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Abstract: Halophilic microorganisms are potentially capable as platforms to produce low-cost biosur-
factants. However, the robustness of bioprocesses is still a challenge and, therefore, it is essential to
understand the effects of microbiological culture conditions through bioreactor engineering. Based
on a design of experiments (DOE) and a response surface methodology (RSM) tailored and taken
from the literature, the present work focuses on the evaluation of a composite central design (CCD)
under batch cultures in stirred-tank bioreactors with the halophilic bacteria Salibacterium sp. 4CTb in
order to determine the operative conditions that favor mass transfer and optimize the production of a
lipopeptide. The results obtained showed profiles highlighting the most favorable culture conditions,
which lead to an emulsification index (E24%) higher than 70%. Moreover, through the behavior of
dissolved oxygen (DO), it was possible to experimentally evaluate the higher volumetric coefficient
of mass transfer in the presence of lipopeptide (kLa = 31 1/h) as a key criterion for the synthesis of the
biosurfactant on further cell expansion.

Keywords: extremophiles; microbial processes; biosurfactant; bioreactor; DOE

1. Introduction

Extremophilic microorganisms, it turns out, are life forms that thrive and perform
all their metabolic activity in locations that would be harmful to other life forms from an
anthropocentric point of view [1]. In particular, halophilic microorganisms are described to
possess tolerance to hypersalinity up to 30% w/v NaCl in their intracellular content and
are geographically abundant in extreme environments, such as the Dead Sea, Antarctic
lakes, and Cuatro Cienegas (Mexico), among others [2–5]. The vast number of halophilic
microorganisms have versatile biotechnological potentials due to their intrinsic resistance
to developing metabolic function under conditions of low water availability and high
salinity [6]. In addition, they are capable of producing extracellular and intracellular
enzymes and surface-active agents [7,8].

Surface-active agents, known as surfactants, are a broad class of amphiphilic com-
pounds that are widely used in hydrocarbon remediation, cleaners, pesticides, and health
products, among others [9–11]. Nonetheless, chemical surfactants outperform the market
distribution due to the reduced cost of production at high volumes, even considering the
damage they represent to the environment. Diverse industries are conducting research in or-
der to find biocompatible sources of biological surface-active agents (SABs) [12–15]. Similar
to their chemical counterparts, biosurfactants are amphiphilic molecules with comparable
physicochemical properties [16]. Based on their structure and microbial origin, biosurfac-
tants can be divided into two broad categories: low molecular weight compounds and high
molecular weight compounds [17–19]. The low molecular weight class includes biosurfac-
tants, especially glycolipids and lipopeptides; the high molecular weight class includes
amphipathic polysaccharides, lipopolysaccharides, and lipoproteins [20–22]. In the late
1960s [23], the main use of biosurfactants was as dispersants in oil spill contaminated sites.
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Microbial biosurfactants are commonly known to belong to the class of secondary
metabolites produced in the stationary phase of growth [20,24]. Although, some studies [7]
have provided evidence that biosurfactants could be synthesized during the exponential
phase as primary metabolites. Biosurfactants exhibit diverse environmental potentials, such
as production from renewable sources, biodegradability, surface and interface activity, and
antibiotic and antiviral activity [23,25–30]. In particular, the environmental biodegradability
potential, which characterizes biosurfactants, is attributed to their structural components,
such as carbohydrates, amino acids and proteins, and lipids [31]. Therefore, they do not
accumulate in environmental matrices to access the various natural degradation processes.

Even if biosurfactants are not yet economically comparable to chemical surfactants
to date, the global biosurfactants market size during 2020 was over USD 1.75 billion and
based on this increase, it is expected to grow at a CAGR of over 5.5% between 2021 and
2027, associated with the changing consumer perception towards the environmental impact
generated by synthetic surfactants [32].

