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Abstract
Differential expression analysis has led to the identification of important biomarkers 
in oesophageal squamous cell carcinoma (ESCC). Despite enormous contributions, 
it has not harnessed the full potential of gene expression data, such as interactions 
among genes. Differential co-expression analysis has emerged as an effective tool 
that complements differential expression analysis to provide better insight of dys-
regulated mechanisms and indicate key driver genes. Here, we analysed the differ-
ential co-expression of lncRNAs and protein-coding genes (PCGs) between normal 
oesophageal tissue and ESCC tissues, and constructed a lncRNA-PCG differential 
co-expression network (DCN). DCN was characterized as a scale-free, small-world 
network with modular organization. Focusing on lncRNAs, a total of 107 differential 
lncRNA-PCG subnetworks were identified from the DCN by integrating both dif-
ferential expression and differential co-expression. These differential subnetworks 
provide a valuable source for revealing lncRNA functions and the associated dysfunc-
tional regulatory networks in ESCC. Their consistent discrimination suggests that 
they may have important roles in ESCC and could serve as robust subnetwork bio-
markers. In addition, two tumour suppressor genes (AL121899.1 and ELMO2), identi-
fied in the core modules, were validated by functional experiments. The proposed 
method can be easily used to investigate differential subnetworks of other molecules 
in other cancers.
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1  | INTRODUC TION

Oesophageal carcinoma is the eighth most common and the sixth 
most lethal cancer with a poor 5-year overall survival ranging from 
15% to 25%.1 Oesophageal squamous cell carcinoma (ESCC) is the 
predominant histological type of oesophageal carcinoma world-
wide.2 At present, the regulatory mechanisms underlying ESCC 
remain largely unknown. Based on the accumulating transcriptome 
data, traditional differential expression analysis has successfully 
identified a handful of oncogenes and tumour suppressors, including 
protein-coding genes (PCGs) and miRNAs, such as PTK6,3 Rab25,4 
miR-255 and miR-29c,6 and recently encompassed long non-coding 
RNAs (lncRNAs), such as HOTAIR,7,8 AFAP1-AS19 and lncRNA625,10 
due to improvement of sequencing techniques. These dysregulated 
genes serve as potential diagnostic or prognostic biomarkers and 
valuable targets for further study to understand pathologic mech-
anisms in ESCC.3-10

Despite the enormous contributions to the field, differential ex-
pression analysis has not captured the full potential of transcriptome 
data. Some genetic mutations and post-translational modifications, 
such as methylation, phosphorylation and acylation, can modify pro-
tein activity without affecting the gene expression level, but can alter 
the interaction pattern with other genes.11,12 A well-known example 
is APC, the most common mutated gene in colorectal cancer, whose 
frequent mutation leads to a truncated protein that lacks the binding 
sites for certain interacting proteins.13 Thus, an analysis based solely 
on differential expression analysis may miss some key driver genes. 
On the other hand, differential expression analysis treats genes indi-
vidually, but does not account for the interactions among them, and 
it is widely accepted that understanding the mechanisms underlying 
disease must consider the contributions of alterations in gene inter-
action.11 Recently, differential co-expression analysis has emerged 
as an effective tool that complements differential expression anal-
ysis to provide better insights of dysregulated mechanisms and in-
dicate key driver genes.11,14-19 Differential co-expression measures 
the correlation difference of a gene pair between two conditions (eg 
healthy and diseased samples). As co-expressed gene pairs are more 
likely to have putative interactions, dependencies or coordinated ac-
tivities in a given biological state, changes in co-expression patterns 
between two conditions may reveal disease-associated dysregulated 
mechanisms and indicate key driver genes.19 For human cancer, the 
gene co-expression relationships in normal samples are extensively 
lost in matched tumour samples, such as breast cancer, colorectal 
cancer, lung cancer and gastric cancer.12,14,20,21 Many studies have 
focused on this discrepancy to identify genes or gene modules that 
are dysfunctional in tumour samples by differential co-expression 
analysis. For example, Anglani et al showed that differential co-ex-
pression analysis was complementary to differential expression to 
unveil novel candidate cancer genes and improve the classic pathway 
enrichment analysis.12 In clear cell renal cell carcinoma, an HNF4A-
associated module was found to be functional in normal tissues 
but disrupted in tumour tissues, which could promote cell prolifer-
ation.20 Furthermore, differential co-expression analysis has been 

successfully used to identify differentially co-expressed modules, a 
group of genes significantly correlated under one condition but not 
the other, which may reflect dynamic changes in gene interaction 
networks.11,17-21 However, for ESCC, the differential co-expression 
patterns of genes have not been investigated. This promoted us to 
apply differential co-expression analysis on ESCC and identify dif-
ferentially co-expressed modules, which may help to reveal the dys-
functional regulatory networks underlying ESCC development and 
suggest novel driver genes.

On the other hand, lncRNAs are attracting more and more atten-
tion with their widespread roles in cancer, including ESCC.7-10,22,23 
However, the function of the vast majority of lncRNAs remains enig-
matic. Meaningful understanding of lncRNA function can only be 
achieved from detailed study on a case-by-case basis, which lacks 
candidate targets. To advance the understanding of lncRNA-as-
sociated dysregulated mechanisms in ESCC and provide potential 
targets, large scale identification of differentially co-expressed ln-
cRNA-PCG modules is urgently required.

Here, we construct a differential co-expression network (DCN) 
based on ESCC expression data and propose a novel algorithm to 
identify lncRNA-associated differential subnetworks on a large 
scale by integrating both differential expression and differential 
co-expression. The identified differential lncRNA-PCG subnetworks 
provide a valuable source for revealing lncRNA functions and the as-
sociated dysfunctional regulatory networks in ESCC. The functions 
of two tumour suppressor genes (AL121899.1 and ELMO2), identi-
fied in the core modules, were further validated using functional 
experiments.

2  | MATERIAL S AND METHODS

2.1 | Data sets

Three independent ESCC data sets were collected. The first two 
data sets (GSE53624 and GSE53622) were obtained from the 
Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/). 
Expression profiles of 238 samples (119 paired ESCC and ad-
jacent normal tissues) in GSE53624 were profiled by using the 
Agilent-038314 human lncRNA + mRNA microarray V2.0 platform. 
We reannotated probe sets of this platform with three steps.

