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Abstract

Hemodynamic recordings from visual cortex contain powerful endogenous task-related

responses that may reflect task-related arousal, or “task engagement” distinct from atten-

tion. We tested this hypothesis with hemodynamic measurements (intrinsic-signal optical

imaging) from monkey primary visual cortex (V1) while the animals’ engagement in a peri-

odic fixation task over several hours was varied through reward size and as animals took

breaks. With higher rewards, animals appeared more task-engaged; task-related responses

were more temporally precise at the task period (approximately 10–20 seconds) and mod-

estly stronger. The 2–5 minute blocks of high-reward trials led to ramp-like decreases in

mean local blood volume; these reversed with ramp-like increases during low reward. The

blood volume increased even more sharply when the animal shut his eyes and disengaged

completely from the task (5–10 minutes). We propose a mechanism that controls vascular

tone, likely along with local neural responses in a manner that reflects task engagement

over the full range of timescales tested.

Introduction

The use of functional magnetic resonance imaging (fMRI) in humans, complemented with

electrode measurements from animal studies, has considerably advanced our understanding

of cortical visual processing. This combination of tools has been particularly useful in under-

standing exogenous, stimulus-evoked responses. Models of neural responses in humans based

on electrophysiological recordings in animals, combined with linear models linking neural to

hemodynamic responses, have been effective in accounting for stimulus-evoked fMRI mea-

surements in human subjects and in quantitatively predicting the corresponding sensory per-

cepts [1–9].

However, fMRI measurements from subjects performing visual tasks also contain large

endogenous hemodynamic responses in the absence of or independent of visual stimuli, even

at the earliest stages of visual processing [10–15]. There are at least two types of endogenous

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000080 April 19, 2019 1 / 34

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Cardoso MMB, Lima B, Sirotin YB, Das A

(2019) Task-related hemodynamic responses are

modulated by reward and task engagement. PLoS

Biol 17(4): e3000080. https://doi.org/10.1371/

journal.pbio.3000080

Academic Editor: Frank Tong, Vanderbilt

University, UNITED STATES

Received: October 23, 2018

Accepted: March 29, 2019

Published: April 19, 2019

Copyright: © 2019 Cardoso et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data for

individual figures are available as Excel files

(labeled, e.g., S1 Data) with links in the relevant

figure captions. The full listing of these data files

can be found following the captions for

supplementary figures, as well as in the Excel file

DataFileListings.xlsx. In addition, the full data are

available. The corresponding author (Aniruddha

Das) will maintain the data at Columbia University

until publication. Once published, all datasets will

be shared openly with qualified scientists. Access

will be granted by request to the corresponding

author. It will be our intent to collaborate with

http://orcid.org/0000-0001-6865-2900
http://orcid.org/0000-0001-8761-917X
https://doi.org/10.1371/journal.pbio.3000080
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000080&domain=pdf&date_stamp=2019-05-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000080&domain=pdf&date_stamp=2019-05-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000080&domain=pdf&date_stamp=2019-05-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000080&domain=pdf&date_stamp=2019-05-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000080&domain=pdf&date_stamp=2019-05-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000080&domain=pdf&date_stamp=2019-05-01
https://doi.org/10.1371/journal.pbio.3000080
https://doi.org/10.1371/journal.pbio.3000080
http://creativecommons.org/licenses/by/4.0/


response, “attention-like” and “task related” [16]. Unlike the case with exogenous responses,

there has been mixed success in interpreting these endogenous hemodynamic responses.

Selective visual attention has been characterized extensively through studies in human fMRI

[10–15] with close parallels seen in animal electrophysiology [17–25]. Although likely driven

by a unified mechanism [26], attention can take different forms. It could be selective for stimu-

lus location [10,11,27–29], features (e.g., color versus motion [30]), or timing [28]. The related

hemodynamic responses reflect corresponding attributes of the expected stimuli. Attentional

responses also increase in strength along the visual cortical hierarchy [11,20].

Much less is known about the task-related endogenous hemodynamic response, including

whether it comprises one or multiple types. It appears to be distinct from selective attention. It

entrains to task structure and extends over large sections of cortical areas (e.g., primary visual

cortex—i.e., V1) independent of the stimulus [16,31–33], where it can even be substantially

stronger than stimulus-selective responses [34]. It is also strongest in V1 and progressively

weaker in higher visual areas [16]. These differences may reflect distinct brain processes

underlying these two endogenous responses. There is growing evidence of the importance of

the task-related endogenous response. It may play a role in sensory processing, in temporally

grouping otherwise unrelated sensory stimuli [33] or in switching between stimulus modalities

[35]. As yet, relatively little is understood about the mechanism of the task-related response

even though its presence has been known for over a decade [16,33,35–41]. This is largely due

to the paucity of studies comparing hemodynamics with electrophysiology in behaving

subjects.

The current work derives from a task-related hemodynamic response measured using

intrinsic-signal optical imaging (ISOI) [42,43] in V1 of behaving macaques performing cued

visual tasks [31]. The observed task-related response entrained to task timing independent of

visual stimulation, with amplitudes that could compare with or even exceed vigorous visually

evoked responses [44]. It appeared to be spatially nonselective, being homogeneous over the

optical imaging window and presumably extending beyond [32]. It is thus likely a good model

for investigating the mechanism underlying the task-related response seen in humans. Con-

current electrode recordings showed it to be poorly predicted by changes in local firing rates

or local field potential (LFP) power at any frequency band [31], unlike stimulus-evoked hemo-

dynamic responses that were well predicted by local electrophysiology [44,45]. Additionally, at

a vascular level, this response corresponded to a coordinated contraction–dilation cycle engag-

ing the arterial blood supply into the imaged cortical region [31]. These observations suggested

an underlying mechanism distinct from exogenous, stimulus-evoked responses.

Here, we explore the link between this task-related hemodynamic response and the level of

engagement in a task. The link was suggested by earlier measurements showing correlations

between the measured task-related response and task performance [32], as well as with sympa-

thetic-like markers of mental effort in a task [46] such as phasic pupil dilation [31] and heart

rate (HR) fluctuations [31]. To modulate the level of engagement, we changed reward size sys-

tematically [47] while the monkeys performed a periodic visual fixation task over several

hours. Using ISOI and electrophysiology, we looked for effects on the measured task-related

hemodynamic response at multiple timescales: of individual trials (approximately 10–20 sec-

onds), of blocks of trials (150–300 seconds), and finally, of extended segments of task engage-

ment versus disengagement as the animal switched between working and resting with eyes

closed (many minutes). Based on our results, we propose that the task-related hemodynamic

response reflects mechanisms that entrain brain processing more sharply to a task during peri-

ods of higher task engagement, possibly as a means of temporally filtering or binding compo-

nents of a task. Although we use the term “task engagement” as a shorthand for the set of

behavioral and hemodynamic responses described here, in the Discussion, we consider
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possible links with states of task-specific arousal that have variously been labeled “sustained

attention,” “vigilance,” or “alertness” [48–50]. Additionally, we propose an overarching mech-

anism that controls vascular tone over multiple timescales in coordination with ongoing

changes in the level of engagement during a task. Understanding these links would be an

important step forward in understanding the dynamic allocation of brain resources in the con-

text of a task.

Results

Overview

Two male rhesus macaques performed a cued, periodic visual fixation task, receiving a juice

reward following every correct fixation with no time-out or other punishment for errors (see

Methods). The task is known to evoke a robust task-related hemodynamic response in the

monkeys’ V1 independently of visual stimulation [31,44]. Here, we systematically manipulated

the size of the reward per correct trial as a means of modulating the animals’ level of engage-

ment in the task. This was done either in alternating blocks of high and low reward or in

sequences of progressively changing reward (see Methods). We recorded V1 hemodynamics

using ISOI [42], a high-resolution optical analog of fMRI [51–53]. This technique deduces

brain hemodynamic responses at the exposed cortical surface by measuring changes in

reflected light intensity at wavelengths absorbed by hemoglobin. Here, we used a wavelength

specific to total hemoglobin, which provides a measurement analogous to cerebral blood vol-

ume (CBV) [54] (see Methods). Imaging was combined with concurrent extracellular elec-

trode recording of multiunit spiking and LFP. All experimental procedures were performed in

accordance with the National Institutes of Health (NIH) Guide for the Care and Use of Labo-

ratory Animals and were approved by the Institutional Animal Care and Use Committees

(IACUC) of Columbia University and the New York State Psychiatric Institute.

We observed distinct effects on the task-related V1 hemodynamic responses at the three

different timescales tested. At the shortest timescale (individual trials—a few seconds), higher

reward led to crisper temporal alignment of the task-related response to each trial, accompa-

nied by a significant, if modest, improvement in response amplitude. At a slower timescale of

blocks of alternating high versus low reward (10 to 20 trials—i.e., 150 to 300 seconds per

block), we observed consistent alternating ramp-like changes in the mean local cortical blood

volume. The sign of the ramps was such as to decrease blood volume for blocks of high reward

while increasing it for low. Finally, periods of disengagement from the task during which the

animal shut his eyes and rested over many minutes led to further large, sustained increases in

the mean local blood volume. None of these effects at any timescale could be accounted for by

changes in local spike rate.

The majority of the reported results came from tasks performed in essentially complete

darkness (“dark-room fixation” N = 30 sites, 3 hemispheres, 2 animals). This allowed measure-

ment of the effects on the endogenous task-related hemodynamic response while minimizing

exogenous visual confounds [31]. A complementary section (N = 33 sites, 2 hemispheres, 2

animals) confirmed that the observed results generalized to the presence of visual stimuli.