Challenging approaches have been described to exploit halophiles at the bioreactor
scale, such as the high substrate cost, oxidation in bioreactor structures and sensors, narrow
titers in native strains, and foaming, among others [1,15,25]. However, advances have
been made through engineering and statistical techniques in the field of biotechnology,
to overcome barriers, such as single-use bioreactor design [33], and enhance the mass
transfer rates (agitation, aeration, pH, temperature, and culture medium) [34,35]; under
the remarkable statistical techniques of Box–Wilson, Box–Behnken, and Placket–Burman,
among others [36], to reach optimal conditions. Moreover, molecular biology has been a
breakthrough strategy for halophiles by cloning the genes encoding a specific product into
a heterologous expression system, making it a tailor-made technology [37–39].

Salibacterium sp. 4CTb has been shown in previous research to be a polyextremophilic
microorganism, and one of interest for its potential to produce the smallest lipopeptide
reported to date [7]. For reasons of clarity, this research aims to provide insight into
microorganisms that are capable of growing under harsh conditions and exploit their
biomolecules through scale-up production platforms, such as bioreactors, and channel
them towards the development of innovative technologies in oil recovery, bioremediation,
and versatile tools for bioprocess operations with greater robustness.

2. Materials and Methods
2.1. Halophilic Bacteria Strain

The bacterial strain was isolated from a saline soil sample from Cuatro Cienegas Valley,
Coahuila, Mexico [40]. The identification was performed by conducting molecular sequenc-
ing analysis through the 16S rRNA gene, as described by Barbachano-Torres et al. [7]. The
obtained 16S rRNA gene sequences were deposited in the NCBI archive under
bioproject MG869652.

2.2. Media Preparation

The bacteria Salibacterium sp. 4CTb was cultivated in an ATCC2185 liquid medium;
with the final composition per liter being: 120 g of NaCl, 3 g of glucose, 20 g of MgSO4·7H2O,
6 g of yeast extract, 2 g of KCl, 5 g of tryptone, and 0.1 mL of mineral solution. Glucose
was employed as a sole source of organic carbon in the media. The mineral solution was
composed of 1.32 g of ZnSO4·H2O, 0.34 g of MgSO4·H2O, 0.82 g of Fe (NH4) SO4·6H2O,
and 0.14 g of CuSO4·5H2O. The pH of the medium was adjusted to 9 with NaOH before
sterilization. The mineral solution was added after sterilization of the macroelements to
avoid precipitation of the components. For solid cultures, bacteriological agar was added
at a concentration of 50 g per liter.

2.3. Flask Scale Inoculum Cultivation

Reactivation of wild-type strain 4CTb was commenced by thawing a cryovial, in which
10 µL of the sample was plated onto an ATCC2185 solid medium and streaked. Incubation
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conditions were 37 ◦C for 3 days until colonies appeared. After colony development, one
colony was transferred to a 125 mL Erlenmeyer flask with a working volume of 20 mL of
ATCC2185 liquid medium. Incubation conditions were 37 ◦C and 300 rpm for 3 days [7].

2.4. Cell Expansion in Bioreactors

Culture preparations in cell expansion from flask scale to bioreactor were performed
until a cell concentration of 1 × 106 (cell/mL) was reached. Cell expansion was done in
batch cultures, where they were grown in stirred-tank bioreactors. The bioreaction plat-
forms were miniBio250s (Applikon Biotechnology, Delft, The Netherlands) instrumented
with pH and DO (Applisens, Delft, The Netherlands) sensors, an L-type open pipe sparger,
two Rushton 6-blade impellers, and a my-Control bioconsole for the regulation of the
culture parameters. The operating conditions maintained the thermal and chemical scaling
criteria between the flask and bioreactor scale, where the temperature of each bioreactor
was 37 ◦C, pH 9, and using the same composition of ATCC2185 liquid medium. The
mechanical parameters of the gas supply and agitation were adjusted according to a design
of experiments (DOE) consisting of a 2k factorial optimization design by a central composite
design (CCD). Noteworthy, aeration conditions are expressed in terms of one volume of air
per volume of medium per minute (vvm).