1.	 Probe sequences of the Agilent-038314 array were aligned to 
PCG and lncRNA transcripts obtained from GENCODE data-
base (GRCh38, release 21)24 by using BLASTn.25 Only probes 
perfectly mapped to lncRNAs or PCGs were retained.

2.	 Probes that mapped to both PCGs and lncRNAs were removed.
3.	 Probes targeting more than one PCG or lncRNA were removed.

The retained probes mapped uniquely to a PCG or a lncRNA 
transcript with no mismatch, resulting in 17 434 PCGs and 6252 ln-
cRNAs. The 119 paired tissues were randomly split into a training 
set (60 paired tissues, ESCC-train) and a test set (59 paired tissues, 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53624
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53622
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53624
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ESCC-test). The expression profiles of 120 samples (60 paired ESCC 
and adjacent normal tissues, ESCC-valid) in GSE53622 were pro-
cessed in the same way.

The third data set contains the RNA-sequencing data of 30 sam-
ples (15 paired ESCC and adjacent normal tissues) reported in our 
previous study.10 We extracted RPKM expression profiles by using 
TopHat version 2.0.626 and easyRNAseq version 1.6.0.27 Transcripts 
that were not detected in more than 20% of the samples were re-
moved, resulting in 16 178 PCGs and 3498 lncRNAs. The data were 
quantile normalized and log2-transformed.

2.2 | Construction of normal and tumour  
co-expression networks

The normal co-expression network (NCN) was constructed based on 
expression profiles of the 60 normal tissues in the ESCC-train data 
set. For each pair of genes i and j, the Pearson correlation coefficient 
(PCC) rN

ij
 and the associated P-value PN

ij
 (two-sided Student's t test, 

Benjamini and Hochberg (BH) correction) were calculated by using 
the WGCNA17 R package. Gene pairs with PN

ij
< tN were used to con-

struct the NCN, where tN was the normal PCC P-value threshold. 
The tumour co-expression network (TCN) was constructed, using 
the same method as the NCN, based on expression profiles of the 
60 ESCC tissues in the ESCC-train data set. Gene pairs with PT

ij
< tT 

were used to construct the TCN, where PT
ij
 was the BH corrected 

PCC P-value in tumour samples, and tT was the tumour PCC P-value 
threshold.

2.3 | Construction of the differential co-expression 
network (DCN)

To test whether the difference between the PCC of a gene pair in 
normal samples and that in tumour samples was significant, the PCCs 
were transformed into z scores by using the Fisher transformation:

where r is the PCC, and z is the Fisher-transformed PCC. Then, z is ap-
proximately normally distributed with variance �2=1

�√
n−3, where n 

is the number of the samples.20 The PCCs rN
ij
 and rT

ij
 of a gene pair (i, j) in 

the normal and tumour samples are transformed into zN
ij
 and zT

ij
 by using 

Equation  (1), respectively. The difference between zN
ij
 and zT

ij
 can be 

measured by the following equation:

where nT and nN are the number of tumour and normal samples, re-
spectively. The variable Δz is approximately normally distributed with 
a mean of zero and variance one. Thus, we are able to apply a Z test 

to calculate the associated P-value Pz
ij
 under the null hypothesis that zN

ij
 

and zT
ij
 are equal. The P-values Pz

ij
 are controlled for multiple testing by 

BH correction. The weight of differential co-expression between gene 
i and j is defined as:

where ̂Pz
ij
 is the BH corrected value of Pz

ij
, and tz is the Z test P-value 

threshold. Gene pairs with nonzero dij were used to construct the 
DCN. A pair of genes is connected in the DCN if and only if they satisfy 
the following criteria: (a) the PCCs in normal and tumour samples are 
significantly different, and (b) the two genes are co-expressed at a sig-
nificant level in at least one group of samples. The DCN is a weighted 
graph with the edge weight reflecting the extent of differential co-ex-
pression. The three thresholds tz, tN and tT control the reliability of the 
links in DCN. In general, the smaller the thresholds are, the more reli-
able the links are. We used tz = tN = tT = 10−7 in this study.

2.4 | Scoring subnetworks

Both differential expression and differential co-expression are inte-
grated to score a subnetwork. Given a subnetwork G = (V, E), where 
V is the set of nodes, and E is the set of edges, the score of differen-
tial expression is defined as:

where ti is the t statistic in a paired, two-tailed t test comparing the 
expression values of gene i between tumour samples and normal sam-
ples, |ti| is the absolute value of ti, and |V| is the cardinality of the set V. 
The score of differential co-expression is defined as:

where |E| is the cardinality of the set E. Then, Equations (4) and (5) are 
integrated to define the subnetwork score:

where α∈[0,1] is a parameter to control the relative weight of differen-
tial expression DEG and differential co-expression DCG.

2.5 | Searching for lncRNA-associated subnetworks

Given the subnetwork score function (6), a greedy search was per-
formed to identify subnetworks within the DCN for which the scores 

(1)z=
1

2
log

(
1+ r

1− r

)

(2)Δzij=
zT
ij
−zN

ij√
1

nT−3
+

1

nN−3

(3)dij=

⎧
⎪⎨⎪⎩

���Δzij
��� , if ̂Pz

ij
< tz and

�
PN
ij
< tN orP

T
ij
< tT

�

0, otherwise

(4)DEG=
1√||V||

|V|∑
i=1

||ti||

(5)DCG=
1√||E||

∑
(i,j)∈E

dij

(6)DG=�DEG+
(
1−�

)
DCG

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53622
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are locally maximal.28 The search starts from a seed and iteratively 
adds neighbouring nodes. Each lncRNA is used as the seed in turn to 
initialize a subnetwork. At each iteration, the search considers addition 
of a node from the neighbours of nodes in the current subnetwork, 
and the corresponding edges connect this node and the current sub-
network. The addition which yields the maximum score is adopted. The 
search will stop if no node satisfies the following two conditions: (a) the 
number of edges in the shortest path between this node and the seed 
is less than or equal to d, and (b) the addition of this node increases the 
score of the subnetwork over an improvement rate r. The parameter d 
is a positive integer that controls the search space and r > 0 controls the 
increasing rate of the subnetwork score. For each lncRNA, the result-
ing subnetwork is usually composed of a few lncRNAs and a majority 
of PCGs, depending on its neighbouring genes.