Timescale of single trials: Higher reward leads to greater temporal

precision

A section of recording made while the animal fixated periodically in the dark illustrates the

pattern of task-entrained responses, as well as changes to these responses with reward size (Fig

1A). Despite the near-total absence of visual stimulation, the V1 hemodynamic recording
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showed robust task-related fluctuations in local tissue blood volume [31]. These were accom-

panied, as noted earlier [31], by sympathetic-like responses [46]—i.e., phasic pupil dilation

and HR fluctuations—also entrained to the task period. These sympathetic-like responses

increased with higher reward. The pupils dilated more per trial, switching dilation size across

single trials at block transitions (Fig 1B). The mean HR fluctuations were stronger (Fig 1C and

1E). Furthermore, animals made fewer errors (fixations broken or never acquired) in high-

Fig 1. High reward leads to greater engagement in the task. (A-C) Example data set, periodic fixation task in the dark. (A) Continuous records of

hemodynamic response (“Hemo”), radial eye position (“Eye pos”), heart rate (“HR”), and pupil size (“Pupil”) while reward level alternated between

high (“Hi”; 0.375 ml per correct trial) and low (“Lo”; 0.11 ml) in blocks of 10 correct trials (showing roughly 3 of 32 blocks total, with time indexed

relative to the start of the experiment; red = high reward, cyan = low. Same color code is used all through the paper.). Trials with no color indicate

incorrect fixation (compare “Eye pos”). Each continuous sequence of incorrect trials counts as one error (gray arrows). Monkeys made more

frequent errors in low-reward blocks (0.29 for “Lo” versus 0.19 for “Hi” as fraction of correct trials [N = 330]). Hemodynamic response (dR
R ) plots

fractional change in light reflected off cortical surface; down indicates increasing light absorption (i.e., increasing local blood volume). (B)

Comparing pupil dilation during the fix period, high- versus low-reward trials. “All Hi, Lo” compares all correct high-reward trials (N = 160) with

low (N = 170). “Lo to Hi” and “Hi to Lo” compare the first trial after a change in reward size to the immediately preceding trial (N = 15 “Lo to Hi”

transitions, 16 “Hi to Lo” [data in S3 Data]). Gray shaded rectangle indicates a period of steady fixation starting 1 second after fix onset, which is used

for quantifying pupil dilation. Inset histograms show dilation difference (high minus low reward) for all experiments with reliable pupil recording

(N = 9; x-axis labeling, shown only for the third histogram [“Pupil Hi to Lo”] to avoid clutter, is common to all [data in S2 Data]). Rewards were

given at the end of each correct fixation (gray arrowheads below time line; the same reward timing was used in all experiments reported here [data in

S1 Data]). (C) Comparing amplitude (defined as standard deviation) of mean trial-linked heart rate fluctuations, high versus low reward (0.038 s−1:

high, 0.025 s−1: low [data in S4 Data]). Traces in (B, C) are shown as mean +/− SEM (lighter ribbon). (D) Scatterplot comparing errors as fraction of

correct trials, high versus low reward, all experiments (N = 30 [data in S5 Data]). (E) Comparing amplitudes of mean HR fluctuation (standard

deviation as in panel C), high versus low reward, all experiments (“expts”). Each data point in (D, E) corresponds to one recording site (data in S6

Data). In (D), error trials were counted as high or low reward based on the block in which they occurred (see Methods). In (E), values were averaged

separately across all correct high-reward versus correct low-reward trials for the given recording site. p-Values in (D and E): Wilcoxon signed rank

test.

https://doi.org/10.1371/journal.pbio.3000080.g001
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reward blocks (Fig 1A and 1D). The mean hemodynamic response also appeared to ramp

slowly upwards during the high-reward block—i.e., reducing mean local blood volume—as

indicated by the slope of a linear regression line (red, Fig 1A); this observation is addressed in

a later section on slow changes. We did note a weak fluctuation in recorded spiking that was

periodic in the mean and appeared to relate to hemodynamics in some data sets. However, the

correlation was unreliable and did not generalize (see S1 Fig), consistent with our earlier find-

ings that the task-related response is not predicted by local spiking or LFP [31].

At the timescale of individual trials, the primary correlate of high reward on the task-related

response appeared to be greater temporal precision—i.e., tighter alignment to trial timing.

This was evident qualitatively in lower trial-to-trial temporal jitter for high reward (Fig 2A, left

panel). The mean of these trial-by-trial responses, averaged across all correct trials, was also

higher for high-reward trials. But it was unclear how much of that was due to a true difference

in amplitude, as opposed to better temporal alignment of individual responses. To resolve this

issue, it was necessary to separately estimate the timing and amplitude of the task-related

response for each trial.

We used a template-matching approach based on the observation that, other than temporal

jitter, individual responses appeared similar to each other in shape independent of reward size

(Fig 2A; also see [32]). The full hemodynamic recording was thus modeled implicitly as a

sequence of task-related responses of stereotyped shape, one per trial, varying only in ampli-

tude and timing from trial to trial. The template was defined to be the trial-triggered average

response over all correct trials. This template was slid in a one-trial-long moving window over

the recorded response, calculating the normalized local dot product at each time point (“Tem-

plate Match” in Fig 2B, Methods, Eqs 1–3). The dot product is closely analogous to Pearson’s

correlation (see Methods). We thus surmised that it would have maxima (peaks) at points of

high correlation where the recorded hemodynamics locally matched the template in shape—in

effect, defining locations of putative task-related responses. But in addition, unlike Pearson’s r,

which is scale-invariant, dot products scale linearly with the amplitude of their arguments and

thus provide a measure of response strength (Fig 2B and Methods). We therefore defined our

estimates of task-related response time and amplitude per trial to be the location and height of

the corresponding template match peak.

After estimating response times and amplitudes as described above, we wanted to check

our starting assumption that the measured hemodynamics are well modeled as a sequence of

jittered but stereotyped shapes. If the assumption is valid, the segments of recorded hemody-

namics centered on each peak of the template match should match each other closely in shape.

To test, we centered each putative task-related response, as picked out through template

matching, by its response time as estimated from the same template match (Fig 2C). Indeed,

the realigned responses were strikingly well correlated with each other. This can be appreciated

visually by normalizing realigned responses by their amplitudes to help compare shapes (Fig

2D) and quantitatively by correlating realigned responses to the template used for matching

(Fig 2E and 2F). The strength of this correlation supports our approach.

With the task-related response times and amplitudes thus quantified, we confirmed that the

primary effect of higher reward was greater temporal precision. Response times were better

aligned to the task period, with consistently tighter distributions (quantified by the 2 standard

deviation width of the distribution). This was evident for the example data set (Fig 3A) as well

as in essentially every other data set (Fig 3C). High reward also led to significantly higher

response amplitude for the example data set (Fig 3B). However, that pattern was less consistent

over the full set of experiments, with only a relatively modest improvement in median

response amplitudes overall (Fig 3D).
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We wondered if these results were due to our particular choice of template. We tested by

repeating the analysis shown here across all data sets using a range of alternate templates. The

alternate templates were also each one trial long and constructed from measured responses but

using different criteria: for example, being phase shifted in time or using only “high signal-to-

noise” responses with amplitudes exceeding a threshold. The task-related response times and

amplitudes estimated by matching to these alternate templates showed a strikingly similar

overall relationship to reward size as in Fig 3. This is illustrated in S2 Fig for a particular alter-

nate template with timing and shape distinct from the one used in the main text. This result

highlights the overall robustness of our findings. It also suggests that high reward leads to a

state of greater temporal regularity and periodicity overall for the duration of the block,

accounting for the higher temporal precision in estimated response times independent of the

details of the template used.

Fig 2. Estimating trial-by-trial timing and amplitude of task-related responses by template matching. (A) All

correct trials in one data set, separated by reward size: high (N = 140 trials; left, red bar on top as in Fig 1A) and low

(N = 148, right, cyan bar). Gray indicates individual trials, and black indicates the mean. The time axis is shared with

(C), (D) (0 = trial onset; yellow indicates a fixation period [data in S7 Data]). (B) Elements of the template match. Black

(“Hemo”) indicates a section of recorded hemodynamic response (z-scored, shifted down for visibility; time indexed

from an arbitrary t = 0); vertical dashed lines indicate trial onsets. Green (“Template Match”) marks the sliding-

window dot product of “Hemo” with “Tmplt” (inset: defined as mean hemodynamic response, all correct trials). The

locations and heights of template match peaks (red dots) define estimated timing and amplitude of task-related

response per trial. “Match Peak #1, #2” are examples illustrating the information carried by peaks. Both #1 and #2

mark locations where “Hemo” matches “Tmplt” in shape (see “Hemo” segments on green shading. Compare with

“Match Trough,” gray shading, phase-reversed “Hemo”). Greater height of peak #1 versus #2 quantifies higher

amplitude of “Hemo” fluctuation at #1. However, location of peak #2 is better centered in its trial. (C) Same traces as in

(A), aligned by response times estimated from template match (data in S8 Data). (D) Same data as (C), normalized by

amplitude (standard deviation; “SD-norm”). Orange indicates responses with standard deviation in the lowest 10th

percentile over the full set. Gray marks the upper 90th percentile. Black indicates the mean of gray traces. The red

dotted line marks the template. Gray traces match each other and the template well, particularly near the midpoint of

the trial (data in S9 Data). (E) Histogram of correlations (“corr”) of aligned responses with the template (Pearson’s r; all

correct trials, high and low reward, including responses in the lowest 10th percentile of standard deviation). (F)

Histogram of correlation medians as in (E), all experiments (“expts”; data in S10 Data).

https://doi.org/10.1371/journal.pbio.3000080.g002
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Timing precision is robust to noise in template match

We were concerned that the apparently lower temporal precision with low reward could be an

artifact of a noisier template match. When task-related responses had lower amplitudes, the

template match could be poorer simply because of lower signal to noise. This could lead to

noisier estimates of response time with wider distribution and thus apparently poorer preci-

sion but, because of the poorer signal to noise alone, independent of reward size (Fig 4A; also

consider, e.g., the responses with poor shape match in Fig 2D). Since lower rewards were asso-

ciated with somewhat lower response amplitudes, this increased noise could make the low-

reward responses appear artifactually less precise.

Fig 3. Higher reward leads to more temporally precise task-related responses. (A) Distributions of response

(“Resp.”) times per trial, estimated as positions of the corresponding template match peaks (“Match Peak pos.”), same

data set as in Fig 2A–2E. Distributions are separated by reward size, with color coding as indicated in the key

(common to (A, B) and to all later figures). Data are shown as a vertical “violin plot” histogram with numbers of trials

increasing from 0 (middle) upwards for high reward (“Hi”) and downwards for low (“Lo”). Similar displays are used

for all such comparisons of distributions to avoid clutter (e.g., with interleaved histograms). Clustering of response

times per reward size was quantified as the 2 standard deviation (“2x StdDev”) width of timing distributions. (B).

Distributions of response amplitudes per trial, estimated from template matching (“Tmplt Match”), shown separated

by reward size following the same conventions as in (A). Response amplitude per reward size was quantified as the

median (indicated by arrowheads; medians are indicated similarly in all later amplitude distributions). Significance (p-

values) in (A,B) were obtained from bootstrap with 10,000 resamples. (The 2x StdDev values per reward size [“hi”,”lo”

in panel A] and median amplitude per reward size in panel B shown in these and other panels are not the sample

medians from the measured distributions but rather are medians obtained from the same bootstrap procedure used to

get p-values.) (C) Comparing the 2 standard deviation width of the response time distribution for all correct high-

reward trials versus that for all correct low-reward trials, per experiment (“expt”; N = 30). (D) Comparing median

response amplitudes for all correct high- versus all correct low-reward trials, per experiment. p-Values in (C), (D):

Wilcoxon signed rank tests for pairwise comparisons (data in S11 Data).

https://doi.org/10.1371/journal.pbio.3000080.g003
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To test, we selected subsets from each experiment in which the high- and low-reward

responses were matched in amplitude and in numbers of data points (Fig 4B, 4C1, 4D1, 4E1

and 4F1). If our concern about signal to noise in the template match were valid, high- and

low-reward responses in each amplitude-matched subset should exhibit similar distributions

of response times independent of reward size. Instead, even after matching for amplitudes, the

high-reward responses remained consistently and significantly more temporally precise (see,

particularly, Fig 4D1, 4D2, 4E1 and 4E2).