2.5. Determination of Biomass Development

Cell development was monitored by optical density (OD). The culture sample was
diluted at 1:20 with a fresh and sterile ATCC2185 medium. Next, the sample was dis-
pensed into a 96-well microplate, where software was configured to detect absorbances at a
wavelength of 620 nm using a UV-vis spectrophotometer. All samples were measured in
triplicate and analyzed by means and standard deviations.

2.6. Determination of Lipopeptide Production

Lipopeptide production was determined by the emulsification index (E24%) [41,42],
where 1 mL of previously centrifuged culture supernatant (6547 g-forces, 5 min) and 1 mL
of hexane were placed in a 5 mL test tube. After adding the components, it was allowed to
rest for 24 h and shaken vigorously for 1 min. The emulsification index was determined by
Equation (1) based on the relative heights of the system.

E24% =

(
he

ht

)
∗ (100) (1)

where he denotes the emulsion height and ht represents the height of the solution. The
heights were measured in centimeters. All samples were measured in triplicate and
analyzed by means and standard deviations.

2.7. kLa Determination

The volumetric mass transfer coefficient (kLa) was obtained in all bioreactor runs,
where the dynamic method was used for the experimental determination of kLa [43–46].
Dissolved oxygen (DO) concentration parameters were measured continuously using a
polarographic O2 sensor (Applisens) and monitored by Lucullus PIMS software (Applikon
Biotechnology). The measurement of the respiratory activity of Salibacterium sp. 4CTb was
performed during its exponential phase, where the gaseous supply was briefly interrupted
until the minimum DO value was reached, and then the gas flow was restored until the DO
concentration was stable. The mass balance for DO can be expressed as:

dC
dt

= OTR − OUR (2)

where dC/dt represents the rate of oxygen accumulation in the liquid phase, OTR represents
the rate of oxygen transfer from the gas to the liquid, and OUR is the rate of oxygen uptake
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by the microorganism. Therefore, the expression of the experimental values of kLa in linear
terms is represented by Equation (3):

(kLa) ∗ (t2 − t1) = Ln
(

Cl,∞ − Cl,t1

Cl,∞ − Cl,t2

)
(3)

where kLa is the volumetric oxygen transfer coefficient, t is the time variation, Cl,∞ is the
oxygen saturation concentration, and Cl,t is the oxygen concentration at a given time. No
experiments without microbiological culture were performed.

2.8. Statistical Analysis
Central Composite Design for Optimization

The optimization process was designed through the construction of a second-order
model with central composite designs (CCD) [47,48]. The full 2k factorial design type model
for lipopeptide optimization was designed based on the agitation and aeration factors,
where k is the number of factors. However, the biomass data were also fitted to the model.
In addition, the center point has the function of replicating the experiments to eliminate
variance, experimental error, or improve the precision; therefore, three replications of
the center point were run. Moreover, the four axial points were used to generate the
response surfaces. Based on the above, it was proposed to determine the effect of aeration
and agitation on lipopeptide production. The µy was related to the response variable by
employing the full quadratic model expressed as follows in Equation (4):

µy = β0 +
k

∑
i=1

(βi) ∗ (Xi) +
k

∑
i=1

(βii) ∗
(

X2
i

)
+

k

∑
j=2

j−1

∑
i=1

(βi,j) ∗ (Xi) ∗
(
Xj

)
+ ε (4)

where β0 was the intercept coefficient, Xi and Xj were coded independent variables, βi and
βii were the coefficients corresponding to the linear and quadratic coefficients, respectively,
and βi,j was the coefficient of the interaction products. In the model, the coefficient corre-
spondent to error (ε) was neglected due to its low significance. Table 1 shows how the coded
variables are manipulated mathematically and the real variables are those characterized
in the process. The real variables (Z) describe the levels, where Z1 explores the aeration
profiles and Z2 the stirring profiles. The axial points were generated by four additional
experiments under an α = 1.41, which is a parameter in the CCD that can provide the

property of rotation. This property was achieved by α = (2k)
1
4 .