2.6 | Evaluation of subnetworks

Two tests were performed to evaluate the statistical significance 
of the subnetworks. The first one randomly permuted the sample 
labels 100 times and recalculated subnetwork scores of all real sub-
networks. This generates a null distribution of random subnetwork 
scores for each real subnetwork. Then, the significance level P1 is 
obtained by indexing the score of each real subnetwork on the null 
distribution of the corresponding random subnetwork scores.

The second test constructed 100 random subnetworks for each 
real subnetwork. For a real subnetwork with n genes and e edges, 
the corresponding random subnetworks composed the seed lncRNA 
and other randomly selected n−1 genes. Edges among these n genes 
were sorted according to edge weight in decreasing order, and the 
top e edges were used to construct the random network. The sub-
network scores of these 100 random subnetworks constitute the 
null distribution of the real subnetwork score. Then, the significance 
level P2 is obtained by indexing the score of each real subnetwork on 
the corresponding null distribution.

2.7 | Classification and clustering

The subnetwork expression profiles were inferred by the pathway ac-
tivity inference method (DRWPClass) proposed by Liu et al.29 Three 
other methods (mean and median and PCA)29 were also performed for 
comparison. The logistic regression with lasso for feature selection was 
used to build the classifier, which was implemented with R package 
‘glmnet’.30 Hierarchical clustering was performed with PCC as the dis-
tance measure and complete-linkage as the clustering method.

2.8 | Cell culture

Sources of oesophageal cancer cell lines have been described pre-
viously.31,32 KYSE150, KYSE510 and TE3 cells were maintained in 
RPMI-1640 medium containing 10% foetal bovine serum. KYSE450 

cells were maintained in DMEM (HyClone) medium containing 10% 
newborn bovine serum. All were incubated with 5% CO2 and 80% 
humidity at 37°C.

2.9 | Plasmid construction and transfection

Two AL121899.1-expressing plasmids with a C-terminal HA-tag 
(AL121899.1-HA) and GFP-tag (pEGFP-N1-AL121899.1) were 
constructed by GENEWIZ. ELMO2-expressing plasmids with 
N-terminal GFP-tag (C1-ELMO2) were purchased from Sino 
Biological Inc. The corresponding empty vectors (pcDNA3.1-
C-HA, pEGFP_N1 and pEGFP-C1) were from our laboratory. 
KYSE150, KYSE510 or TE3 cells were seeded into plates and cul-
tured for 16-24 hours until 70% confluence. Plasmids were trans-
fected into KYSE150, KYSE510 or TE3 cells using Lipofectamine 
3000 (Invitrogen). Then, cells were cultured for 48  hours and 
used for further analysis.

2.10 | RNA interference

Both ELMO2 siRNA (siELMO2) and the scrambled siRNA (NC) were syn-
thesized by GenePharma. The siRNA oligonucleotide sequences were 
as follows: siELMO2, 5′-CCUUGAAAUCGACCAGAAATT-3′ (sense), 
5′-UUUCUGGUCGAUUUCAAGGTT-3′ (antisense); NC, 5′-UUCUCC 
GAACGUGUCACGUTT-3′ (sense), 5′-ACGUGACACGUUCGGAGA 
ATT-3′ (antisense). KYSE450 or TE3 cells were seeded into plates 
and cultured for 16-24  hours until 60%-80% confluence. siRNA 
was transfected into KYSE450 or TE3 cells using Lipofectamine 
RNAiMAX reagent (Cat no. L13778-150, Invitrogen) according to 
the manufacturer's transfection protocol and harvested at 48 hours 
post-transfection.

2.11 | Reverse transcription and quantitative real-
time PCR (qRT-PCR)

Total RNA was extracted using TRIzol following the manufacturer's 
instructions. The concentration and purity were determined with 
a NanoDrop 2000 (Thermo). Total RNA (1  μg) was reverse tran-
scribed into cDNA by a PrimeScript™ RT reagent kit with gDNA 
Eraser (Cat no. RR047B, TaKaRa) following the manufacturer's in-
structions. qRT-PCR was performed using a SYBR Premix Ex Taq 
kit (TaKaRa) and using a 7500 Real-Time PCR System (Applied 
Biosystems). Primer pairs used in the PCR analyses were as fol-
lows: AL121899.1, 5′-CGTTTCTCCCGCGTCCTTCA-3′ (forward), 
5′-AATGGTGCTCCTGCGTCACT-3′ (reverse); ELMO2, 5′-CCTGTTG 
CAGACATTAAGGCC-3′ (forward), 5′-GGTCTCATCAGGGTCATACA 
GG-3′ (reverse); β-Actin, 5′-CAACTGGGACGACATGGAGAAA-3′ 
(forward), 5′-GATAGCAACGTACATGGCTGGG-3′ (reverse). β-Actin 
was used as the control and for normalization. All qRT-PCR analyses 
for each gene were repeated at least three times.
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2.12 | Cell migration and proliferation assay

ESCC cells were transfected with plasmids or siRNA. For the tran-
swell cell migration assay, cells were starved in serum-free medium for 
12 hours after being transfected for 36 hours, detached with EDTA 
solution and added to the top chamber at a density of 50 000 cells/
well. The cells were incubated for 48 hours and the cells that migrated 
through the pores were fixed and stained with haematoxylin solu-
tion, and counted. For the wound healing assay, cells were seeded in 
a 6-well plate, transfected with plasmids or siRNA at ~80% confluence 
and starved in serum-free medium for 12 hours after being transfected 
for 36 hours. Then, the cells were incubated with 5% CO2 at 37°C after 
making straight scratches with a 200 μL yellow pipette tip. Images were 
taken using a 100× objective when there was difference between ex-
perimental group and control group. For MTS cell proliferation assay, 
cells were inoculated in each well of a 96-well plate at 8 × 103 cells/well. 
After 12 hours or 24 hours incubation, 20 μL MTL reagent (Promega) 
was added to each well, and cells were incubated 1-2 hours at 37°C and 
subjected to colorimetric determination at 492 nm.