Timing precision is independent of eye fixation timing and eye movements

We wondered if there were some simple oculomotor explanation or correlate of our observa-

tion. We considered two possible scenarios under which this could happen.

Fig 4. Temporal precision is not an artifact of higher signal for high-reward responses. (A) An outline of the null hypothesis using a data

set in which low-reward responses had substantially lower amplitudes. Left panel: Scatterplot of response amplitude versus time per trial,

colored by reward size. Gray and white shading indicates quintiles along the amplitude axis, combining high (“hi”) and low (“lo”) rewards.

Right panel: 2 standard deviation width of response time distribution in each quintile. The time axis is scaled to match that for the left panel.

These 2 standard deviation widths (“2x StdDev”) increased progressively for lower response amplitudes, which were also more dominated by

low-reward trials. The null hypothesis is that this covariance alone gives low-reward trials larger timing scatter. Arrows mark the y-axis

locations indicating median amplitudes of quintiles (data in S12 Data). (B) Plot of response amplitude versus timing for a large data set (1,285

correct trials; 629 low reward; 626 high reward) separated into quartiles by response amplitude (gray/white shading). Each quartile also

roughly matched for numbers of low- versus high-reward trials (data in S13 Data). (C1, C2, D1, D2, E1, E2, F1, F2) Pairs of distributions of

response amplitude and timing per quartile separated by reward size. The numbers “N” in parentheses in (C1–F1) indicate numbers of high-

and low-reward trials. The high-reward responses are significantly more precise than the corresponding low-reward ones in each quartile

despite the similarity in response amplitudes (C2–F2). All distributions are shown as “violin plots” using the same conventions as Fig 3A and

3B. Panels (C1–F1) share a common abscissa scale, as do panels (C2–F2). The “NTrials” label for the ordinate is shown only for (F1) to avoid

clutter. p-Values, bootstrap, 10,000 resamples (data in S14 Data).

https://doi.org/10.1371/journal.pbio.3000080.g004
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We considered the null hypothesis that the timing of the task-related response per trial is

determined by fix onset, with a stereotyped response time course and hence constant delay fol-

lowing fixation (see S3 Fig). If that were the case, response times should be correlated to fix

onset times, with unity slope and constant delay. The higher precision with high reward could

reflect a behavioral pattern in which the animal is more precise in its fix onsets prior to those

trials (S3 Fig, panel a). This null hypothesis turned out not to be the case, and task-related

response times were uncorrelated with fixation onset. Parenthetically, both animals’ fixation

behavior changed over the many months that we tested them intermittently on this task. Ini-

tially, both animals tended to maintain fixation for long periods with very few breaks even dur-

ing intertrial intervals. This led to extended periods of fixation prior to the start of each trial,

or even across multiple trials, without any breaks but unrelated to the timing of the task-related

response or reward size (S3 Fig, panel b). Later, both animals showed a different behavioral

pattern, moving their eyes around during intertrial intervals and reacquiring fixation shortly

before trial onset. This led to a pattern of brief fixation periods prior to each trial (S3 Fig, panel

c). Task-related hemodynamic response times remained more precise with high reward, inde-

pendent of the changing pattern of fixation.

We next considered the possibility that animals may have steadier fixation or smaller eye

movements during high-reward blocks, due to generally higher engagement in the task (S4

Fig). We failed to see any consistent patterns. There were no consistent differences in fixational

jitter between high- and low-reward trials at the resolution of our measurements (60 Hz, 0.33

deg). There were also no consistent differences in eye movements during the intertrial periods

during which the animals were free to look around. The animals also changed their patterns of

intertrial eye movements over the many months of recording. In earlier sessions, they did

move their eyes less during high-reward blocks (S4 Fig, panels a1-a3). Later, however, the ani-

mals adopted a behavioral pattern of greater intertrial eye excursions for high-reward trials (S4

Fig, panels b1-b3). However, the task-related responses remained more precise for higher-

reward trials (smaller 2 standard deviation width for task-related response time distributions),

independent of this changing pattern of eye movements.

Timing precision generalizes to the presence of visual stimulation

The question that remained was whether reward size affected task-related responses only in

the unnatural circumstance of visual tasks in the near absence of all visual stimulation or

whether such effects generalized to the presence of visual stimuli. To test, we analyzed data

from a separate set of experiments in which the animals were passively shown visual stimuli—

gratings of different contrasts—while performing the same cued, periodic fixation task (Fig 5).

Rewards were comparable to the dark room, if slightly higher (see Methods), ranging typically

from 0.2 ml/trial (low) to 0.6 ml/trial (high). For this, we first needed to estimate the task-

related response from recorded hemodynamics by estimating and removing stimulus-evoked

responses. We did so by modeling the overall measured hemodynamics as a linear sum of the

stimulus-evoked and task-related components, which we fitted to get the optimal kernels for

the two components[55] (Methods, Eqs 4–6; also, S5 Fig). The optimal hemodynamic response

function (HRF) kernel thus obtained was then convolved with the recorded spiking to estimate

the stimulus-evoked component of hemodynamics and regress it away from the full hemody-

namics. The residual—that was, by construction, the component of hemodynamics not pre-

dicted by local spiking—was then defined to be the task-related component of the

hemodynamic response, equivalent to the full hemodynamic response in the dark room.

The task-related response thus estimated in the presence of visual stimuli was again tempo-

rally more precise with high reward, just as with the task undertaken in the dark room. This
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can be seen qualitatively after separating the estimated task-related response into individual

trials and segregating trials by reward size. These trial-wise responses were visibly less tempo-

rally jittered for high reward (Fig 5A). The timing and amplitude of these task-related

Fig 5. Task-related responses in the presence of visual stimuli are temporally more precise and modestly higher in

amplitude for high reward as in the dark room. (A-D) One example data set: (A) Residual task-related responses

(“Task Rel. Resp.”) separated by trial and by reward size were obtained by regressing away stimulus-evoked responses

(see S5 Fig) (data in S15 Data). (B) Comparing pupil dilation for high- (“Hi Reward”) versus low-reward (“Lo

Reward”) trials. Gray shading indicates the period over which pupil dilations are compared, starting 1 second after

fixation. (These pupil measurements were made in the presence of visual stimulation, unlike dark-room results [Fig

1B], likely accounting for different shape of trace including initial constriction on fixation) (data in S16 Data). (C)

Distribution of response times from template match in this data set. (D) Distribution of response amplitudes in this

data set. Conventions for “violin plot” histograms are used as in Fig 3A and 3B (data in S19 Data). (E) Comparing the 2

standard deviation widths of response times (“Resp time 2x StdDev”) for high versus low reward, per experiment

(“expt”; N = 33) (data in S17 Data). (F) Comparing median response amplitudes (“Resp Amp Median”) for high versus

low rewards, per experiment (N = 33). p-Values in (E), (F): Wilcoxon signed rank tests for the pairwise comparisons.

The inset in panel F indicates overall behavioral performance as the total numbers of error trials as a fraction of the

correct trials, per experiment (data in S18 Data). Eye pos, eye position; Fix on, fixation on; norm., normalized; NS, not

significant; Stim on, stimulus on.

https://doi.org/10.1371/journal.pbio.3000080.g005
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responses were quantified by matching to a template just as for recordings in the dark room;

the template was taken to be the optimal mean kernel for the task-related component as esti-

mated from the fit (Methods, Eqs 7 and 8. S5 Fig). The results of this template match closely

paralleled those obtained in the dark room fixation task. The estimated response times were

again more tightly clustered for high-reward trials, both for this specific data set (Fig 5A and

5C) and over the set of visually stimulated experiments (Fig 5E). Response amplitudes showed

only a modest improvement (Fig 5D and 5F). High-reward trials were also associated with

greater pupil dilation (Fig 5B).

Timescale of blocks of trials: Mean blood volume decreases for high reward

and increases for low

Analyses up to this point were restricted to the scale of single trials—i.e., about 10 to 20 sec-

onds. However, we also noted slow ramp-like drifts in the mean local blood volume over

blocks of 10 to 20 trials of a given reward size—i.e., about 150 to 300 seconds (Fig 1A; Fig 6).

The ramps decreased blood volume for high-reward blocks while increasing it for low. Regres-

sion lines fitted through sequences of correct trials per block clustered into distinct sets of neg-

ative slopes (increasing absorption of light during imaging—i.e., increasing blood volume) for

low-reward blocks and positive slopes (decreasing blood volume) for high (Fig 6B and 6C).

These slow hemodynamic drifts were not driven by slow changes in spiking (see S7 Fig).

Blocks of trials with alternating ramps of mean blood volume failed to show similar alternating

ramps of mean spiking (S7 Fig, Panels a-d). To test more quantitatively, we first simulated the

spiking patterns required to generate the measured hemodynamic slopes on convolving with

the corresponding optimal fitted HRF per experiment (S7 Fig, Panels e, f). The slopes of the

simulated spiking ramps alternated in sign with reward size, as expected. Each measured spik-

ing slope was then divided by the slope of its corresponding simulation to compare. If the mea-

sured slopes had the same sign as their simulations, these ratios would consist of positive

numbers, with some magnitude reflecting a scale factor. This was not the case; the ratios were

equally likely to be positive or negative for both high and low reward. The measured spiking

slopes were thus uncorrelated with those required to generate the measured hemodynamic

slopes.

Switching from task engagement to rest with eyes closed: Further profound

increases in blood volume

We wondered if the slow increase in mean local blood volume accompanying reduced reward

could be part of a broader pattern of shifts in mean local blood volume accompanying shifts in

the level of engagement. A potential clue was seen in the continuous measurements during

long dark-room recording sessions lasting up to 3 hours (Fig 7). In these sessions, in between

extended stretches of working well, the animals would take occasional breaks of many minutes

during which they stopped working and rested with their eyes shut. The mean local blood vol-

ume in V1 increased strikingly during these breaks, returning to baseline when the animal

resumed working (Fig 7A). This pattern appeared to be an extreme manifestation of the ramp-

like changes in blood volume with reward size in which lower reward, with its lower level of

engagement (Fig 1), led to increasing mean blood volume (Fig 6).

Before ascribing an association with reduced engagement in the task, we needed to test

whether the increased blood volume could be accounted for simply by concurrent changes in

neural or physiological drivers. As possible drivers, we considered the mean HR and the mean

local multiunit spike rate (recorded separately at two electrodes spaced 4 mm apart in the

recording chamber). We also measured the pairwise noise correlation of spike rates between
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the two electrodes over a 1-second sliding window, since that was expected to increase at rest

[56]. To focus on slow changes, all recordings were downsampled to get, in effect, the

smoothed average in a 60-second window (see Methods).