Table 1. Coded and real variables of the 2k central composite design (CCD). Factors are aeration
(vvm) and agitation (rpm). The factors levels were 0.5 vvm, 0.9 vvm, and 1.2 vvm for aeration,
500 rpm, 700 rpm, and 900 rpm for agitation. All runs were performed at 37 ◦C and pH 9.

Run
Coded Variables Real Variables

X1 X2 Z1 (vvm) Z2 (rpm)

1 −1 −1 0.5 500
2 −1 1 0.5 900
3 1 −1 1.2 500
4 1 1 1.2 900
5 0 0 0.9 700
6 0 0 0.9 700
7 0 0 0.9 700
8 −1.41 0 0.34 700
9 1.41 0 1.32 700
10 0 −1.41 0.9 980
11 0 1.41 0.9 420

The significance of the mathematical models was tested through analysis of variance (ANOVA) with a significance
level of 0.05. All analyses were performed by the commercial package OriginPro 8.5 (Originlab Corporation,
Northampton, MA, USA).
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3. Results and Discussion
3.1. Performance of Salibacterium sp. 4CTb on Biomass and E24%

Among the key parameters, where mass transfer rates are improved to yield the
lipopeptide biosurfactant production, it has been described that a critical parameter is the
nitrogen composition of the culture medium [30,34,49]. Therefore, in previous studies [7]
the ATCC2185 culture medium was enriched with yeast extract to an optimal concentration
(6 g/L) based on the highest emulsification index that could be achieved to potentially
supplement the cultures described in this work. However, the nitrogen determination tests,
which provide evidence for the culture stage where the nitrogen was completely depleted,
were not performed.

Regardless, when Salibacterium sp. 4CTb and other Bacillus species are enriched
with yeast extract, biosurfactant production is enhanced by the presence of L-Leucine and
L-Arginine as sources of nitrogen and direct precursors for SABs synthesis [50]. Considering
that the chemical composition was no longer an issue to improve the lipopeptide production
by Salibacterium sp. 4CTb, the optimization of mechanical parameters for the bioreactor
scale is described below.

The profiles explored for each culture were performed based on duplicate experi-
ments to guarantee the repeatability of the runs, where the influence of the aeration and
agitation parameters were evaluated in various design combinations of experiments to de-
termine the optimal emulsification index (E24%) and how biomass development is involved.
This is due to barely any research conducted in lipopeptide biosurfactant production by
Salibacterium sp. 4CTb through stirred-tank bioreactors.

Figure 1 shows the behavior of biomass and, by analyzing the response surface graph,
shows that high values of biomass were reached in higher agitation (rpm) rate profiles and
that they were near aeration rates of 0.5 vvm. Clearly, mass transfer mechanisms favor the
metabolism of Salibacterium sp. 4CTb towards higher biomass production [43].
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Figure 1. Theoretical biomass values calculated by the quadratic model in response surface method-
ology from experimental values of biomass production.
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For instance, the second-order model from CCD describes several response variables
as a function of agitation (rpm) and aeration (vvm), such as biomass and the emulsification
index (E24%). The model for biomass (µBiomass) is presented as follows in Equation (5);
standard errors in parenthesis:

µBiomass = 0.6076(±0.0430)− 0.0478(±0.0263) ∗ X1 + 0.1165(±0.0263) ∗ X2
−0.0471(±0.0314) ∗ X2

1 + 0.0034(±0.0314) ∗ X2
2

−0.0909(±0.0372) ∗ X1 ∗ X2

(5)

