This article is licensed under CC-BY-NC-ND 4.0 © (*) (\$) (=)

pubs.acs.org/ChemBioEng

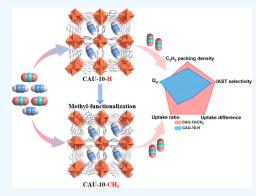
Article

Boosting Acetylene Packing Density within an Isoreticular Metal-Organic Framework for Efficient C₂H₂/CO₂ Separation

Published as part of Chem & Bio Engineering virtual special issue "Advanced Separation Materials and Processes".

Shan-Qing Yang, Bo Xing, Lu-Lu Wang, Lei Zhou, Fei-Yang Zhang, Yi-Long Li, and Tong-Liang Hu*

Cite This: Chem Bio Eng. 2024, 1, 245-251


ACCESS |

III Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Porous solid adsorbents for C₂H₂/CO₂ separation are generally confronted with poor stability, high cost, or high regeneration energy, which largely inhibit their industrial implementation. A desired adsorbent material for practical implementation should exhibit a good balance between low cost, high stability, scale-up production feasibility, and good separation performance. An effective strategy is herein explored based on reticular chemistry through embedding methyl groups in a prototype microporous metal-organic framework (MOF) featuring low cost and high stability to effectively separate an C₂H₂/CO₂ mixture. The anchored methyl groups on the pore surfaces could strongly boost the C_2H_2 packing density and specifically enhance the C_2H_2/CO_2 separation performance, as distinctly established by single-component gas sorption isotherms. The CAU-10-CH₃ material exhibits an excellent C₂H₂ packing density of 486 g L⁻¹ and high adsorption differences between C2H2 and CO2 uptake (147%), outperforming the prototype benchmark material CAU-10-H (392 g L⁻¹ and

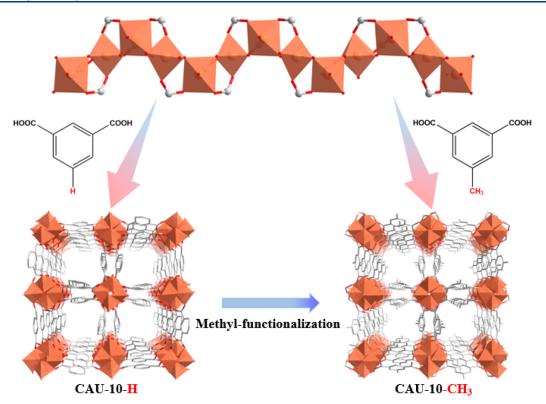
53%). The highly selective adsorption of C₂H₂ over CO₂ was achieved by a lower C₂H₂ adsorption enthalpy (25.18 kJ mol⁻¹) compared to that with unfunctionalized CAU-10-H. In addition, dynamic column breakthrough experiments further confirm CAU-10-CH₃'s efficient separation performance for the C₂H₂/CO₂ mixture. CAU-10-CH₃ accomplishes the benchmark balance between cost, stability, scale-up, and separation performance for C₂H₂/CO₂ separation, establishing its promise for industrial implementation. This approach could further facilitate the development of advanced MOF adsorbents to address challenging separation processes. Thus, this study paves the route for the practical implementations of MOF materials in the gas adsorption and separation field.

KEYWORDS: Metal-organic framework, methyl functionalization, C_2H_2 packing density, C_2H_2/CO_2 separation, practical implementation

■ INTRODUCTION

Acetylene (C_2H_2) , one of the most essential building blocks for industrial chemicals, is widely used to produce commercial chemicals and electric materials such as vinyl acetate, acrylonitrile, and polyester plastics. C₂H₂ is commonly manufactured by the thermal cracking of hydrocarbons or the partial combustion of methane, wherein a small amount of carbon dioxide (CO₂) impurity inevitably coexists and decreases the subsequent utilization efficiency.^{2–4} Therefore, it is essential to eliminate the CO₂ impurity from the C₂H₂/ CO₂ mixture to produce pure C₂H₂ gas to better meet the implementation demands of the different domains. However, the close boiling points (189.3 K for C₂H₂ and 194.7 K for CO_2) and highly similar molecular sizes (3.3 × 3.3 × 5.7 Å³ for C_2H_2 and $3.2 \times 3.3 \times 5.4 \text{ Å}^3$ for CO_2), along with the same kinetic diameters (both are 3.3 Å) of the linear-shaped CO₂ and C₂H₂ molecules, 5-7 make C₂H₂/CO₂ separation a challenging task. Currently, cryogenic distillation and solvent

extraction are the two primary methods to achieve highly effective separation of C₂H₂/CO₂ mixtures, but these processes often come with potential security risks and are more energyintensive.8-10 In this context, the development of novel adsorptive separation technology employing porous solid adsorbents based on a physical adsorption mechanism is strongly driven by the significant reduction in the energy footprint.