We then assessed changes in these physiological and neural measurements as the animal

switched state, marking the state based on the fraction of time within the 60-second window

that the eyes were closed (Fig 7A, top row, “Eyes closed”). Spontaneous eye closures in the

dark have been shown to provide a useful measure of drops in “vigilance” [49], correlating well

with electroencephalographic (EEG) and fMRI indicators [57]. For this study, epochs during

which the eyes were shut more than 60% of the time were defined as “rest,” whereas those with

less than 5% of time with eye closure were considered “engaged.” To check, we compared with

an LFP measure of arousal based on the ratio of power in the beta- and theta-range frequency

bands (15–25 Hz and 3–7 Hz, respectively) as suggested by earlier studies ([57]; also reviewed

in [48]). To get a measure that was low when the animal was engaged in his task and high

when at rest [48], as with eye closure, we placed the theta power in the numerator. The square

root of this ratio further compressed the dynamic range to roughly 0–1, as with eye closure.

These two measures based on eye closure and on the LFP were closely comparable (Fig 7A,

upper two rows and inset), supporting the use of eye closure to segregate physiological mea-

surements by the state of task engagement.

Fig 6. Mean local cortical blood volume increases for low-reward blocks and decreases for high, in alternating

ramp-like drifts. (A) Recordings from a sequence of correct trials, alternating between high (“Hi Reward”) and low

reward (“Lo Reward”) in blocks of 10. Lines indicate regression fits to each block separately. Increasing slope implies

decreasing local tissue blood volume. Correct trials were concatenated after excising incorrect ones while maintaining

vertical position (see S6 Fig). This panel shows 20 blocks of 102 total: 1,160 trials total, 1,019 correct. (B) Histogram of

regression slopes in high- versus low-reward blocks. Same data set as (A) (p-values, bootstrap, 10,000 resamples) (data

in S21 Data). (C) Comparing median slopes of high-reward versus low-reward blocks over the set of all experiments

(“expt.”). All the statistically significant data points lie in the upper left quadrant, “Lo(-)/Hi(+)”—i.e., with negative

slopes for low- and positive slope for high-reward blocks (N = 19 experiments: using only those with at least 10 pairs of

alternating blocks of 10 trials each). The results shown here were based on correct trials alone. Analyses that utilized all

trials including incorrect ones gave results that were broadly similar but were sometimes harder to interpret because of

the arbitrary duration of sequences of incorrect trials (S6 Fig) (data in S20 Data). Hemo, hemodynamic response; NS,

not significant.

https://doi.org/10.1371/journal.pbio.3000080.g006
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The mean neural and HR measurements thus segregated showed systematic changes as the

animal switched between states of rest and task engagement but in a direction opposite to that

expected to increase blood volume at rest (Fig 7A). Thus, the mean HR, averaged over the

Fig 7. Mean local blood volume, spiking, and heart rate trace switches between states of task engagement and rest. (A) Traces show continuous 2.5-hour

records of measured variables as indicated by adjoining labels, smoothed and downsampled to a 60-second sampling rate to track slow changes. (See text and

Methods for more details.) Red and green bars on top mark epochs of rest (defined as “Eyes closed”> 0.6—i.e.,>60% of the 60-second sample time) and task

engagement (sections with eyes open, defined as “Eyes closed”< 0.05—i.e., <5% of the time). “Eyes closed” is highly correlated with the LFP measure (see text

for definition. Pearson’s r = 0.94 for the example data set. Inset shows histogram of Pearson’s r for similar pairwise correlations over all data sets used for this

analysis, N = 11). Performance in the task is quantified as the (smoothed) fraction of trials initiated in the 60-second (i.e., approximately 4-trial) window.

“Hemo” marks the mean hemodynamic response (dR/R); “Spike1” and “Spike2” mark multiunit responses recorded from two electrodes spaced 4 mm apart in

the imaged region. “Spk1-Spk2 Corr” marks the pairwise correlation between these two recordings over a 1-second moving window. “HR” marks mean heart

rate. The red box indicates the section of hemodynamic and corresponding Spike1 spiking measurements (red asterisk) that are analyzed at a higher temporal

resolution in Fig 8A. (B1-B6) Scatterplots of the measured values for the given experiment, as indicated, versus “Eyes closed.” Each data point represents a

single smoothed, nonoverlapping 60-second sample. Data points are segregated into “task-engaged” (black) and “rest” (gray) using the value of “Eyes closed” as

described. Red lines connect medians (data in S22 Data). (C1-C6) Lines connecting medians as in (B1-B6) for all experiments (“expts”) used (N = 11) (data in

S23 Data). LFP, local field potential.

https://doi.org/10.1371/journal.pbio.3000080.g007
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moving 60-second window, reduced systematically relative to its local baseline value each time

the animal disengaged from work and rested with eyes shut (Fig 7A: bottom trace [“HR”]: see

shaded areas indicating rest). This is consistent with the abrupt falls in mean HR and blood

pressure seen at sleep onset in human subjects [58]. But it suggests that the concurrent increase

observed in V1 local blood volume is not a passive consequence of cardiovascular changes, as

that would require an increase rather than a decrease in HR [59]. Similarly, the mean spike

rate recorded at individual electrodes typically decreased as the animal rested. If the blood vol-

ume at rest were driven linearly by local spiking, then the mean spike rate should have

increased [1]. Although the mean spike rates at individual electrodes largely decreased, the

pairwise correlation of spike rates over the pair of electrodes showed the expected [56] striking

increases for the epochs of rest versus engagement.

Comparing hemodynamics and spiking for the same data set at the higher imaging tempo-

ral resolution (15 frames/second; Fig 8) supported our contention that the large blood volume

increases at rest are not predicted from spiking. This conclusion was not immediately apparent

on qualitative inspection (Fig 8A; same data segment as enclosed in the red box in Fig 7A). At

the higher temporal resolution, the spiking response showed expected [60] bursts of high

instantaneous spike rate (red arrow, Fig 8A) that stood out despite the overall reduction in

mean spike rate as the animal rested with eyes shut (red asterisk in “Spike1,” Fig 7A). The cor-

responding blood volume measurements showed large swings in amplitude that appeared,

qualitatively, to follow the bursts of spiking. Our earlier work showed that the recorded hemo-

dynamics is poorly predicted by spiking when the animal is engaged in his task, because of the

presence of the task-related response (see S1 Fig; [31,44,55]). But there should be no task-

related response, by definition, when the animal is disengaged from the task with his eyes shut

and the hemodynamics could in principle be predictable from spiking. It was thus important

to test the relationship between the two at this higher temporal resolution.

We tested using deconvolution—i.e., multilinear regression (see Methods, Eqs 9–12),

which has the advantage that it makes no assumptions about HRF shape [61]. The deconvolu-

tion was done over partially overlapping 150-second windows (75-second steps; 150 seconds

typically covered 10 trials) to get adequate temporal resolution for tracking rest states (e.g., the

rest epoch in Fig 8A, indicated by the red bar, lasts about 400 seconds. Shorter deconvolution

windows led to excessive noise). Each design matrix contained not only the spiking regressor

for the given deconvolution window but also additional intercept and slope terms. The inter-

cept is analogous to the “y intercept” in 1D linear regression, quantifying an inhomogeneous

addition to a homogeneous linear equation. Here, we defined it as an estimated inhomoge-

neous “mean shift” in the hemodynamic response, in addition to hemodynamic components

that are linearly predictable from spiking. The full prediction using the deconvolved HRF ker-

nel plus additional “mean shift” matched measured hemodynamics very well overall (Fig 8A,

compare “Hemo, full pred,” green with “Hemo, meas,” black. Goodness of fit, R2 = 0.94, over

this rest epoch). The HRFs from deconvolution windows falling within the rest epoch also

matched each other well and resembled canonical HRFs (inset “HRFs,” Fig 8A; also see S5 Fig

for an example canonical HRF). They predicted the high-frequency fluctuations in the mea-

sured hemodynamics well, indicating that these high-frequency terms are accounted for by

spiking (Fig 8A, “Hemo, spiking pred,” red). However, they failed to account for the increase

in the mean blood volume, predicting a decrease instead (prediction rising above baseline),

which is consistent with the decrease in the local mean spiking. The measured increase in the

blood volume was well accounted for, on the other hand, by the fitted “mean shift” (Fig 8A,

“Hemo, mean shift”; the slope terms made only small contributions). The same pattern was

seen over the full 2.5-hour recording (Fig 8B). Linear predictions from spiking matched the

high-frequency fluctuations of hemodynamics during rest epochs whereas the additional
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Fig 8. Hemodynamic response during rest is the sum of a high-frequency component predicted linearly by spiking

plus an additional mean shift not predicted by spiking. The same data set as in Fig 7 is shown at a temporal

resolution of 66.7 ms (15 Hz camera frame rate). (A) Expanded view of the sections of “Eyes closed,” “Hemo,” and

“Spike1” data enclosed by a red box in Fig 7A, along with three alternate predictions of the measured “Hemo”

response. “Eyes closed” is shown as in Fig 7A, top trace, with green and red bars indicating periods of task engagement

and rest. Red arrow over the “Spike1” points to peaks of high instantaneous spike rate, indicating burst of spiking

despite lower mean spike rate over this epoch (24.7 spikes/second average under “Eyes closed” red bar, Panel A, versus

29.4 spikes/second average in the two flanking green sections where eyes were open; same data as in Fig 7A, red

asterisk). “Hemo” refers to 4 different hemodynamic traces color-coded as in the key. Black (“meas.”) = the measured

response, same data as in Fig 7A. Green (“full pred.”) = full prediction following deconvolution. Red (“spiking pred.”)

= linear prediction from spiking using deconvolved HRFs. The inset (“HRFs”) shows optimal HRF kernels from

deconvolution windows in the “Eyes-closed” segment; colors are arbitrary. Magenta (“mean shift”) = fit to the

intercept term in the design matrix, estimating components not predicted by spiking (see accompanying text). Black

arrowheads pertain to an additional analysis in supplementary data; they point to two segments marked for

comparison with an alternate deconvolution and prediction made without intercept terms in the design matrix (see S8

Fig). (B) Results of the deconvolution and prediction as in (A), shown over the full experiment. (The location of the

expanded section in panel A is also indicated.) Only measured spiking, measured hemodynamic trace, and
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mean shift tracked the mean measured hemodynamic response (compare Fig 8B, “mean shift”

with “Hemo” trace in Fig 7A). This result supports the suggestion that the large changes in

mean blood volume during rest were likely driven by a mechanism acting in addition to spik-

ing. Similar results were obtained for all extended recording sessions, including ones in which

the mean spike rate increased during rest.