2.13 | Western blotting assay

Western blotting was performed according to previously described 
methods.33 Briefly, total cell lysates were prepared in RIPA buffer, 
separated by SDS-PAGE and transferred to PVDF membranes 
(Millipore). Membranes were incubated in blocking buffer and then 
incubated with the indicated antibody. Finally, immunoreactive bands 
were revealed using luminol reagent (Santa Cruz Biotechnology, DE). 
Photography and quantitative analyses were done using ChemiDoc 
Touch (Bio-Rad). The following antibodies were used: mouse anti-GFP 
(Santa Cruz Biotechnology) and mouse anti-β-actin (Sigma).

2.14 | RNA sequencing

RNA-Seq was applied to 12 samples (Table  S1). AL121899.1-
expressing plasmids AL121899.1-HA and pEGFP-N1-AL121899.1) 
were transfected into KYSE150 cells, respectively. The ELMO2-
expressing plasmid C1-ELMO2 was transfected into KYSE510 cells. 
Correspondingly, three empty vector controls were transfected into 
their respective cell lines. Each was repeated once. Total RNA was 
extracted by TRIzol and deep sequenced on BGISEQ-500 platform. 
RNA-seq reads were mapped to the human reference genome (hg19) 
using bowtie2.34 Then, gene expression levels for each sample were 
calculated with RSEM.35

2.15 | Statistical analysis

Statistical analyses were performed using R 3.4.2. The differentially 
expressed genes from the microarray data were defined as genes 

with a t test P-value < .05 (BH correction) and a fold change > 2 or 
<0.5. The differential expression analysis of RNA-Seq data was per-
formed using DEGSeq.36 Gene enrichment analysis was performed 
using Metascape (http://metas​cape.org).37

3  | RESULTS

3.1 | Extensive loss of connectivity in the tumour 
co-expression network

The data set ESCC-train was used to construct co-expression 
networks. Genes with invariable expression across 60 paired 
ESCC and adjacent normal tissues (coefficient of variation < 0.05) 
were filtered out, resulting in 13  073 PCGs and 5379 lncRNAs. 
Based on the 60 normal tissues, the PCC and the correspond-
ing Student's P-value of each gene pair were calculated. Then, an 
NCN was constructed using the gene pairs with BH-adjusted P-
values < 10−7. A TCN was constructed based on the 60 ESCC tis-
sues in the same way. The P-value threshold of 10−7 corresponds 
to a PCC of 0.683 (or −0.683) and 0.704 (or −0.704) in NCN and 
TCN, respectively. Both NCN and TCN were scale-free networks 
with the degree distribution following a power law (Figure  1A). 
Compared with degree-preserving random networks constructed 
using the Erdos-Renyi model,38 the two networks were character-
ized by nodes with highly variable degrees, from a few to thou-
sands (Figure  1B). The cumulative distribution functions (CDF) 
of degrees of NCN and TCN deviated from those of the corre-
sponding random normal networks and tumour networks, re-
spectively (Figure 1B, P < 2.2 × 10−16, Kolmogorov-Smirnov test). 
Both NCN and TCN had large clustering coefficients (c) of 0.4709 
and 0.4600, and small average shortest path lengths (L) of 3.0652 
and 3.9116, respectively (Table 1). In the corresponding random 
networks, the average clustering coefficients were 0.0272 and 
0.0110 (Figure  S1A), and average shortest path lengths were 
1.9728 and 2.2732 (Figure S1B), respectively, indicating that the 
two co-expression networks had all the properties of a scale-free, 
small-world network (c»crandom, L≈Lrandom).39 The high clustering 
coefficients and their distributions of approximate scaling law 
c(k)~k−1 (Figure S1C and D) suggested hierarchical modularity in 
both NCN and TCN that is typical for cellular networks.40,41

Consistent with other cancer types,12,20 for ESCC, the TCN 
also displayed a reduced connectivity compared with the NCN 
(Figure 1A-C). In the NCN, there were 11 482 PCGs and 3942 ln-
cRNAs that were linked by 3 236 238 edges. There were only 7640 
PCGs and 2705 lncRNAs that were linked by 587 517 edges in the 
TCN. The degrees of genes in the NCN were significantly larger than 
those in the TCN (median degree 152 vs 17, P < 2.2 × 10−16, Wilcoxon 
rank sum test, Figure 1C). About 89.34% of the edges in the NCN 
were not conserved in the TCN, especially those connecting PCGs 
(92.74%, Table 1), suggesting a seriously disrupted regulatory system 
in tumour samples.

http://metascape.org
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3.2 | Construction of the DCN in ESCC

Inspired by the difference between the NCN and TCN, we compared 
the PCCs of all gene pairs in normal samples and tumour samples 
(Figure 1D). Most gene pairs had consistent PCCs between the two 
conditions. Nevertheless, the correlations of some gene pairs dif-
fered markedly between normal and tumour samples (top left and 
bottom right corner in Figure 1D). For example, lncRNA AL121899.1 
and PCG CST6 were positively correlated in normal samples (rNor-

mal  =  .856), but negatively correlated with tumour samples (rTu-

mour = −.419, Figure 1E). While BICD2 and CCDC78 had no correlation 
in normal samples, they were positively correlated in tumour sam-
ples (rTumour =  .905, Figure 1F). To measure the significance of the 
difference between PCCs in normal and tumour samples, a Fisher 
transformation followed by a Z test was applied to the PCCs. A strict 
P-value threshold of 10−7 was used to determine whether the PCCs 

in normal and tumour samples were significantly different. Then, 
a gene pair was considered as differentially co-expressed if the P-
value in the Z test < 10−7 and simultaneously, the two genes were 
connected in the NCN or TCN. Finally, a DCN was constructed based 
on differentially co-expressed gene pairs (Figure 2A).