Metal-organic frameworks (MOFs), also named porous coordination polymers (PCPs) and coordination polymers (CPs), have attracted tremendous attention as greatly

October 25, 2023 Received: Revised: January 16, 2024 Accepted: January 21, 2024 Published: February 1, 2024

Chem & Bio Engineering pubs.acs.org/ChemBioEng Article

Figure 1. Isostructural frameworks of CAU-10-H and CAU-10-CH₃ assembled from helical chains of AlO₆-polyhedra and isophthalic acid/5-methylisophthalic acid linkers.

promising solid adsorbents, as they integrate the merits of functional pore surface and tunable pore sizes/shapes for different kinds of gas separations, ranging from relatively simple—those including CO_2/N_2 , CH_4/N_2 , etc. 11-18—to more intricate and challenging—including olefin/paraffin and alkyne/alkene separations. $^{19-25}$ Among the various kinds of gas separations, C₂H₂/CO₂ separation has been considered one of the most complex and challenging due to their highly similar physiochemical properties. Since the pioneering study of the first MOF adsorbent for C₂H₂/CO₂ separation was reported in 2005, a large number of MOF adsorbents have been developed to realize C₂H₂/CO₂ separation via the effective strategies of pore functionalization and pore tuning based on reticular chemistry. 26-32 Another plausible strategy is to embed strong functional sites, such as open metal sites, into ultramicroporous MOF materials to enhance C2H2 binding affinity and improve C₂H₂/CO₂ selectivity. However, these strong interactions with C2H2 generally may cause high regeneration energy and concurrently compact pore space, resulting in relatively low adsorption capacities, as exemplified by NKMOF-1-Ni and Cu^I@UiO-66-(COOH)₂. 33,34 Isoreticular chemistry could allow for the construction and synthesis of MOF materials with optimal pore size/shape and functions for selective binding of C_2H_2 over CO_2 in C_2H_2/CO_2 separation. For example, amine-functionalized MOFs could strengthen the C₂H₂-selective behavior and C₂H₂/CO₂ separation performance, 4,27 and a vertex strategy within layered MOFs could improve C₂H₂/CO₂ separation performance. ¹⁰ In short, isoreticular chemistry could serve as an effective strategy to construct MOF materials to achieve challenging gas mixture separation. Since the terminal aim of the development of porous solid adsorbents is industrial implementation, in addition to separation performance, some key factors such as

stability, cost, and scale-up production must be considered. On one hand, the practical implementation conditions may contain a small number of acidic gases or water, which requires the adsorbents to possess high chemical stability. On the other hand, low-cost precursors may be better for practical implementation, which is related to scalability. The ideal adsorbent materials should offer a good balance between stability, cost, and separation performance for practical industrial implementation for C_2H_2/CO_2 separation; such a MOF material is yet scarce.

In this context, we chose stable and economically feasible CAU-10-H as the prototype for surface functionalization by linker methylation to afford CAU-10-CH₃. The insertion of methyl may be a one-stone-two-birds strategy. On one hand, the methyl group is considered a hydrophobic group and the methylation may enhance the water stability; on the other hand, the methyl functionalization within the prototype surface may improve gas sorption performance. As expected, compared with prototype CAU-10-H, CAU-10-CH₃ adsorbent exhibits a higher C₂H₂ packing density (486 g L⁻¹) and larger C_2H_2/CO_2 uptake difference (defined as $n(C_2H_2) - n(CO_2)/$ $n(CO_2)$) (147%), as exhibited by single-component gas sorption tests. Such C2H2 density is ultrahigh within reported MOFs, and CAU-10-CH3 exhibits a low C2H2 heat of adsorption (25.18 kJ mol⁻¹). In addition. CAU-10-CH₃ exhibits a good C₂H₂/CO₂ mixture separation performance, as demonstrated by breakthrough experiments. Modeling studies disclose the preferential adsorption sites for C2H2 and CO2 at the molecular level. Combined with its high stability, low cost, scale-up feasibility, and good separation performance, CAU-10-CH₃ may be promising for practical industrial implementation.