In this case, the model for biomass shows a relative deficiency in the significance of the
fit by exhibiting an R2 = 0.8623 (P = 0.0327). Based on the model described in Equation (5)
and the response surface graph (Figure 1), it is possible to identify the optimal region
which favors biomass development in theoretical terms, which is located at the operating
conditions of 980 rpm and 0.42 vvm, achieving optical densities of 0.9305. Throughout the
experiments, it was observed that due to the high turbulence of the Rushton type impellers
and aeration rate profiles—higher than rates of 900 rpm and 0.9 vvm—the drawback of
foaming associated with an emulsion formation by lipopeptide was present. In this context,
it is well known that foam causes serious operational problems in biomass and biosurfactant
production batches, where it is also associated with the presence of extracellular proteins.
Solutions have been considered based on the above, such as mechanical devices adapted to
the impeller shaft to break the foam generation and the addition of defoaming compounds.
Nonetheless, the mechanical breaker has not been practical and the addition of antifoam
agents would compromise the quality of the biosurfactant produced [51,52]. Even so, the
behavior of biomass development is interesting, but not core to this work.

On the other hand, the behavior of Salibacterium sp. 4CTb to produce the lipopep-
tide, was differently influenced by the operating parameters than the ones observed in
biomass production. The first noticeable evidence was the synthesis of the lipopeptide by
Salibacterium sp. 4CTb during the exponential phase of cell development, where this type
of biomolecule has been described [53] to be associated with the secondary metabolism
of microorganisms—and this lipopeptide is among the ones of primary metabolism. For
instance, the model for the emulsification index (E24%) (µE24%) is presented as follows in
Equation (6); standard errors in parenthesis:

µE24% = 62.3018(±2.0452)− 0.6724(±1.2543) ∗ X1 − 5.8600(±1.2543) ∗ X2
+2.3749(±1.4967) ∗ X2

1 − 11.4988(±1.4967) ∗ X2
2

+8.3281(±1.7712) ∗ X1 ∗ X2

(6)

The model for E24% presented a significant fit of data, where, from the total variability,
it is shown that with R2 = 0.9597 (P = 0.0016) the data is explained by the quadratic model
on the CCD. Noteworthy, in Figure 2, in the aeration and agitation parameters, it can be
noted that at relatively low values, according to the DOE, Salibacterium sp. 4CTb readapts
its metabolic mechanisms to increase the synthesis of the lipopeptide until reaching an E24%
higher than 70%. In theoretical terms, and through the response surface graph (Figure 2),
an optimal region was located at the operating conditions of 540 rpm and 0.48 vvm, which
displayed an E24% of 74.55%. Clearly, this behavior can be attributed to the respiratory
capacity of Salibacterium sp. 4CTb and, that at low concentrations of dissolved oxygen in
the medium, it directs energy to produce a biomolecule that enhances the solubilization
of oxygen. This result is in agreement with what is reported in the literature [30,34,49,54],
where studies employing mesophilic microorganisms, such as Bacillus subtilis, Aureobasidium
pullulans, and Candida lipolytica, cultured at a stirred-tank bioreactor scale, show that low
aeration or agitation rates at the approximate ranges of 0.38–0.63 vvm and 150–300 rpm tend
to perform better in the production of biosurfactants, such as surfactin and rhamnolipid.
Likewise, operational difficulties have been addressed due to the high foam generated
in the batches and this leads to the novel design of bioreactors or foam collectors as an
accessory to the bioreactor. However, the last strategy could increase the detriment of the
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product due to a loss in the walls and additional handling. An additional criterion that
determines the efficiency of the bioprocess in biosurfactant production is the critical micellar
concentration (CMC). The CMC of the lipopeptide produced by Salibacterium sp. 4CTb was
reported to be 15.1 mg/L [7], which is comparatively smaller than those described for other
lipopeptides, ranging from 150–200 mg/L [31]. However, it is important to consider that
these values may vary according to the composition of the medium and culture conditions.
Interestingly, it is remarkable that the CMC of the lipopeptides described was different than
the CMC reported in the synthetic surfactants. By way of example, the CMC of sodium
dodecyl sulfate (SDS), tetradecyltrimethylammonium bromide (TTAB), cetylpyridinium
chloride (CPC), and sodium bis(2-ethylhexyl) sulfosuccinate (AOT) are 2307, 1345, 350, and
1182 mg/L, respectively, which corroborates the outstanding performance of lipopeptides
as surface-active agents [55,56]. Taken together, the above reports that the lower the CMC
value the more significant the effect of the compound as a surfactant and the greater its
industrial application potential [57].
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3.2. Impact of kLa on Lipopeptide Performance