It could be argued that the deconvolved “mean shift” is just the fit to the intercept term that

we chose to include in the design matrix. It would thus necessarily fit the mean of the mea-

sured response, by design, with no additional physiological significance. We tested by fitting

the same data, using an identical deconvolution approach but without intercept terms in the

design matrix (see S8 Fig). The resulting prediction was much worse at matching the measured

hemodynamics. In addition, the deconvolved HRFs obtained from this new fit were markedly

different from canonical spiking HRFs in two ways. First, the HRFs now incorporated the

mean CBV for their respective deconvolution windows. They thus acquired large mean shifts

that made them apparently acausal with large nonzero values prior to time zero. In addition,

HRFs from successive deconvolution windows were noisy and matched each other poorly.

This distinctly poorer fit without the intercept term suggests that the “mean shift” in the full fit

(Fig 8) represents a physiological component of the hemodynamic response during the eyes-

closed, disengaged behavioral state.

Discussion

Our goal is to understand the task-related endogenous component of hemodynamic responses

recorded from visual cortex of subjects engaged in cued, predictable tasks. The existence of

such responses has been known for more than a decade [16,33,35–41]. Their substantial

strength relative to other brain hemodynamic components is well recognized [34]. Recent

studies suggest their relevance to sensory processing [33,35]. Yet they have not been adequately

studied, and little is known about their underlying mechanism or behavioral significance.

Here, we consider the behavioral correlates of one particularly prominent task-related

response recorded by us in V1 of behaving macaques [31], which is likely analogous to

responses seen in human visual cortex [16,37].

Our work here suggests that this task-related response reflects brain mechanisms associated

with the degree of task engagement. On increasing reward size to get the animal more engaged,

the most notable effect, trial-by-trial, was improved temporal precision: the response became

consistently more crisply aligned to task timing. It also became modestly stronger. At a slower

timescale, different levels of task engagement led to consistent shifts in the mean local blood

volume. High-reward blocks led to consistent decreases in the mean blood volume, whereas

low-reward blocks led to corresponding increases. This effect was even more pronounced

when the animal disengaged completely from his task and rested with eyes closed. The mean

blood volume increased strikingly during these breaks, returning to baseline when the animal

resumed working (also see [62]). Other than a high-frequency component while the animal

slept, none of the hemodynamic measurements at any time scale—whether trial-by-trial or

averaged across blocks while the animal worked, or the mean while the animal slept—could be

accounted for by concurrent local spiking. On a methodological note, we recorded the hemo-

dynamic response using ISOI at a wavelength tuned for measuring cortical blood volume.

Such recordings have a steadier and more reliable baseline than blood oxygen level–dependent

deconvolved “mean shift” are shown; full and “spiking” predictions are not shown to avoid clutter. Red arrow marks a

burst of high instantaneous spiking despite lower overall mean; this burst is expanded in (A). HRF, hemodynamic

response function.

https://doi.org/10.1371/journal.pbio.3000080.g008

Modulating task-related hemodynamics

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000080 April 19, 2019 16 / 34

https://doi.org/10.1371/journal.pbio.3000080.g008
https://doi.org/10.1371/journal.pbio.3000080


(BOLD) fMRI, suffering much less from instrumental noise and drift. This allowed us to moni-

tor the response continuously over many hours, thus obtaining the reported results, including

the prominent mean shifts.

We propose that the task-related hemodynamic response and the effects reported in this

paper comprise a marker of task-specific arousal tied to the level of engagement during an

extended and possibly repetitive task. The term “arousal” is used in different senses in different

areas of research, from arousal during tasks such as here to arousal in the face of fear or danger

to nonspecific arousal along the sleep–wake axis [48]. The literature on task-specific arousal

thus suggests avoiding the term “arousal” in favor of “vigilance,” “alertness,” or “sustained

attention” [48–50]. This condition of sustained engagement in a task is known to fluctuate

between states of higher stability, which are less prone to error (“in the zone”), and states that

are more unstable and error-prone (out of “the zone”; see, e.g., [50]). The state of being “in the

zone” is marked by higher regularity and temporal precision; responses “in the zone” show less

variability in reaction time, trial-by-trial, even when the mean reaction time remains

unchanged overall [50]. The state is further enhanced by reward, which leads to even less vari-

ability in reaction times, in a manner that appears distinct from increased arousal [63]. This

behavioral result may have a physiological analog in our finding of improved temporal preci-

sion or regularity of the task-related hemodynamic response during high reward (Fig 3 and

accompanying text). An attractive possibility is that the task-related response reflects the

behavioral state variously labeled “vigilance,” “alertness,” or “sustained attention” in the cited

literature. Our term “task engagement” is a shorthand reflecting this possibility as well as a

nod to the initial report of this hemodynamic response component, which described it as “task

structure” related [16]. Much remains to be done to flesh out these connections.

An important question remains: How closely does the task-related hemodynamic response

we record in macaque V1 correspond to the response identified in human visual cortex? And

how distinct is it from selective visual attention [16]? Currently, the strongest evidence is that

although varying substantially in time, the task-related response in the macaque is spatially

homogeneous over the imaging window (a circular region 15 mm in diameter, typically

extending approximately 1–6˚ eccentricity [32]). This makes it unlikely to be selective atten-

tion at the fovea (e.g., for the task of discriminating the fixation cue color) that should lead to

spatially graded activation over this cortical extent [16,64,65]. Additional evidence comes from

the response timing. If it were selective attention cued to the fixation point, its time course at

fix onset should be stereotyped independent of trial length. That was not the case in an earlier

test; the starting time course even switched sign when switching between blocks of short versus

long trials (e.g., 8 versus 20 seconds; see Fig 3 and Supplementary Fig S9 in [31]). This result

also speaks to a corollary question arising from our describing the response as being entrained

to task timing. It could be argued that the hemodynamics and the sympathetic-like changes in

HR and pupil are, instead, responses to the reward acting as a stimulus. However, our earlier

results noted above showed the hemodynamics to be entrained to the expected timing of

upcoming trials rather than a stereotyped response to the reward. It should thus be interpreted

as task-entrained albeit modulated by the current reward. However, although the evidence is

strongly suggestive, the questions are interesting and open and remain topics of ongoing

research in the lab.

What could be the underlying mechanism or function? Although the poor prediction by

recorded spiking does not rule out control by a small, hard-to-measure set of specialized neu-

rons, it also suggests a different underlying mechanism such as neuromodulatory input (e.g.,

see [66]). The strong sympathetic-like responses (Fig 1) suggest the basal forebrain-cholinergic

(BF-ACh) or the locus coeruleus-adrenergic (LC-NA) systems, both of which are linked to

wakeful states, arousal, and attention. They powerfully facilitate hemodynamic responses via
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modulation of stimulus-evoked neural responses (reviewed in [67]) with additional control of

cortical blood flow [68] through direct modulation of microvessels [69,70] or via astrocytes

[71] or pericytes [72]. Other neuromodulators such as dopamine could also be involved [73].

All of this can lead to robust neuromodulator-mediated increases [68,74,75] or decreases [70–

72,76] in cortical blood flow. Our finding of a stereotyped response shape independent of tem-

poral precision could be accounted for by a mechanism in which the response timing is deter-

mined in a distal nucleus through temporal dynamics local to that nucleus. The result could

then be transmitted in an all-or-nothing manner, like an action potential, to the target (here,

V1), where it could release a fixed quantum of neurotransmitter. In addition, there could be a

contribution from myogenic mechanisms independent of neural input, as suggested in a

recent study of ongoing vascular fluctuations [77]. A combination of such mechanisms could

modulate neural responsivity and vascular tone in a manner that reflects the level of task

engagement. In single trials, this could help refresh the local blood supply ahead of task onsets

[78]. Over more extended periods, it could also shift the mean vascular tone—e.g., by slow

accumulation of the active substance—to higher values for high task engagement and the con-

verse for low. Such a mean shift could account for the surprising finding of progressively lower

mean blood volume for higher task engagement, since higher vascular tone does imply nar-

rower blood vessels and thus lower tissue fraction occupied by blood. The increased vascular

tone could have additional functional benefits of higher precision in stimulus-evoked hemody-

namic responses. For example, adrenergic increase in vascular tone has been shown to lead to

spatially and temporally sharper vascular responses to neural activity [71]. Exploring these

issues through targeted experiments in behaving animals would be crucial to understanding

brain mechanisms of task engagement.

Methods

Experimental model and subject details

Animal use procedures were in accordance with the United States NIH Guide for the Care and

Use of Laboratory Animals and were approved by the IACUC of Columbia University and the

New York State Psychiatric Institute (Animal Care Protocol AC-AAAU1456). Two male rhe-

sus macaques (Macaca mulatta) were used in the study. Access to water was scheduled to

training or recording sessions that lasted 3–5 hours per day. Eye fixation and pupil diameter

were recorded using an infrared eye tracker (ISCAN [79]). Before training, each animal was

implanted with a stainless steel or titanium head post. After training, craniotomies were per-

formed over the animals’ V1, and glass-windowed stainless steel or titanium recording cham-

bers were implanted for subsequent ISOI in the behaving animal (see section “ISOI” below).

The craniotomy exposed a 20-mm diameter area of V1 covering visual eccentricities from

about 1 to 10˚. The exposed dura was resected and replaced with a soft, clear silicone artificial

dura (GE Silicone RTV615 001). Recording chambers and artificial dura were fabricated in

our laboratory following published designs [80,81]. Chambers were opened regularly for clean-

ing, testing for infection, and treating if necessary, following published protocols [43].

Method details

Summary. Extracellular electrode recording was carried out simultaneously with ISOI

from V1 of behaving monkeys performing a periodic visual fixation task. Task and recording

methods are essentially identical to those in earlier papers from our lab [31,44,45,55].

Task and reward schedules. All experiments were based on a simple fixation task carried

out either under essentially complete darkness or in the presence of visual stimuli. In both con-

ditions, animals held fixation periodically, cued by the color of a fixation spot (fixation
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window: 1.0–3.5 deg. diameter; monitor distance: 133 cm; fixation duration: 3–5 seconds; trial

duration: 9–22 seconds; all parameters fixed for a given experiment but variable between

experiments). A juice reward followed every correct (unbroken) fixation, with no time-out or

other punishment for errors. The primary behavioral manipulation consisted of systematically

changing reward size.