In the DCN, there were 1746 PCGs and 328 lncRNAs that were 
linked by 3917 edges. As NCN and TCN, DCN was a scale-free net-
work with highly variable degrees (Figure 2B). The degree distribution 
of the DCN was different from that of a degree-preserving random 
network (Figure 2C, P < 2.2 × 10−16, Kolmogorov-Smirnov test). The 
degrees of PCGs were significantly larger than those of lncRNAs 
(mean degree 4.11 vs 2.02; Wilcoxon rank sum test, P = 7.2 × 10−9). 
Of the 1746 PCGs in the DCN, 1696 (97.14%) were annotated with 
at least one GO term, most commonly (1542, 88.32%) with a GO 
BP term. However, only 35.10% (728, 648 PCGs and 80 lncRNAs) 
of the genes were differentially expressed. This is consistent with 

F I G U R E  1   Comparison of the tumour co-expression network (TCN) and normal co-expression network (NCN). A, Scale-free properties 
of degree distributions in the TCN and NCN. Numbers are shown on a log10 scale. B, Cumulative distribution functions (CDFs) of degrees of 
genes in the TCN and NCN. Compared with the random tumour network (red dotted line), the TCN had more genes with a large degree (red 
solid line). Similarly, the NCN had more genes with a large degree (green solid line) compared with the random normal network (green dotted 
line). C, Boxplots of degrees of genes in the TCN and NCN. Degrees of genes in the NCN were significantly larger than those in the TCN. D, 
Comparison of correlations in tumour samples and those in normal samples. E, Correlations of a gene pair (AL121899.1 and CST6, located 
in the top left corner in (D)) in normal and tumour samples. F, Correlations of a gene pair (BICDL2 and CCDC78, located in the bottom right 
corner in (D)) in normal and tumour samples
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previous studies, which found that differential expression sheds 
little light on differential co-expression.20,21 In 29.45% of the links, 
neither of the two genes was differentially expressed. Genes with 
high connections were evenly distributed across down-regulated, 
non-significant and up-regulated genes (Spearman correlation coef-
ficient = −.21, Figure 2D), indicating that differential co-expression 
had weak correlation with differential expression.

The average clustering coefficient of the DCN was much larger 
than that of the random networks (cDCN = 0.0275» crandom ≈ 0.0018, 
Figure 2E). The shortest path length was comparable to that of the 
random networks (LDCN = 5.6363 ≈ Lrandom ≈ 5.8414, Figure 2F), in-
dicating that the DCN is also a small-world network.39 Furthermore, 
the clustering coefficients asymptotically followed the scaling law 
c(k)~k−1 (Figure 2G), suggesting that the DCN is characterized by a 
potential modular organization, which is a general feature of bio-
logical networks.40,41 This inspired us to question whether the to-
pological modularity of the DCN could reflect the true functional 
organization or molecular mechanisms underlying the development 
of ESCC. On a global perspective, genes in the DCN formed several 
clusters that were enriched in multiple GO annotations (Figure 2A). 
Down-regulated genes tended to cluster together (eg Clusters I and 
III), as well as up-regulated genes (eg Cluster IV). The vast majority 
of genes in Cluster I were down-regulated. The PCGs in Cluster I 
were enriched in GO BP terms concerning epidermis development 
(P = 5.47 × 10−19), cornification (P = 1.24 × 10−17) and keratinocyte 
differentiation (P = 2.69 × 10−15). In contrast, the majority of genes 
in Cluster IV were up-regulated. The PCGs in Cluster IV were en-
riched in many GO BP terms that are frequently altered in cancer, 
such as regulation of T-cell proliferation (P = 8.91 × 10−8) and inflam-
matory response (P = 2.02 × 10−6). In addition, the PCGs in Cluster II 
were enriched in GO BP terms associated with the digestive system 

process. A bird's-eye view of the DCN suggested that the DCN could 
help reveal functional modules that play important roles during the 
development of ESCC.

3.3 | Identification of lncRNA-associated 
differential subnetworks

To identify lncRNA-associated differential subnetworks, a greedy 
search algorithm was applied to search differential subnetworks in 
the DCN using each of the 328 lncRNAs as the seed. A total of 328 
lncRNA-associated subnetworks were identified. With the param-
eters d = 2, r = .1 and α = .7, the number of nodes in the identified 
subnetworks ranged from two to 14 (mean number = 7.45), with the 
majority (63.72%) having between six and 10 nodes (Figure S2A). The 
number of edges ranged from one to 19 (mean number = 6.98) and 
the majority (58.23%) between five and nine (Figure S2B). The sub-
network scores had a mean of 16.44 and did not increase with the 
number of genes when the number of genes exceeded 5 (Figure S2C) 
and also the number of edges when the number of edges exceeded 4 
(Figure S2D), indicating that the subnetwork scores were independ-
ent of the sizes of subnetworks.

To identify differential subnetworks that are statistically signif-
icant, two tests of statistical significance were performed to assess 
the 328 subnetworks. About 98.48% (323/328) of the subnetworks 
passed the first test (P1 < .05), while 53.96% (177/328) of the subnet-
works passed the second test (P2 < .05). In total, 177 subnetworks 
that passed both tests were considered statistically significant in the 
ESCC-train set. To identify robust subnetworks that are consistently 
significant across data sets, we further assessed the significance of 
the 328 subnetworks in both the ESCC-test set and the ESCC-valid 

TA B L E  1   Characteristics of the normal co-expression network (NCN), tumour co-expression network (TCN) and differential co-
expression network (DCN)

  NCN TCN NCN∩TCN NCN\TCNa  DCN

No. of genes 15 424 10 345 7726 7698 (49.91%) 2074

PCGs 11 482 7640 5756 5726 (49.87%) 1746

lncRNAs 3942 2705 1970 1972 (50.03%) 328

No. of edges 3 236 238 587 517 345 016 2 891 267 (89.34%) 3917

PCG-PCG 2 030 506 (62.74%) 254 673 (43.35%) 147 452 (42.74%) 1 883 054 (92.74%) 3277 (83.66%)

PCG-lncRNA 1 001 184 (30.94%) 240 326 (40.91%) 139 705 (40.49%) 861 479 (86.05%) 618 (15.78%)

lncRNA-lncRNA 204 548 (6.32%) 92 518 (15.75%) 57 859 (16.77%) 146 653 (71.70%) 22 (0.56%)

Mean degree 419.64 113.58     3.78

Median degree 152 17     1

Maximum degree 3160 1547     327

Mean clustering coefficient 0.4709 [0.027]b  0.4600 [0.011]     0.0275 [0.002]

Diameter of the network 12 [3] 20 [3]     18 [12]