Chem & Bio Engineering pubs.acs.org/ChemBioEng Article

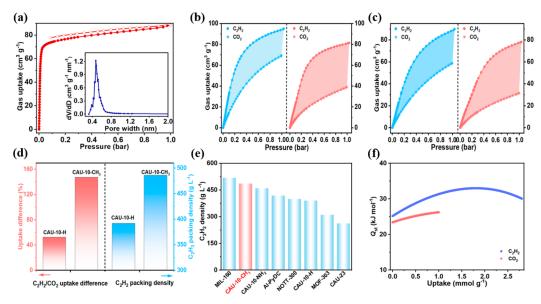


Figure 2. (a) CO₂ sorption isotherms of CAU-10-CH₃ at 195 K. Inset shows the pore size distribution for CAU-10-CH₃. Gas adsorption isotherms of CAU-10-H (left) and CAU-10-CH₃ (right) for C_2H_2 and CO_2 at (b) 288 and (c) 298 K. (d) C_2H_2/CO_2 uptake difference and C_2H_2 density comparison of CAU-10-H and CAU-10-CH₃. (e) Comparison of C_2H_2 density at 100 kPa and room temperature for CAU-10-CH₃ and other well-known Al-based MOF materials. (f) Isosteric heat of adsorption of C_2H_2 and CO_2 for CAU-10-CH₃.

RESULTS AND DISCUSSION

The pair of isoreticular ultramicroporous MOFs, CAU-10-H and CAU-10-CH₃, were synthesized according to previously reported methods with some modifications (Figure 1).35,36 The powder X-ray diffraction (PXRD) patterns of the assynthesized samples agreed well with the simulated ones derived from the crystallographic data, suggesting that this pair of ultramicroporous MOFs were successfully prepared with high purity and good crystallinity (Figures S1 and S2). In both ultramicroporous MOFs, each Al3+ ion adopts a sixcoordinated configuration with an octahedral geometry and is coordinated with six oxygen atoms from two bridging -OH ions and four different carboxylate groups. The AlO₆ chains are further linked to V-shaped organic ligands (isophthalate and 5methylisophthalate) and extended into the three-dimensional frameworks of CAU-10-H and CAU-10-CH₃, respectively (Figure 1). There are no open metal sites in the structures of CAU-10-H and CAU-10-CH₃ owing to the full coordination of the Al³⁺ ion. In particular, compared to CAU-10-H, CAU-10-CH₃ possesses free methyl groups within the pore channels, which reduces the pore sizes to $5.8 \times 5.8 \text{ Å}^2$ from $6.8 \times 7.5 \text{ Å}^2$. Thermogravimetric analysis (TGA) suggested that the CAU-10-CH₃ was stable until approximately 770 K (Figure S4), and the result of the in situ-variable temperature PXRD was well consistent with the TG curve (Figure S5). According to the PXRD pattern characterization, no structural damage or loss of crystallinity was observed in MOF CAU-10-CH₃ after different treatments, including immersion in different organic solvents or different pH value (pH = 1-12) aqueous solutions for 1 week (Figures S6 and S7). These characterizations reveal that the MOF CAU-10-CH₃ possesses good thermal and chemical stability, which are beneficial for its use in practical implementations.

To obtain the guest-free framework, the as-synthesized CAU-10-CH₃ was solvent exchanged with methanol for 3 days. The permanent porosity of activated CAU-10-CH₃ was confirmed by CO₂ sorption isotherms at 195 K. As shown in Figure 2a, CAU-10-CH₃ exhibits a typical type I isotherm

profile with CO_2 uptake up to 88.47 cm³ g⁻¹ at 195 K, indicating its microporous nature. The Brunauer–Emmett–Teller (BET) surface area and pore volume of CAU-10-CH₃ were estimated to be 312 m² g⁻¹ and 0.187 cm³ g⁻¹, respectively, smaller than those of prototype CAU-10-H (627 m² g⁻¹ and 0.28 cm³ g⁻¹), owing to the decreasing pore space resulting from embedding methyl sites in CAU-10-CH₃. Additionally, the pore size distribution (PSD) of CAU-10-CH₃ was estimated to be 4.7 Å based on the non-local density functional theory (NLDFT) method (Figure 2a). The ultramicroporous pore space is conducive to the separation of small gas molecules and packing of gas molecules in a dense pore space.