For fixation trials in the dark room, the monitor was covered and the fixation point was

presented behind a pinhole [31]. Reward sizes were alternated between high (typically 0.45 ml

per correct trial, ranging from 0.35 to 0.6 ml) and low (typically 0.15 ml per correct trial, rang-

ing from 0.1 to 0.2 ml. High- and low-reward sizes were fixed for an experiment; they were

selected per day based on the animal’s willingness to work for the low reward). Rewards were

alternated in blocks (typically 10 correct trials each; some experiments had longer blocks;

some experiments had blocks of variable size). The animal had to correctly complete the full

set of trials per block—i.e., not counting error trials—before the reward switched. Trials were

grouped into “high-reward” and “low-reward” blocks for analysis. Errors were identified by

the block in which they occurred—i.e., as “high” or “low” reward based on the preceding cor-

rect trial. Continuous sequences of error trials were counted as a single error to avoid arbitrary

overcounting during epochs in which the animal disengaged from work and took a nap. Thus,

each counted error corresponded to a break following one or more correct trials. These experi-

ments accounted for the majority of the reported results. For visually stimulated trials (Fig 5

and S5 Fig), the animals were passively shown gratings of different contrasts while holding fix-

ation (sine-wave gratings; contrasts doubled in steps ranging typically from 6.25% to 100%;

mean luminance = background luminance = 46 cd/m2; spatial frequency: 2 cycles/deg; drift

speed 4 deg/second; diameter 2–4 deg; orientation optimized for the electrode recording site.

These data are reanalyses of earlier experiments designed to relate hemodynamics to electro-

physiology over a wide dynamic range of stimulated responses [44,45,55]). Reward sizes for

these experiments increased progressively from a baseline (typically 0.2 ml per correct trial) to

a maximum value (typically 0.6 ml per correct trial) for each successive correct fixation to keep

the animals motivated. Again, the lowest reward size per day was chosen based on the animals’

willingness to work. For analysis, trials were grouped into “high-” and “low-reward” sets rela-

tive to the median reward. Sequences of errors were also counted as single errors for these

experiments, as with the dark room. However, errors were not identified as “high” or “low”

reward. Since rewards were increased progressively for correct trials, errors (which often

occurred at the end of a sequence of trials) typically followed a high reward; but that associa-

tion was not informative.

ISOI. ISOI is based on the finding that in vivo and in the visible spectrum, changes in

light absorption in cortical tissue primarily measure changes in oxy- and deoxyhemoglobin in

the blood flowing through cortical blood vessels [51,82,83]. ISOI deduces hemodynamic

responses by imaging changes in light reflection at relevant wavelengths off the exposed corti-

cal surface. CBV and oxygenation changes measured using ISOI can be used to predict concur-

rently measured fMRI responses [53], making ISOI in effect an optical analog of fMRI albeit

restricted to upper layers of exposed cortex. We imaged at 530 nm (green), an isosbestic wave-

length that is equally absorbed by oxy- and deoxyhemoglobin. Increased absorption of light at

this wavelength thus measures increased cortical tissue fraction of hemoglobin—in effect local

cortical blood volume, independent of oxygenation state [54]. After the animals had recovered

from surgery, we used this technique to image their V1 through the glass window of the

recording chamber routinely while they engaged in the fixation task. Imaging hardware con-

sisted of the following: camera (Dalsa 1M30P; binned to 256 × 256 pixels, 7.5 or 15 frames per

second) and frame grabber (Optical PCI Bus Digital; Coreco Imaging). Imaging software was

developed in our laboratory in C++ based on a previously described system [84]. Illumination
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was provided by high-intensity LEDs (Agilent Technologies, Purdy Technologies). The lens

was a macroscope [85] of back-to-back camera lenses focused on the cortical surface. Imaging,

trial data (trial onset, stimulus onset, identity and duration, etc.), and behavioral data (eye

position, pupil size, timing of fixation breaks, fixation acquisitions, trial outcome) were

acquired continuously. All data analyses were performed offline using custom software in

MATLAB (MathWorks; RRID:nlx_153890).

Electrophysiology. Electrode recordings were made simultaneously with optical imaging.

Recording electrodes (FHC, AlphaOmega; typical impedances approximately 600–1,000 kO)

were advanced into the recording chamber through a silicone-covered hole in the external

glass window, using a custom-made low-profile microdrive. Recording sites were mostly but

not exclusively confined to upper layers. Signals were recorded and amplified using a Plexon

recording system (RRID:nif-0000-10382). The electrode signal was split into spiking (100 Hz

to 8 kHz bandpass) and LFP (0.7–170 Hz). Subsequently, an additional analog 2-pole 250-Hz

high-pass filter was applied to spiking, effectively eliminating any spectral power overlap

between LFP and spiking. No attempt was made at isolating single units, and all measured

spiking was multiunit activity (MUA) defined as each negative-going crossing of a

threshold = roughly 4× the r.m.s. of the baseline obtained while the animal looked at a gray

screen. The LFP recording was analyzed to obtain two bandpass-limited measurements in the

beta- and theta-range frequency bands (15–25 Hz and 3–7 Hz, respectively; multitaper spectral

analysis using the Chronux MATLAB toolbox). This gave an LFP measure of (low) vigilance

defined by the square root of the ratio of power in theta versus beta.

Analysis: Preprocessing. The imaging measurement was averaged over the imaged area,

frame by frame (frame rate: 7.5 or 15 frames/second), and then divided by the mean value of

this quantity for the given experiment (over all trials). This converted the measurement per

image frame into dR
R (i.e., the fractional change in light reflected off the cortical surface). At the

particular imaging wavelength of 530 nm, the negative of this quantity (� dR
R ) is proportional to

the fractional increase in local tissue hemoglobin—i.e., the fractional increase in local cortical

blood volume [54]. The dR
R was then detrended, and a prominent pulse artifact was filtered out

from the measured hemodynamics using Runline (Chronux) with a window of 2 seconds. This

filtered dR
R defined the measured hemodynamic response for all calculations.

The pulse artifact was used to estimate the instantaneous HR after upsampling 8× and iden-

tifying peak times and thus the local pulse rate. Both the estimated HR and the spiking mea-

surements were then resampled and aligned to the imaging frames. Neither the imaging nor

spiking nor estimated HR were further temporally filtered. Unlike in our earlier papers, we did

not high-pass filter to remove slow fluctuations [31,44,45,55], specifically so as to be able to

estimate fluctuations over slow timescales of many minutes.

Template matching (dark-room experiments: Fig 2). The amplitude and timing of the

task-related response, per trial, were estimated as the height and location of the corresponding

peak of a Template Match. This Template Match consisted of the continuous, normalized dot

product of a template with the measured hemodynamic response. The calculation involved the

following steps:

1. The default template “Tmplt” was defined to be the one-trial-long mean hemodynamic

recording (z-scored to give “H(t)”) aligned to trial onsets, averaged across all correct trials,

and mean-subtracted.

2. This Tmplt was then slid over H(t) in unit time steps (at the resolution of the imaging frame

rate; e.g., 66.7 ms for 15 frames/s). At every time point t, the Template Match was defined to

be the local dot product over the one-trial-long section of H centered on t, normalized by
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the (fixed) sum of squares of the Tmplt (Fig 2B):

Template Match ¼
HðtÞ:Tmplt
P
jTmpltj2

ð1Þ

This expression is identical in form to the Pearson’s correlation between the Tmplt and the

same one-trial-long segment of H(t), other than the normalization. Thus, like Pearson’s r,

this expression would have local maxima where the local one-trial-long segment of H(t)
matched the Tmplt in shape (Fig 2B). The Template Match is also invariant to shifts in the

mean of H(t), since the Tmplt is mean-subtracted and thus integrates to zero over any addi-

tional constant. However, unlike Pearson’s r, this expression carries scale information.

Pearson’s r has the standard deviation of both arguments in the denominator, making it

scale-invariant. The Template Match on the other hand, with its fixed normalization inde-

pendent of H(t), scales linearly with the amplitude of fluctuation in H(t). Thus, peaks of the

Template Match carry information about both timing and amplitude of the task-related

response per trial.

3. For computational efficiency in MATLAB, the above expression was rewritten as the nor-

malized convolution of H(t) with the time-reversed version of the template Tmplt:

Template Match ¼
HðtÞ � TmpltTR
P
jTmpltj2

ð2Þ

where TmpltTR is the time-reversed Tmplt; i.e., TmpltTR(t) = Tmplt(−t), and the symbol �

denotes convolution. The denominator for normalization remains unchanged. This expres-

sion translated to the following script using MATLAB functions conv and sum:

Template Match ¼
convðH;TmpltTR;0same0Þ

sumðjTmpltj2Þ
ð3Þ

Peaks of Template Match were then identified as zero crossings of the first derivative at points

where the second derivative was negative (marked by red dots in Fig 2B).

4. Alternate template matches used the same formalism but with different definitions of

Tmplt. Thus, the Tmplt in S2 Fig was defined as the one-trial-long mean H(t) aligned to a

point that was one-quarter trial ahead of trial onsets, averaged across all correct trials, and

mean-subtracted. All other steps were the same.

Template matching (with visual stimuli present: Fig 5, S5 Fig). This involved two sepa-

rate sets of steps.

1. Estimating the task-related response from the net recorded hemodynamic response:

i. We modeled the net recorded response as a linear sum of stimulus-evoked and task-

related components. The stimulus-evoked response was modeled as the convolution of

concurrent spiking with an “HRF” kernel. The task-related component was estimated

iteratively. Our earlier approach [55] had modeled it as a stereotyped task-related func-

tion (“TRF”) that was identical in timing and amplitude for each correct trial. Here, how-

ever, we specifically need to estimate trial-by-trial variations in response timing and

amplitude. As a first step, we assumed that the TRF had a fixed shape that could be esti-

mated from the mean across trials. Optimal mean HRF and TRF kernels were obtained by
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fitting the mean recorded responses, separated by contrast, with the following equation,

identical to Eq 1 in [55]:

HðtÞ ¼ HRF � SðtÞ þ TRF � TrlðtÞ ð4Þ

H(t) is the recorded hemodynamics and S(t) the concurrently measured spiking, and

HRF�S(t) models the stimulus-evoked response. The second term on the RHS models the

task-related response as a TRF kernel convolved with the set of delta functions at trial

onsets, "Trl(t)”. The symbol � denotes convolution over time.

The HRF kernel was parametrized, as before [31,44,45], as a gamma-variate function of

time t:

HRF t; t;W;Að Þ ¼ A
t
t

� �a

exp � a
t � t
t

� �

ð5Þ

The HRF parameters fitted during optimization are the amplitude A, time to peak τ, and

full width at half maximum W [31,86,87]. The factor a ¼ 8:0� log 2:0ð Þ � t

W

� �2
.