Mean shortest path length 3.065 [1.973] 3.912 [2.273]     5.636 [5.841]

aGenes/edges in NCN but not TCN. The proportions in the column NCN\TCN were the percentages of the number of genes/edges in NCN\TCN to 
those in NCN. 
bProperties of degree-preserving random networks. 
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F I G U R E  2   Differential co-expression in ESCC. A, Visualization of the differential co-expression network (DCN). Circle nodes represent 
PCGs, and triangle nodes represent lncRNAs. Node colour represents differential expression level. Green represents that the gene is 
down-regulated. Red represents that the gene is up-regulated. Regions I-V contain PCGs that are enriched in various GO annotations. B, 
Scale-free property of degree distribution in the DCN. The blue line depicts the least-squares fit of the data to a linear line. C, Comparison of 
the CDF of degrees in the DCN and in a random network with the same number of nodes and edges as the DCN. D, Relation of differential 
expression and differential co-expression. Shown is the fold change (x-axis) versus degree in the DCN (y-axis). Degrees of genes in the DCN 
had weak correlation with their fold changes. E, Distribution of average clustering coefficients for random networks. The average clustering 
coefficient (c) of the DCN is much larger than those of random networks (c»crandom). F, Distribution of average shortest path lengths for 
random networks. The average shortest path length (L) of the DCN is comparable to those of random networks (L ≈ Lrandom). G, Distribution 
of clustering coefficients in the DCN, which follows the scaling law c(k)~k−1
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set. The subnetwork scores were recalculated based on gene expres-
sion values in the new data sets and subjected to the two tests. Of the 
328 subnetworks, 147 and 117 subnetworks were significant in the 
ESCC-test set and the ESCC-valid set, respectively. Finally, 107 sub-
networks that were significant in all three data sets were considered 
to be differential subnetworks (Table  S2-S3). Figure  S3 illustrates 
an example of differential subnetwork (DS_AL121899.1), which was 
identified by using lncRNA AL121899.1 as the seed. DS_AL121899.1 
was a down-regulated subnetwork located in Region I in the DCN 
(Figure 2A). All nine genes in DS_AL121899.1 were down-regulated, 
and 11 gene pairs were positively correlated in the normal samples 
but lost the correlations in the tumour samples. As expected, the 
differential expression (Figure  S3B) and differential co-expression 
patterns (Figure S3C) were consistent across the three data sets, in-
dicating the robustness of the differential subnetworks.

3.4 | Differential subnetworks are discriminative 
between ESCC and normal tissues

Given that the differential subnetworks showed consistently distinct 
expression patterns between ESCC and normal samples, we next in-
vestigated whether differential subnetworks were discriminative to 
distinguish ESCC from normal tissues. To this end, a network-based 
classifier called DRWPClass was constructed based on the ESCC-
train and then evaluated on the ESCC-test and ESCC-valid. For each 
differential subnetwork, DRWPClass integrated expression values 
of the gene members into a subnetwork expression value. For ex-
ample, in the differential subnetwork DS_LINC01929 (Figure  3A), 
two up-regulated genes (LINC01929 and COL12A1) and three down-
regulated genes (TACR2, MYOCD and LMOD1) had consistent ex-
pression patterns across the three data sets (Figure 3D). Expression 
profiles of the five genes in the ESCC-train were integrated into a 
subnetwork expression profile, which corresponded to one row in 
the heatmap of the subnetwork expression profiles (Figure 3E). Two 
other discriminative subnetworks (DS_MIR4435-2HG, Figure  3B; 
DS_AC009948.1, Figure  3C) were also marked in Figure  3E. 
Clustering analysis showed that 107 subnetwork expression pro-
files could distinguish ESCC from normal samples across all three 
data sets (Figure 3E, Figure S4 and S5). Feature selection with lasso 
identified 11 discriminative subnetworks (Table  S4), which almost 
perfectly classified ESCC and normal samples in the three data sets 
(AUC = 1, 0.998 and 1, respectively, Figure 3F). Three other path-
way activity inference methods (mean, median and PCA) identified 
different subnetwork markers (Table S4). According to the principle 
of the pathway activity inference methods, the differential subnet-
works identified by the mean and median method tend to contain 
genes that are simultaneously up-regulated or down-regulated 
(eg DS_MIR4435-2HG, Figure  3B), while differential subnetworks 
identified by the PCA method tend to have the largest overall vari-
ations in gene expression. The differential subnetworks identified 
by DRWPClass have the strongest discriminative ability (Table S4), 
including not only the subnetworks with consistent gene expression 

changes, but also the subnetworks containing both up-regulated and 
down-regulated genes (eg DS_AC009948.1, Figure  3C), which are 
common in dysfunctional regulatory networks. However, all the four 
methods yielded favourable classification performances (Table S5), 
suggesting that all these subnetworks are discriminative to serve as 
potential subnetwork biomarkers.

3.5 | Core differential co-expression modules

Among 107 differential subnetworks, some subnetworks over-
lapped. Genes located in the overlapping regions were frequently 
captured by differential subnetworks. We speculated that these 
genes may play important roles in ESCC and are worth paying more 
attention. Thus, we applied a greedy search to identify overlapping 
gene modules (referred to as core differential co-expression mod-
ules) across all the differential subnetworks. Four core modules with 
≥4 genes and captured by ≥3 differential subnetworks were identi-
fied, including and AL121899.1-associated core module (Figure 4A), 
an ELMO2-associated core module (Figure 5A), and a BICDL2- and 
KRT78-associated core module (Figure S6). Two of them were fur-
ther investigated in the following section.

3.5.1 | AL121899.1-associated core module

The AL121899.1-associated core module was identified in six differ-
ential subnetworks (DS_AL121899.1, DS_FALEC, DS_AC007920.1, 
DS_AC080100.1, DS_AP000866.2 and DS_LINC01214). All five 
genes in the module (AL121899.1, GFOD2, SPINK8, C2orf54 and 
CST6) were down-regulated and lost positive correlations with 
their neighbours in tumour samples. C2orf54 was consistently 
down-regulated in multiple independent data sets and has been 
reported as a potential ESCC biomarker.42 SPINK8 was suggested 
to be a tumour suppressor gene, since transfecting SPINK8 into 
ESCC cell line EC9706 inhibits cell proliferation and migration, and 
promotes cell apoptosis.43 CST6 suppresses tumour cell growth 
through cytoplasmic retention of NF-κB.44 It belongs to the CST 
superfamily whose members have been shown to be associated 
with the metastasis and invasiveness of several tumours.45,46 Loss 
of CST6 expression depends on its promoter hyper-methylation 
in metastatic breast cancer cell lines.47 Interestingly, CST6 is also 
down-regulated and promoter hypermethylated in ESCC,48 sug-
gesting a similar mechanism in ESCC. In fact, of the 56 down-regu-
lated genes with promoter hyper-methylation in ESCC reported by 
Otsubo et al,48 44.6% (25/56) were captured by the DCN, includ-
ing C2orf54 in the core module. Most of them (22/25) are located 
in Region I in the DCN, suggesting that hyper-methylation may 
have a role in differential co-expression between down-regulated 
genes.

