes in the Yb62.5Zn15Mg17.5Cu5 metallic glass 

Figure 2.  Relative volume V/V0 of Yb62.5Zn15Mg17.5Cu5 metallic glass as a function of pressure, where V0 
is initial volume. The green and purple line show the EoS fitting results at LDAS region and HDAS region, 
respectively. The pink line is for transition region.

Figure 3.  Pressure dependence of (a) normalized first peak position Q1 and (b) normalized nearest-neighbor 
distance r1, respectively, where Q10 and r10 are initial first peak position and nearest-neighbor distance, 
respectively. Equation used in fitting both Q10/Q1 and r1/r10 as a function of pressure is based on second-order 
Birch-Murnaghan EoS.
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under pressure go through from a more distortional icosahedra to a more perfect one with a different pace cor-
responding to different phase states. The polyamorphic transformation in the Yb62.5Zn15Mg17.5Cu5 metallic glass 
under pressure is thus mainly related to the reduction of icosahedra distortion with a different pace leading to 
volume collapse. This result is consistent with the change of PDFs whose each peak is sharper increasingly with 
increasing pressure, indicating the structure gradually becomes more order compared to initial structure, as pre-
sented in Fig. 1(b). At stage of LDAS, the change of distortion with pressure is slight and it contributes to a weak 
volume reduction. The diminution in degree of icosahedra distortion proceeds with faster pace within a transition 
region, then, distortional icosahedron is close to a more perfect one reaching the range of HDAS, which leads to a 
large volume change. Whereas, such changes of distortional icosahedra result from the decrease of average atomic 
distance in first neighbor shell with a different step as shown in Fig. 3(b), which should be radically associated 
with electronic transformation.

The phase transition of the Yb62.5Zn15Mg17.5Cu5 metallic glass can be ascribed to the electronic transition. 
In the Yb62.5Zn15Mg17.5Cu5 metallic glass, the 4f shell of Yb is completely full and considered as divalent with an 
electronic configuration close to 4f 14(5d6s)2 at ambient conditions, whereas, under high pressure conditions, it 
transforms to a trivalent state 4f 13(5d6s)3 when one of the localized 4f electrons is delocalized, which is deduced 
from mechanism lied in polymorphism in ytterbium compounds9,21 and polyamorphism in Ce-based metallic 
glass under pressure5,6. An Yb in the trivalent state has a smaller atomic volume compared to divalent state, and 
this results in a striking decrease in average bond length, which coincides with the change of icosahedral distor-
tion and volume collapse.

The pressure dependence of electrical resistivity.  Electronic transition in the Yb62.5Zn15Mg17.5Cu5 
metallic glass should be reflected in changes of electronic transport property. Therefore, an in situ resistance meas-
urement under compression conditions was carried out. Figure 5 displays the resistance of Yb62.5Zn15Mg17.5Cu5 
metallic glass as a function of pressure. According to weak-scattering theory which is well suited for low-resistivity 
metallic glasses, the resistance of a metallic glass is considered as arising from disordered atom scattering 
described by structure factor22,23. The pressure dependence of electrical resistivity is effected by several factors, 
such as the Fermi energy, the electron-ion interaction and structure factor of the system. As a result of a rather 
delicate interplay of these factors, the resistivity of metallic glasses is either to increase or to decrease under com-
pressed conditions depending on different systems24,25. In the Yb62.5Zn15Mg17.5Cu5 metallic glass system, a positive 
pressure coefficient of the resistivity (PCR) is observed. Additionally, both the structure and electronic transition 
are arising from Yb 4f electrons delocalization as well as relation between pressure and electrical resistivity is 
volume dependence23, therefore, resistance of the Yb62.5Zn15Mg17.5Cu5 metallic glass exhibits a similar transition 
region, which is from 19.3 to 30.2 GPa, to that of low density to high density transition displayed in synchrotron 
x-ray scattering experiment. The shift of transition region might be due to quasi-hydrostatic pressure conditions 
in resistance measurement experiment. The pressure effect on this metallic glass is basically reversible, but with 
sluggish effect when pressure released. Thus this polyamorphism could only be studied via in situ high pressure 
methods.

