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Abstract

Adult fish produce new cells throughout their central nervous system during the course of their lives and maintain
a tremendous capacity to repair damaged neural tissue. Much of the focus on understanding brain repair and
regeneration in adult fish has been directed at regions of the brainstem and forebrain; however, the
mesencephalon (midbrain) and diencephalon have received little attention. We sought to examine differential gene
expression in the midbrain/diencephalon in response to injury in the adult fish using RNA-seq. Using the
mummichog (Fundulus heteroclitus), we administered a mechanical lesion to the midbrain/diencephalon and
examined differentially expressed genes (DEGs) at an acute recovery time of 1 h post-injury. Comparisons of whole
transcriptomes derived from isolated RNA of intact and injured midbrain/diencephalic tissue identified 404 DEGs
with the vast majority being upregulated. Using qPCR, we validated the upregulation of DEGs pim-2-like, syndecan-
4-like, and cd83. Based on genes both familiar and novel regarding the adult brain response to injury, these data
provide an extensive molecular profile giving insight into a range of cellular processes involved in the injury
response of a brain regenerative-capable vertebrate.
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Background
Adult fish possess tremendous neural regeneration capabil-
ities. While the adult mammalian brain is severely limited in
its ability to self-repair, fish exhibit a tremendous capacity for
neural regeneration and thus, a remarkable ability to recover
from brain injury as they readily replace damaged cells due
to their ability to constitutively proliferate new cells [1].
Thus, due to their having exceptional potential to regenerate
neuronal tissue post-injury, fish are an excellent model for
adult brain regeneration-competency [2]. Factors responsible
for the differences in adult brain cell proliferation, and subse-
quent neurogenesis, between species of different vertebrate
classes remain largely unknown. Therefore, elucidating the
genes involved in the adult fish brain reparative process has

the potential to better understand the molecular mechanisms
underlying these discrepancies.
Cell proliferation and neurogenesis are abundant

throughout the adult fish brain [3]. Much of the
focus on adult fish brain repair has been directed at
neuronal tissue of the forebrain and brainstem, how-
ever, the mesencephalon (midbrain) and dienceph-
alon have received relatively little experimental study
with regard to reparative neurogenesis relative to the
other regions [4]. Studies using genomic approaches,
specifically RNA-seq, to assay the molecular signals
associated with brain regeneration and neurogenesis
in the fish brain are beginning to uncover significant
genes and pathways [5]. To further this end, we used
RNA-seq to examine the acute response of the mid-
brain/diencephalon of the mummichog (Fundulus
heteroclitus). While the zebrafish (Danio rerio) has
been widely used to examine molecular mechanisms
of pathological conditions such as brain repair,
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alternative fish species, such as the mummichog,
allow for potential novel gene function discovery due
to differential subfunctionalization of genes between
the different fish lineages [6].

Materials and methods
A detailed description of all experimental methods in-
cluding animal care, surgical process, Nissl staining,
RNA-seq, and qPCR can be found in Additional file 1. A

Fig. 1 Differentially gene expression in the mummichog midbrain/diencephalon in response to injury at 1 h post-lesion. a Placement of the
mechanical lesion to the mummichog midbrain/diencephalon. Abbreviations. cb = cerebellum, fb = forebrain, hb = hindbrain, mb =midbrain, sc =
spinal cord. b Frontal sections of mummichog midbrain/diencephalon with Nissl stain (right; magnification = 25X) and neuroanatomical areas in a
mirror image schematic (left). Boxes show regional intact (left column) vs lesioned (right column) tissue (magnification = 160X). Abbreviations:
dhypl = diffuse nucleus of the inferior hypothalamic lobe, lr = lateral recess, nmlf = nucleus of the medial longitudinal fascicle, nr = nuclear ruber,
ot = optic tectum, tl = torus longitudinalis, ts = torus semicircularis, vc = valvula cerebelli. c MA plot of the distribution of expressed genes at 1 h
post-injury as determined by RNA-seq. Red dots indicate DEGs with an FDR of q ≤ 0.1 (181 genes) or ≤ 0.4 (223 genes). d, e, f Upregulation of
DEGs, pim-2-like (q = 5.09E-46) (d), syndecan-4-like (q = 5.22E-30) (e), & cd83 (q = 2.97E-23) (f) at 1 h post-lesion (One-Way ANOVA; p < 0.001 for
each. Tukey’s Post Test; *** = p < 0.0001, ** = p < 0.001, * = p < 0.05. n = 10 for each). g Validation of a non-differentially expressed gene, brain
igf-1 (n = 8)
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mechanical lesion was administered to the midbrain and
underlying hypothalamic diencephalon of anesthetized
adult mummichogs. After injury, fish were given an
acute recovery time of 1 h prior to sacrifice. To ensure
lesion accuracy, Nissl stain was performed on 20 μm
thick frontal sections of the midbrain/diencephalon to
visualize the injury using light microscopy.
For RNA-seq, the total RNA was isolated from the le-