As the hub of the core module, AL121899.1 is a lncRNA whose 
function has not been clarified. We speculated that AL121899.1 
may play important functions in ESCC. It had a maximum degree 
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in the DCN and was consistently down-regulated in multiple 
data sets, including the ESCC-train (P = 9.78 × 10−15), ESCC-test 
(P < 2.2 × 10−16), ESCC-valid (P = 1.34 × 10−9) and SRP06489410 

(P  =  8.37  ×  10−5, Figure  4B). qRT-PCR assays further con-
firmed the low expression of AL121899.1 in ESCC cells, such as 
KYSE150, TE5, KYSE510 and TE3 (Figure 4C). To investigate the 

F I G U R E  3   Discrimination of differential subnetworks. Three discriminative subnetworks are shown in (A-C). D, Consistent expression 
patterns of the five genes in DS_LINC01929. E, Heatmap of subnetwork expression profiles in the ESCC-train. F, Classification performance 
of the discriminative subnetworks
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potential functions of AL121899.1, we over-expressed AL121899.1 
in both KYSE150 and TE3 cells by HA-AL121899.1 transfection 
(Figure 4D). Transwell migration assays showed that AL121899.1 
overexpression significantly reduced ESCC cell migration in both 
KYSE150 and TE3 cells (P  <  .01, Figure  4E). Moreover, MTS ex-
periments showed that AL121899.1 overexpression also inhibited 
ESCC cell proliferation (Figure 4F).

Furthermore, we transfected AL121899.1 into KYSE150 cells 
and investigated gene expression changes from RNA-Seq. The high 
correlation coefficients between sample repeats confirmed the 
quality of RNA-Seq (Figure S7A). Compared with the empty vector 
controls, 119 genes were up-regulated and 53 down-regulated in 
the samples overexpressing AL121899.1 (Table S6-S7, Figure S7B). 
Overexpressing AL121899.1 did not affect the expression of genes 
in the core module, but instead regulated a set of genes enriched 
on hallmark epithelial-mesenchymal transition and other 19 

immunologic or oncogenic signatures in MSigDB v6.2 (Table S8),49 
and also many genes that have been reported to be associated 
with prognosis, metastasis, chemoresistance or radioresistance 
of ESCC, such as SPARC,50,51 FSTL1,52 MUC4,53 DHCR7,54 LOX53 
and CXCL1.55 In addition, the up-regulated genes were enriched 
on biological processes associated with regulation of insulin-like 
growth factor transport and uptake (P = 1.43 × 10−6), post-trans-
lational protein phosphorylation (P  =  8.70  ×  10−6), steroid met-
abolic process (P  =  1.32  ×  10−5) and digestion (P  =  3.09  ×  10−3) 
(Figure S7C, Table S9).

3.5.2 | ELMO2-associated core module

As for AL121899.1, ELMO2 is the hub of the ELMO2-associated 
core module. It was consistently down-regulated in the 

F I G U R E  4   AL121899.1-associated core module. A, Visualization of the AL121899.1-associated core module. Region in the elliptic 
curve is the frequently identified core module. B, Comparison of AL121899.1 expression between normal and tumour samples in multiple 
data sets. C, qRT-PCR assay detects AL121899.1 expression in multiple ESCC cell lines, using 293T cells as the control. D, qRT-PCR 
assay detects AL121899.1 expression in KYSE150 and TE3 after HA-AL12899.1 transfection. E, Transwell migration assays analyse the 
effects of AL121899.1 overexpression on cell migration in KYSE150 and TE3 cells. F, MTS experiments analyse the effects of AL121899.1 
overexpression on cell proliferation in KYSE150 and TE3 cells. **P < .01
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F I G U R E  5   ELMO2-associated core module. A, Visualization of ELMO2-associated core module. Region in the elliptic curve is the 
frequently identified core module. B, Comparison of ELMO2 expression between normal and tumour samples in multiple data sets. C, qRT-
PCR assay detects ELMO2 expression in multiple ESCC cell lines, using 293T cells as the control. D, Analysis of ELMO2 expression, after 
GFP-ELMO2 transfection, by immunoblotting. E, Wound healing assays to analyse the effects of ELMO2 overexpression on cell migration 
in KYSE150 and KYSE510 cells. F, Transwell migration assays to analyse the effects of ELMO2 overexpression on cell migration in KYSE150 
and KYSE510 cells. G, qRT-PCR detects ELMO2 expression in TE3 and KYSE450 cells after siELMO2 transfection. H, Wound healing assays 
to analyse the effects of ELMO2 knockdown on cell migration in TE3 and KYSE450 cells. I, Transwell migration assays to analyse the effects 
of ELMO2 knockdown on cell migration in TE3 and KYSE450 cells. *P < .05, **P < .01, ***P < .001
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ESCC-train (P < 2.2 × 10−16), ESCC-test (P = 5.19 × 10−14), ESCC-valid 
(P = 6.31 × 10−14) and SRP064894 (P = 1.30 × 10−4, Figure 5B). qRT-
PCR assays showed that ELMO2 had low expression in ESCC cells, 
using 293T cells as the control (Figure 5C), suggesting an important 
role in ESCC. Thus, we sought to investigate the potential func-
tions of ELMO2. Firstly, we transfected GFP-ELMO2 into KYSE150 
and KYSE510 cells, and confirmed ELMO2 expression by immuno-
blotting (Figure 5D). Both wound healing assays and transwell mi-
gration assays showed that ELMO2 overexpression reduced cell 
migration (Figure 5E,F). Secondly, we knocked down ELMO2 in TE3 
and KYSE450 cells by siELMO2 transfection, and confirmed ELMO2 
expression by qRT-PCR (Figure 5G). In contrast to ELMO2 overex-
pression, ELMO2 knockdown promoted cell migration (Figure 5H,I). 
These results indicate that ELMO2 inhibits cell migration in ESCC.