Oxygen consumption in aerobic cultures has proven to be a key concern for bioprocess
scale-up, thus, effective manipulation of the volumetric mass transfer coefficient (kLa)
between laboratory and pilot scales could determine the main pathways to reaching an
industrial scale [35]. As previously described, the variation in agitation and aeration rates
significantly influenced Salibacterium sp. 4CTb to synthesize the lipopeptide. Nevertheless,
for further scale-up purposes, the agitation rate is expressed as impeller tip speed [43,58],
as expressed through Equation (7):

VTip

(m
s

)
=

(
N
60

)
∗ (π) ∗ (D) (7)
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where N represents the agitation rate, and D is the Rushton impeller diameter. The different
runs of cultures showed fluctuations in kLa that were influenced by several factors, such
as the impeller tip speed, aeration, and the presence of biosurfactant [45]. According to
Figure 3, it was observed that in the region near 1.2 vvm–0.57 m/s, it is possible to reach
the maximum oxygen transfer rate (kLa = 33.1 1/h); however, by contrasting this region
with the response surface in Figure 2, it is remarkable that E24% slightly tops 40%. On the
other hand, the operating conditions of 0.48 vvm and 0.66 m/s, which yielded, for the most
part, the lipopeptide production with E24% = 74.55%, experimentally generated an oxygen
transfer rate of kLa = 31 1/h, quite proximal to the previously described. Measurements in
the surface tension were not performed; and yet, the generation of tensoactive compounds
is capable of favoring oxygen transfer in culture media [59]. Moreover, the recovery of the
lipopeptide could be compromised if the culture is not harvested at an optimal growth
stage. Taken together with the above observations, high rates of oxygen transfer to the
bioreactor might not be favorable to lipopeptide synthesis [60], due to foam generation and
the microorganism’s preference for biomass production.
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4. Conclusions

The proposed design of experiments (DOE) proved to be statistically efficient for
the improvement of lipopeptide production through Salibacterium sp. 4CTb in stirred-
tank bioreactors. Moreover, it was corroborated that agitation and aeration are critical
parameters of the bioprocess, where E24% reached up to 74.55% and the oxygen transfer
rate (kLa) reached 31 1/h. It is clear that Salibacterium sp. 4CTb is a promising halophilic
microorganism for larger-scale production of lipopeptide, therefore for future studies, it
is critical to explore the kLa in various bioreactor volumes and to maintain fixed various
process criteria, such as the oxygen transfer rate, bioreactor geometry, and culture medium,
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among others. On the other hand, it is interesting to consider that the formulation of the
culture medium presented in this work represents a high cost, therefore, the pursuit of a
culture medium from industrial waste is an innovative approach for future applications.
Moreover, among the obstacles present within the scale-up, the high concentration of NaCl
is a factor attributed to high foaming and could lead to gradients in the composition of the
culture media and Salibacterium sp. 4CTb may not assimilate nutrients favorably.

The optimization of lipopeptide production lays the foundation for targeting various
application areas, such as oil recovery, heterogeneous biocatalysis, and agriculture, among
others, with the purpose of directing future research towards the substitution of chemical
surfactants by demonstrating the potential of biological surfactants in all industrial sectors
due to their environmental, monetary and handling advantages. Within this context,
biosurfactants have shown low cytotoxicity, which makes them an important tool nowadays,
especially during the COVID-19 pandemic, and therefore their application in surface
sanitizers, drug distributors, and additives in face masks, among others, is critical. In
light of the above, it is clear that biosurfactants possess a high versatility in these areas
of application.
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