The TRF kernel was parametrized as the finite sum of a Fourier time series:

TRF t; a; b; P;Nð Þ ¼
XN

n¼1
an cos n

2p

PT
t

� �

þ bn sin n
2p

PT
t

� �� �

ð6Þ

Although the Fourier series was based on the trial period T, the fundamental Fourier

period was allowed to vary as a fraction P of the trial period and optimized in the fit. The

parameters an and bn, (with n ranging from 1 to the total number of terms in the Fourier

series, N) are the pairs of cosine and sine coefficients, respectively, for the nth Fourier

term. We showed earlier that only the fundamental and first harmonic—i.e., N = 2, carry

significant information [55]. Thus, there are eight parameters in the model: three for the

HRF, the two pairs of an and bn, and P.

ii. All parameters were optimized simultaneously by matching the predicted to the mea-

sured hemodynamics using a downhill simplex algorithm (fminsearch, MATLAB meth-

ods as in [45]). To keep contrast information, we made concatenated sequences of the

mean response per distinct contrast, randomized per contrast (same random sequence

for hemodynamics, and spiking), and over multiple blocks (an arbitrarily large number

52, about 100× larger than a single HRF kernel convolution length, to minimize edge

effects; we only matched traces two convolution lengths in from the edge). The error to

be minimized was defined as the normalized sum squared error
SSerror
SStotal

� �
calculated sepa-

rately per contrast and then averaged over all contrasts including the blank. This was

intended to give equal weight to the fractional error at each stimulus contrast. The good-

ness of fit R2 for the optimal prediction was defined as the coefficient of determination

1 �
SSerror
SStotal

� �
calculated separately per contrast and averaged across contrasts. This, again,

was intended to give equal weight to errors at each contrast. In order to reduce the

chances of getting caught in a local minimum, we started with large sets of initial param-

eter values, independently covering an order of magnitude for each fitted parameter. The

fits were robust and converged to the same optimal parameters from multiple starting

values, giving us confidence that we had reached global and not local minima.
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iii. Next, we used the optimal fitted HRF thus obtained from the mean hemodynamics and

spiking, averaged per contrast, to get a continuous estimate of the exogenous, visually

evoked component of measured hemodynamics. This was done by convolving the opti-

mal HRF with the measured spiking, including both the spiking from the controlled

visual stimuli and from uncontrolled visual stimulation as the animal looked around in

between fixations:

HSTIMULATEDðtÞ ¼ HRF � SðtÞ ð7Þ

iv. This estimate of HSTIMULATED was subtracted from the full measured hemodynamics to

get an estimate of the endogenous, task-related component of hemodynamics as the

residual not accounted for by spiking:

HTASK� RELATEDðtÞ ¼ HðtÞ � HSTIMULATEDðtÞ ð8Þ

2. Estimating task-related response peaks and amplitudes:

i. The estimate of the task-related response HTASK−RELATED(t) as defined above was then

used, exactly like the full hemodynamic response in the dark room, to estimate response

times and amplitudes trial-by-trial. As a template, we used the optimal TRF obtained

above by fitting to mean responses. The steps for template matching and identifying and

analyzing peaks were identical to those outlined in Eqs 1–3, with the H(t) being replaced

with HTASK−RELATED(t) and the Tmplt(t) being replaced with the optimal TRF. Peak

times and amplitudes, per trial, were obtained exactly as in the dark-room template

match.

Tracking measured variables as animal switches from task-engaged to disengaged with

eyes closed (Fig 7). To track slow changes in all measured variables, we downsampled the

data. Data were averaged using a 15-second box car that corresponded roughly to a single trial

and then decimated 4×, giving in effect a smoothed 60-second sample rate. Along with MUA

spike rates at individual electrodes and the measured hemodynamics, the following measure-

ments were thus tracked:

1. “Eyes closed”: Fraction of time over the 60-second averaging window that eyes are closed.

Eye closure was monitored using the output from the IR eye tracker. All blinks or eye clo-

sures appeared as sequences of missing points or “rails” (saturated output). Spontaneous

eye blinks in macaques last roughly 200 ms (see [88,89]). Our own data showed a bimodal

distribution with blink durations peaking either at 200 ms or multiple seconds to minutes.

Thus, sequences of missing points lasting <500 ms were considered regular spontaneous

blinks while awake and were marked as having duration = 0. Sequences lasting >500 ms

were categorized as eye closures, and their durations were included in the moving average.

2. “LFP measure”: square root of the ratio of spectral band–limited power in the theta (3–7

Hz) and beta (15–25 Hz) frequency bands, each normalized by its standard deviation over

the entire experiment. We chose this particular ratio to get a measure that was high during

epochs of low engagement in the task to match “Eyes closed,” since theta power increases

sharply on transitions from high to low engagement or to sleep [48]. We took the square

root of the ratio to compress the measure to approximately 0–1 to make it comparable to

“Eyes closed.” There was no attempt to separate the resting state more finely into sleep
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stages, since the goal was a broad separation into states of “task-engaged” versus “resting”

with a time resolution of 60 seconds.

3. “Spike1,” “Spike2”: MUA responses recorded from two electrodes spaced 1 mm apart, in

imaged V1.

4. “Spk1-Spk2 Corr”: Pairwise correlation of MUA spike rate from the two electrodes, calcu-

lated over a 1-second moving window.

5. “HR”: Obtained from the pulse artifact in the measured hemodynamics, after upsampling

8× and identifying peak times and thus the local pulse rate. This instantaneous pulse rate,

estimated at pulse time points, was then interpolated with spline smoothing to the imaging

time base (7.5-Hz or 15-Hz sample rate depending on the experiment).

Deconvolution, i.e., multilinear regression (Fig 8). We started with the assumption that

the measured hemodynamics H(t) can be predicted from local spiking S(t) using a homoge-

neous linear equation, along with two inhomogeneous terms: a scalar Intercept and a linear

Slope in each 150-second window, at the resolution of the camera frame rate:

HðtÞ ¼ HRF � SðtÞ þ Intercept þ Slope ð9Þ

There are no assumptions about the shape of the HRF other than that it does not extend

more than 10 seconds prior to time 0 and is back to baseline about 25 seconds after time 0.

Using the formalism of deconvolution, this expression can be rewritten as a matrix equation

H ¼ S� HRF þ Intercept þ Slope ð10Þ

where H is a column vector of recorded hemodynamic responses (at the temporal resolution

of the camera frame rate, 15 Hz); S is the spiking regressor expanded into a stimulus convolu-

tion matrix (SCM) [37,61]; the symbol × indicates matrix multiplication; and HRF, Intercept,
and Slope here refer to the same terms as in Eq 10 but expressed as column vectors. The SCM

was constructed as a Toeplitz matrix comprising a horizontal concatenation of spiking column

vectors, with circular time shifts ranging from −10 seconds to +25 seconds relative to t = 0.

Formally, the SCM S can be extended (“Se”) to incorporate the Intercept and Slope by horizon-

tally concatenating the two additional column vectors: a column of ones for the Intercept and a

linear ramp from −1 to 1 for the Slope. The corresponding HRF can be formally extended

(“HRFe”) by two coefficients, one for the Intercept and another for the Slope.

H ¼ Se �HRFe ð11Þ

Assuming that any noise is Gaussian and has zero mean, the optimal deconvolved HRFe

can then be estimated using a least-squares solution to the linear regression [37,61]:

HRFe ¼ ðSe
T � SeÞ

� 1
� Se

T �H ð12Þ

where the superscript T indicates the matrix transpose, -1 indicates the matrix inverse,

and × indicates matrix multiplication. The full prediction using the optimal deconvolved HRFe

kernel is then computed using Eq 11. Similarly, just the (linear, homogeneous) prediction

from spiking is obtained by taking the matrix multiplication over all column vectors of Se, save

the last two, with all coefficients of the deconvolved HRFe, save the last two. Conversely, just

the Intercept term or just the Slope term are obtained by appropriately multiplying the last two

column vectors of Se with the corresponding last two coefficients of the deconvolved HRFe.

The optimal deconvolved Intercept is defined as the additional “mean shift” not predicted by
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spiking. As with the model-based approach to fitting used earlier (see Eqs 4–6), the goodness

of fit R2 for the optimal prediction was defined as the coefficient of determination 1 �
SSerror
SStotal

� �
.

This was used to compare fits made with versus without including an intercept term in the

design matrix (Fig 8A versus S8 Fig).

Getting bootstrap estimates for significance (p-values). All comparisons between distri-

butions of amplitudes or peak times were tested for significance by bootstrapping, typically

using 10,000 resamples with replacement. In cases with different numbers of trials for high

and low reward, the smaller number of trials was chosen to make the bootstrap comparison.

For comparing response amplitudes (e.g., Fig 3B), we tested for the median of high-reward

amplitudes being less than that for low-reward amplitudes over the set of all resamples, against

the null hypothesis that this difference has zero mean. We also tested for the complement—

i.e., that median of low-reward amplitudes is less than that of high-reward amplitudes. For

comparing widths of peak time distributions (e.g., Fig 3A), we first calculated the 2 standard

deviation width (specifically, the +/− 34th percentile around the median, given the non-nor-

mal distribution) of each bootstrapped set of peak times separately for high and low reward.

We then tested for 2 standard deviation for high reward being less than that for low reward

over the set of all resamples, against the null hypothesis that the difference has zero mean. We

also tested for the complement—i.e., that 2 standard deviations for low reward was less than

that for high reward.

Fitting spiking to dark-room hemodynamic response using gamma-variate HRF (S1

Fig). To link to spiking, the dark-room response was modeled as a homogeneous prediction

from spiking, fitted by optimizing a gamma-variate HRF kernel using fminsearch as described

above:

HðtÞ ¼ HRF � SðtÞ ð13Þ

The fitting was done separately for the high-reward and low-reward trials at each recording

site. Stimulus-evoked responses were fitted using a model with a task-related component: Eqs

4–6. In each case, the optimal fitted HRF kernel was then convolved with the continuous

recorded spiking response to give a continuous prediction. Since the spiking response included

both high-reward and low-reward segments, the prediction included sections of “same” pre-

diction (e.g., low-reward spiking convolved with the low-reward kernel) and sections of cross

predictions (e.g., high-reward spiking convolved with the low-reward kernel).