Furthermore, we transfected ELMO2 into KYSE510 cells and in-
vestigated gene expression changes from RNA-Seq. The high cor-
relation coefficients between sample repeats confirmed the quality 
of RNA-Seq (Figure S8A). Compared with the empty vector controls, 
108 genes were up-regulated and 147 down-regulated in the sam-
ples overexpressing ELMO2 (Table  S10 and S11, Figure  S8B). The 
up-regulated genes were enriched on biological processes associ-
ated with cell-cell adhesion, interferon-gamma production, acute 
inflammatory response and cytokine-cytokine receptor interaction 
(Figure S8C). The down-regulated genes were enriched on biological 
processes associated with axoneme assembly and membrane repo-
larization (Figure S8D).

In all, the functional experiments showed that AL121899.1 and 
ELMO2 are two important tumour suppressors in ESCC. This indi-
cates that the differential subnetworks could suggest reliable tar-
gets for further study.

4  | DISCUSSION

In this study, we investigated the topological characteristics of the 
DCN in ESCC. As with other cellular networks, the DCN is a scale-
free, small-world network. These topological characteristics were 
not dependent on the method used to construct the DCN, as DCNs 
constructed by a different method DCe56 with different cut-offs 
also had the properties of c»crandom and L≈Lrandom (Figure  S9). The 
high clustering coefficient implies modular organization of the net-
work,40 which implies the genes in the lncRNA-associated differen-
tial subnetworks may work in a modular manner to contribute to the 
development of ESCC.

Differential co-expression analysis has been used to improve 
functional enrichment analysis,15 unveil differential regulation16 
and detect differentially co-expressed clusters globally, such as 
WGCNA,17 DiffCoEx18 and DICER.19 Different from these studies, 
our subnetwork searching algorithm focuses on identifying differ-
ential co-expressed subnetworks associated with a specific node, 
for example a lncRNA. With the parameters d = 2, r = .1 and α = .7, 
the identified subnetworks had moderate sizes that were conve-
nient for further analysis and functional validation (Figure  S2A,B). 

The subnetwork size can be controlled by adjusting the parameters 
r and d in the algorithm. The parameter r controls the increasing 
rate of the subnetwork score. A large r will prevent the addition of 
genes that could not yield enough improvement on the subnetwork 
score. Thus, the larger the r, the smaller the subnetwork size. This 
was demonstrated by rerunning the subnetwork searching algorithm 
with different r values (r = .05, .07, .1, .2 and .3). With the increase 
of r, the number of nodes, the number of edges and the subnetwork 
scores were decreased (Figure S10A-C). At the same time, the iden-
tified subnetworks tended to be more significant as the addition of a 
new gene at each iteration becomes stricter. Similarly, the parameter 
d controls search space. The subnetwork size increases with the in-
crease of d (Figure S10D-F). Another characteristic of our method is 
that it integrates both differential expression and differential co-ex-
pression for subnetwork identification. The relative weight of differ-
ential expression and differential co-expression is controlled by the 
parameter α. When α approaches 1, our method will be reduced to a 
differential expression-based method except for the underlying dif-
ferential co-expression network (Formula (6)). The parameter α does 
not affect the subnetwork size much (Figure S10G-I), but increases 
differential expression scores and reduces differential co-expres-
sion scores when it gives more weight on differential expression 
(Figure  S10J,K). These results suggest that, compared to differen-
tial expression-based methods, our method focuses on identifying 
biologically meaningful subnetworks at the cost of some discrimin-
ability. However, it is just an indirect comparison with differential 
expression-based methods based on our differential co-expression 
network. To objectively evaluate our method, rigorous comparisons 
with similar methods that also incorporate differential co-expression 
scores are needed in the future.

Differential co-expression analysis has been reported to be able 
to suggest new biomarker candidates and provide novel hypotheses 
for specific functional experiments.12 LncRNAs and PCGs in a same 
differential subnetwork may work together to perform specific func-
tions. Except for AL121899.1 and ELMO2, whose abilities to inhibit 
tumour growth were confirmed by functional experiments, many 
other genes in the core modules have been reported as tumour sup-
pressor genes, such as SPINK8, CST6 and C2orf54,42-44 highlighting 
the ability of the core modules to indicate candidate cancer genes.

Differential co-expression is complementary to differen-
tial expression for depicting dysregulated systems in cancer.12,20 
Differential co-expression analysis has successfully identified driver 
genes that could not be found by differential expression analy-
sis.20,57 In the DCN, genes that were not differentially expressed 
also had the possibility to play a role in ESCC due to their differen-
tial connections. For example, DLC1 is a known tumour suppressor 
gene that may be involved in the carcinogenesis of ESCC.58 It was 
captured in the DCN, but missed in differential expression analysis 
as it exhibits no differential expression (P = .078). In the KRT78- and 
BICDL2-associated core module, the two hubs were connected by 
15 lncRNAs (Figure S6). Although many of them were not differen-
tially expressed, they were differentially co-expressed with both 
KRT78 and BICDL2. Among these genes, lncRNA C20orf204 (named 
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LINC00176 in GRCh37 coordinates, P  =  .168) has been confirmed 
to negatively regulate cell proliferation in Huh7.5OC cells.59 Tran 
et al found that C20orf204 regulates expression of more than 200 
genes by a sponge function for tumour suppressor miRNAs in he-
patocellular carcinoma.60 Its function in ESCC is also worth further 
investigation. Other top-ranked genes with a high degree include 
TMTC1, OLFM1, TRIM31 and FGF13.

In summary, we identified a source of lncRNA-associated differ-
ential subnetworks on a large scale by integrating differential expres-
sion and differential co-expression. The functional experiments on 
AL121899.1 and ELMO2 confirmed the effectiveness of the subnet-
work identification method. The differential subnetworks will be help-
ful for revealing the dysfunctional regulatory networks of ESCC and 
generating hypotheses for the discovery of novel gene or subnetwork 
biomarkers. However, identification of differential subnetworks is the 
first step towards understanding the dysfunctional regulatory systems 
in the development of ESCC. Further analyses are needed to illus-
trate the detailed regulatory mechanisms underlying the differential 
subnetworks in the future. The proposed subnetwork identification 
method has been implemented as an R package ‘DCN’ (https://github.
com/weili​u123/DCN-package), which can be easily used to investigate 
differential subnetworks of other molecules in other cancers.
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