sioned side of the midbrain/diencephalon as well from
the contralateral, intact side of the midbrain/dienceph-
alon of ten fish. The total RNA from each sample was
used to prepare RNA-seq libraries which were clustered
at concentrations to ensure at least 50 million reads per
sample. Differential gene expression was inferred using
DESeq2 [7]. Transcript counts from DESeq2 analysis
were ranked according to adjusted p-value (q). The false
discovery rate (FDR) was set at both q ≤ 0.1 or < 0.4 on
the premise that the lower threshold was appropriately
very stringent for identifying high-probability DEGs,
while the higher threshold was more permissive and
thus, avoided the loss of data via false negatives and
would therefore aid discovery in the downstream func-
tional analyses by providing a larger input gene list as
we have demonstrated previously [8, 9]. The gene set
identified by q ≤ 0.4 was then analyzed with the Topp-
Fun tool [10] to find enriched GO terms and pathways.
The systems level output (GO and Pathway) was itself
subjected to FDR testing thereby adding rigor to the data
analysis [see 8, 9].
To validate DEGs, qPCR was performed (on eight to ten

fish distinct from the RNA-seq assay) utilizing gene-
specific primers (see Additional file 1: Table S1). Primers
were designed for three DEGs of novel functional interest
regarding the fish brain response to injury that showed
high differential expression, which included pim-2-like,
syndecan-4-like and cd83 molecule (cd83). In addition, for
qPCR quality control, primers were designed for a gene of
functional interest, igf-1 (insulin-like growth factor 1), to
validate its lack of differential expression. Gene expression
was normalized to elongation factor 1 alpha (ef1a) using
primers designed in previous work [11]. Further, to deter-
mine if a whole midbrain/diencephalon gene expression
response was elicited, midbrain/diencephalic tissue from
ten fish receiving no injury was also included.

Results
Due to the relatively flattened head of the mummichog,
it was ideal for the dorsal application of a mechanical le-
sion to the midbrain/diencephalon (Fig. 1a). Nissl stain
confirmed that the lesion traversed the midbrain optic tec-
tum and tegmental regions and into the underlying hypo-
thalamic tissue of the diencephalon (Fig. 1b). Genes
differentially expressed between the lesioned and contralat-
eral intact midbrain/diencephalon tissue were identified

using FDR-adjusted p-value cutoffs of q > 0.1 and 0.4, re-
spectively. In total, 404 DEGs were identified as differentially
expressed with 181 DEGs meeting the FDR cutoff of q ≤ 0.1
(Additional file 2: Table S2). Most differential expression in-
dicated gene upregulation (Fig. 1c), which accounted for
nearly 80% of all DEGs and of those with FDRs of q ≤ 0.1,
90% were upregulated. Functional annotation of genes by
GO analysis [see 10] revealed a broad range of biological
processes indicating a strong influence over cell death and
differentiation (see Additional file 2: Table S3).
From the qPCR studies (Additional file 2: Table S4), we

validated the differential expression of two genes not pre-
viously identified in the fish brain response to injury,
which included pim-2-like (Fig. 1d) and syndecan-4-like
(Fig. 1e), both of which are associated with cell prolifera-
tion [12, 13]. Also validated was cd83 (Fig. 1f), which is as-
sociated as a regulator of activation in immune cells [14].
However, cd83 was recently found in neuronal cells, in-
cluding high expression levels in both the midbrain and
hypothalamus indicating possible distinct neural function
[15]. Finally, the lack of igf-1 differential expression was
also validated (Fig. 1g). The use of the mummichog mid-
brain/diencephalon as a novel model for the brain re-
sponse to injury demonstrates its potential to identify
genes yet to be discovered with putative roles in the brain
reparative processes in regenerative-capable vertebrates.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13041-019-0542-4.

Additional file 1 Table S1. List of qPCR primers used to validate
specific RNA-seq data. With the exception of the ef1a primers, all primers
were designed using the online primer design tools from Integrated DNA
Technologies (Coralville, IA) and commercially synthesized by the com-
pany. Primers for ef1a based on [see 1].

Additional file 2 Table S2. List of differentially expressed genes
between control intact midbrain/diencephalic tissue and lesioned
midbrain/diencephalic tissue at 1 h post-injury using DESeq2. The list con-
tains significantly expressed genes (q < 0.4) and was sorted by fold-
change using log2(FC) of down-regulated and up-regulated transcripts.
The Gene IDs of differentially expressed genes pim-2-like, syndecan-4-like,
and cd83 used in qPCR validation assays are shown in bold text. A solid
line delineates the first 181 genes with FDRs < 0.1 from the following 223
genes with FDRs < 0.4 that did not make the 0.1 cutoff. Table S3. Func-
tional annotation biological processes of DEGs identified by RNA-seq.
Gene Ontology (GO) enrichment analysis was performed by ToppFun
web server (https://toppgene.cchmc.org/enrichment.jsp). Differentially
expressed genes (q < 0.4) from DESeq2 analysis were entered into Topp-
Gene. ToppFun selected analogous human symbols (e.g. cd83 became
CD83) for about half of the 404 DEGs entered. The table is the Biological
Processes portion. Table S4. Cycle threshold (Ct) values from qPCR. Each
value represents the average value from reactions performed in triplicate.
Housekeeper gene Ct scores were retested when reagents for an assay
were obtained from different kits. Sample sizes were from eight to ten
individuals.

Abbreviations
cd83: Cluster of differentiation 83; DEGs: Differentially expressed genes;
ef1a: Elongation factor 1 alpha; GO: Gene ontology; igf-1: Insulin-like growth
factor 1; pim-2: Proviral integration site for moloney murine leukemia virus,
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isoform 2; q: Adjusted p value; qPCR: Quantitative polymerase chain reaction;
RNA-seq: RNA sequencing
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