The positive PCR obviously reduced after transition in the Yb62.5Zn15Mg17.5Cu5 metallic glass is observed in 
Fig. 5. Cheung and Ashcroft26 found a positive PCR for the polyvalent metals Mg, Al, Sn and a negative PCR 
for the monovalent metal K in liquid metals under pressure. Particularly, the positive PCR is maximal for the 
divalent metals22,25. This conclusion may suit for Yb contribution to PCR of the Yb62.5Zn15Mg17.5Cu5 metallic 
glass as well. The conversion from divalent to trivalent Yb leads to that contribution of Yb to positive PCR in the 
Yb62.5Zn15Mg17.5Cu5 metallic glass decreases in case of 4f electron delocalization, which gives rise to decline of 
positive PCR after transition.

A polyamorphic transformation from low density to high density with a transition region between 14.1 and 
25.2 GPa occurs accompanying with change of electrical transport property. The transitions could be explained 

Figure 4.  Q2/Q1 in the Yb62.5Zn15Mg17.5Cu5 metallic glass as a function of pressure. 
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by 4f electron delocalization in Yb. The 4f–5d electronic collapse is reflected in both pressure-volume and 
pressure-resistivity relationship. This findings, combined with the previous reports on pressure induced poly-
amorphism in Ce based and La based metallic glasses5,6,17, is valuable to understand the polyamorphic transfor-
mation, which could be a general behavior in lanthanide based metallic glasses.

Methods
To achieve Yb-based metallic glasses with good glass forming ability, constituent elements Zn, Mg and Cu were 
carefully selected and adjusted the composition. Metallic glass Yb62.5Zn15Mg17.5Cu5 ribbons were prepared using 
the single-roller melt-spinning technique.

High-pressure PDF.  Total synchrotron x-ray scattering data of the Yb62.5Zn15Mg17.5Cu5 metallic glass were 
collected at the sector 11-ID-B beamline at the Advanced Photon Source, Argonne National Laboratory with the 
incident beam size 150 μ​m ×​ 150 μ​m and an 86.7 keV high energy. A 2D large amorphous-silicon-based flat-panel 
detector was used to record the synchrotron x-ray scattering patterns. The sample with width of 150 μ​m, length of 
150 μ​m and thickness of 20 μ​m was located in the sample chamber which is T301 stainless steel gasket with 270 μ​
m diameter hole between two anvils of diamond anvil cell (DAC). 1:4 methanol/ethanol and ruby are as pres-
sure medium and marker, respectively. The pressure was up to 38.4 GPa and measured by the ruby fluorescence 
method with error bars of 0.1~0.2 GPa.

Raw image data were processed using software Fit-2D27 with masking strategy28 to remove the diamond peaks 
to obtain one-dimensional scattering data. Subtracting the contributions from the sample environment and back-
ground, the reduced pair distribution function G(r) and structure factor S(Q) were extracted using the program 
PDFgetX229, which carries out a numerical Fourier transform of S(Q) according to

∫π= − .
∞

G r Q S Q Qr dQ( ) 2 [ ( ) 1] sin ( ) (1)0

High-pressure resistivity measurements.  In situ electrical resistance was measured by a four-probe 
resistance system in a DAC. An aluminum oxide (Al2O3)/epoxy mixture powder layer was inserted between the 
T301 stainless steel gasket and diamond anvil to provide electrical insulation for the electrodes and gasket. Four 
electrodes made of platinum foil with a thickness of 10 μ​m were arranged to contact the sample in the chamber. 
The pressure was determined by a ruby and up to 40.9 GPa. The resistance was calculated from the Van de Pauw 
method30.
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