Supporting information

S1 Fig. Local spiking, although appearing to predict mean hemodynamic responses in indi-

vidual recording conditions, is a poor and unreliable predictor of task-related responses

overall. (a,b) Mean measured responses and optimal predictions for low-reward and high-

reward trials, respectively, of a data set recorded in the dark-room task. In each case, the lower

panel shows the mean measured spiking; the upper panel shows the mean measured hemody-

namics as well as the prediction from spiking using the corresponding optimal fitted gamma-

variate HRF kernel (see color code in each column). Low reward (N = 148 trials), R2 = 0.73 for

the optimal prediction. High reward (N = 140 trials), R2 = 0.42 for the optimal prediction. (c)

A separate set of visually stimulated trials at the same recording site, using visual stimuli con-

sisting of optimally oriented drifting gratings at different contrasts, as indicated by the gray-

scale coding (orange bar below depicts the visual stimulation period). Again, the top panel

shows mean measured hemodynamics and optimal predictions grouped by stimulus contrast;

predictions are shifted to the right for visibility (N = 141 trials total, i.e., 47 trials / contrast. R2
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= 0.95). (d) The optimal fitted gamma-variate HRF kernels for the three recording conditions,

color coded as shown. Note how poorly they match each other. (e) Comparing the measured

low-reward hemodynamics to predictions using the low-reward dark-room set of spiking

responses (as in panel a)—but with different optimal HRF kernels—from low-reward, high-

reward, and stimulus-evoked sets. The cross predictions are poor (R2 of prediction using high-

reward HRF = −0.014; stimulated HRF = −0.011). (f) Optimal HRFs from the full set of dark-

room experiments, normalized in each case to the amplitude of the corresponding visually

stimulated HRF (N = 56: pairs of high- and low-reward HRFs for each of 28 sets with electrode

recordings). Scale truncates some HRFs of high absolute amplitude to help visualize those of

smaller amplitude. Colors are arbitrary (MATLAB default). The different optimal HRFs match

each other poorly, with some even reversed in sign. This makes cross prediction meaningless

and suggests that apparently good predictions of mean responses in individual experiments

are fortuitous. HRF, hemodynamic response function.

(TIF)

S2 Fig. Increase in temporal precision with reward size is not sensitive to the choice of tem-

plate used to estimate response time and amplitude. (a-d) Same example data set as in Figs 2

and 3. (a) Orange indicates the alternate template defined as the mean hemodynamic response

across correct trials, aligned to a time point one-quarter cycle ahead of trial onset (i.e., starting

at the dashed vertical line 4.1 seconds ahead of time 0. Single trials are shown in gray). Green

background (time points 0–16.4 second) marks the timing of the earlier template for compari-

son (see Fig 2B, “Tmplt”). (b) New template match (orange, “Tmplt Match,” upper row) illus-

trated using the same segment of recorded hemodynamics (“Hemo”) as in Fig 2B. The earlier

template match from Fig 2B is shown alongside for comparison (green, dashed line). Black

dots identify the peaks of the new Template Match, marking locations where the “Hemo” is

locally best phase-matched to the new template (see “Match Peak,” compared to “Match

Trough”). (c) Distributions of response times, defined as the positions of the new template

match peaks. Compare with Fig 3A (same conventions). (d) Distributions of response ampli-

tudes using the new template match. Compare with Fig 3B (same conventions). (e, f) New

response timing distribution 2 standard deviation widths and amplitude medians for high-

versus low-reward trials across all experiments, including p-values from Wilcoxon signed rank

test for the pairwise comparisons. Compare with Fig 3C and 3D (data in S24 Data).

(TIF)

S3 Fig. Response timing does not correlate with fixation onset. (a) Simulation of the null

hypothesis. The task-related response has a stereotyped time course following the onset of fixa-

tion. Response times would then have a constant delay following fix onset, leading to a linear

relation between the two with unity slope (the delay was taken to be 10 seconds for this simula-

tion). The observed tighter clustering of response times for high reward could result from a

corresponding clustering of fixation onsets (consider projection of red dots versus blue dots

on the Response Time axis). (b) Relationship between measured response time (estimated as

usual with a template match) and fixation onset in an early recording session. Animals tended

to hold fixation for extended periods prior to trial onset, even across multiple trials. (c) Rela-

tionship between response time and fix onset in a late recording session. Animals tended to

move their eyes a lot during intertrial intervals, fixating shortly before trial onset. For both

cases (b) and (c), response times were independent of fixation onset and very different from

the pattern expected for the null hypothesis. In both data sets, response times for high-reward

trials showed visibly lower scatter independent of fix onset (data in S25 Data).

(TIF)
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S4 Fig. High reward does not correlate with tighter eye movements. (a1) Mean radial eye

movement per intertrial interval in an early recording session. Each dot represents a single

trial (mean eye movement during 7-second intertrial intervals per 9-second trial). Horizontal

lines indicate median eye movement per block of high or low reward (blocks with varying

numbers [13–31] of correct trials each). Intertrial eye movements were higher in low-reward

blocks. (a2) Histogram of mean eye movement per trial. (a3) Relationship between response

time and eye movement per trial, colored by reward size. (b1) Mean radial eye movement in a

later recording session (12-second intertrial intervals in 16-second trials; alternating blocks of

10 correct trials each; all other conventions as in panel A1). Eye movements were higher in

high-reward blocks. (b2) Corresponding histogram of mean eye movements per trial. (b3)

Response time versus eye movement per trial colored by reward size. Low reward leads to

wider scatter of response times in both panels (a3) and (b3) despite opposite effects on inter-

trial eye movement (data in S26 Data).

(TIF)

S5 Fig. Estimating task-related response and its template match in the presence of visual

stimulation (one example data set). (a-c) Estimating optimal fitted parameters (see Methods,

Eqs 4–6). (a) The mean hemodynamic response per stimulus contrast (see key), averaged

across trials. The response is modeled as the sum of the stimulus-evoked component (b) and

the task-related component (c). The stimulus-evoked component is modeled as the convolu-

tion (�) of the measured spiking with a gamma-variate HRF kernel (inset). The mean task-

related component is modeled as the convolution of delta functions at trial onset with a “Mean

TRF” kernel comprising a partial Fourier sum with its fundamental at the trial period (inset).

Earlier work showed that the fundamental and the first harmonic terms of the Fourier series

are adequate. Insets show the optimal fitted gamma-variate HRF (in b) and optimal mean TRF

(in c), respectively. (d) Set of traces illustrating the process of estimating the residual task-

related response and then estimating its timing and amplitude per trial by matching to a tem-

plate (see Methods, Eqs 7 and 8). “Spiking,” “Hemo”: full measured responses, individually z-

scored. “Hemo (predicted from spiking)” is the convolution of the spiking response with the

optimal fitted HRF (b, inset). Subtracting this from the measured hemodynamic response

gives the residual “Hemo (Unpredicted by spiking),” which we defined to be the task-related

response. The moving-window dot product of this residual with the template (the optimal fit-

ted mean TRF [c), inset]) gives the “Template Match” (shifted up for visibility). Timing and

amplitude of task-related responses, per trial, are defined to be the location and height of each

Template Match peak, as for the dark-room task. Showing a section of the full experiment of

483 trials (122 correct). (e) Set of all residual task-related responses, converted back from z-

scored values, separated into trials grouped by reward size. The same data are shown in Fig

5A. HRF, hemodynamic response function; TRF, task-related function.

(TIF)

S6 Fig. Comparing regression lines through alternating blocks of high and low reward, before

(top panel) and after (bottom panel) removing error trials. Color coding for high (red) and

low reward (cyan) is the same as in the main text. Error trials are indicated in lighter colors

and are grouped with the reward block corresponding to the immediately preceding correct

trial. Straight lines show regression fits. Letters (“A,” “B,” “C”) and arrows identify correspond-

ing blocks. Blocks A and B contain individual or short stretches of error trials. C includes a

roughly 400-second stretch during which the animal napped. The time axis has the same scale

for both top and bottom panels, with time 0 indicating the start of the experiment; the bottom

concatenates time points for correct trials. Six consecutive blocks are shown from an
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experiment comprising 47 blocks (482 correct trials of 684 total).

(TIF)

S7 Fig. Ramp-like drifts in local blood volume are not accounted for by slow changes in

local spiking. (a, c) Hemodynamics and spiking, respectively, showing correct trials from

alternating blocks of high and low reward. Lines show regression fits per block (same data set

as Figs 2 and 3). (b, d) Histograms with slopes of regression fits from (a), (c). (e) Simplified

simulation of slow mean hemodynamic responses: triangle wave of matching period, with

slopes equal to the median (absolute) slopes of the regression lines in (a) (= 4.1 × 10−5/second).

(f) Simulated spiking response that generates the model hemodynamic response in (e) on

convolving with the visually stimulated HRF for this recording site (see “HRF kernels,” S1 Fig;

also, Methods). Measured spiking regression slopes (d) are only about 4× weaker than those in

the simulation; but they do not alternate in sign with reward size. (g) Distributions of the ratios

of measured spiking regression slope per block to the slope of the corresponding simulation,

as in (e), (f), across all experiments (N = 752 blocks of 10 trials each, 376 blocks/reward size;

from N = 11 experiments with electrode recordings and at least 10 blocks per reward size). p-

Values test for the probability of the distributions being centered on zero (bootstrap, 10,000

resamples) (data in S27 Data). HRF, hemodynamic response function.

(TIF)

S8 Fig. Deconvolution fit of the same data segment as in Fig 8A but with no intercept term

in the design matrix. The full prediction here matches the measured response reasonably well

except for a few locations with large mismatches (black arrowheads; compare with the same

locations in Fig 8A). The overall goodness of fit R2 = 0.76, averaged over this rest epoch, is

worse than for the fit with an intercept (R2 = 0.94; see Fig 8A, text). The inset shows HRFs

from the deconvolution windows covering this rest epoch, as in Fig 8A; colors identify corre-

sponding HRFs for the two fits. HRF, hemodynamic response function.

(TIF)

S1 Data. Data for “Eye Pos” traces in Fig 1B.

(XLSX)

S2 Data. Data for “Hi–Lo” reward pupil dilation histograms in Fig 1B.

(XLSX)

S3 Data. Data for pupil traces in Fig 1B.

(XLSX)

S4 Data. Data for Fig 1C.

(XLSX)

S5 Data. Data for Fig 1D.

(XLSX)

S6 Data. Data for Fig 1E.

(XLSX)

S7 Data. Data for Fig 2A.

(XLSX)

S8 Data. Data for Fig 2C.

(XLSX)
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S9 Data. Data for Fig 2D.

(XLSX)

S10 Data. Data for Fig 2E and 2F.

(XLSX)

S11 Data. Data for Fig 3.

(XLSX)

S12 Data. Data for Fig 4A.

(XLSX)

S13 Data. Data for Fig 4B.

(XLSX)

S14 Data. Data for Fig 4C–4F.

(XLSX)

S15 Data. Data for Fig 5A.

(XLSX)

S16 Data. Data for Fig 5B.

(XLSX)

S17 Data. Data for Fig 5E.

(XLSX)

S18 Data. Data for Fig 5F.

(XLSX)

S19 Data. Data for Fig 5C and 5D.

(XLSX)

S20 Data. Data for Fig 6C.

(XLSX)

S21 Data. Data for Fig 6A and 6B.

(XLSX)

S22 Data. Data for Fig 7B.

(XLSX)

S23 Data. Data for Fig 7C.

(XLSX)

S24 Data. Data for S2 Fig.

(XLSX)

S25 Data. Data for S3 Fig.

(XLSX)

S26 Data. Data for S4 Fig.

(XLSX)

S27 Data. Data for S7 Fig.

(XLSX)
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