The stable framework and microporous pore feature provide us with infinite motivation to explore the adsorption performance of CAU-10-CH₃ toward C₂H₂ and CO₂. Thus, the single-component gas adsorption isotherms of C₂H₂ and CO₂ were measured at 288 and 298 K (Figure 2b,c). As shown in Figure 2c, the C₂H₂ uptake capacity values at 298 K and 100 kPa are 89.88 and 78.28 cm³ g⁻¹ for CAU-10-H and CAU-10-CH₃, respectively. The C₂H₂ uptake on CAU-10-CH₃ is slightly lower than that on CAU-10-H, which is mainly attributed to the small pore volume. Interestingly, compared to CAU-10-H, the CO₂ adsorption capacity on CAU-10-CH₃ significantly decreases to 31.64 cm³ g⁻¹ from 58.75 cm³ g⁻¹, indicating that the pore volume instead of number of methyl sites makes a larger contribution to the CO₂ adsorption. The markedly decreased CO₂ uptake on CAU-10-CH₃ leads to a great C₂H₂/CO₂ uptake difference of 147% compared to that on CAU-10-H (53%). In addition, the C_2H_2/CO_2 uptake ratio is improved from 153% for CAU-10-H to 247% for CAU-10-CH₃, and these results suggest its promising potential for C₂H₂/CO₂ separation. We note that the pore volume decreased significantly and the C₂H₂ uptake capacity decreased only slightly, so we speculate that the C2H2 packing density may be improved. According to the C2H2 adsorption capacity in CAU-10-CH₃ and the corresponding pore volume, the C_2H_2 packing density is estimated to be 486 g L⁻¹ at 298 K and 100

Chem & Bio Engineering pubs.acs.org/ChemBioEng Article

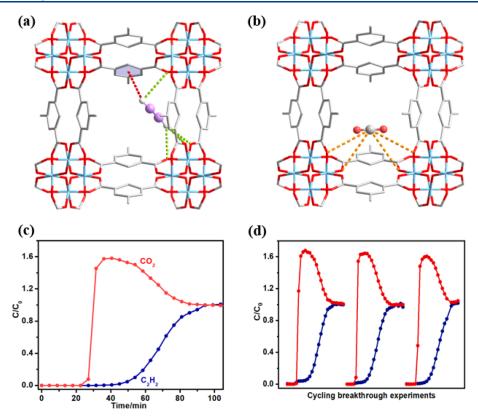


Figure 3. Preferential binding sites for (a) the C_2H_2 molecule and (b) the CO_2 molecule in the pore of CAU-10-CH₃ determined by grand canonical Monte Carlo simulation. (c) Experimental column breakthrough curves for an equimolar C_2H_2/CO_2 mixture with a total flow of 1.5 mL min⁻¹ in an absorber bed packed with CAU-10-CH₃ at ambient conditions. (d) Cycling tests of the equimolar C_2H_2/CO_2 mixture on CAU-10-CH₃ at ambient conditions.

kPa. This C_2H_2 packing density value is markedly higher than that of prototype MOF CAU-10-H (392 g L⁻¹) (Figure 2d), and is also about 413 times the gaseous C_2H_2 density (1.1772 g L⁻¹, at 273 K and 101.3 kPa), which demonstrates that the C_2H_2 molecules could be effectively packed in the pore space of CAU-10-CH₃. Notably, this packing density value is comparable to or higher than those of many well-known Albased MOF materials, such as CAU-10-NH₂ (460 g L⁻¹), ²⁷ NOTT-300 (~400 g L⁻¹), ³⁷ CAU-23 (262 g L⁻¹), ³⁸ and MOF-303 (310.7 g L⁻¹) (Figure 2e). ³⁹ A promising adsorbent material should have good repeatability and cycling stability for the practical implementation of C_2H_2 storage. Therefore, cyclic C_2H_2 sorption measurements were conducted. As expected, the adsorption capacity of C_2H_2 in CAU-10-CH₃ showed no loss after five consecutive tests at 298 K (Figure S9), suggesting that CAU-10-CH₃ is a promising adsorbent candidate in C_2H_2 storage and C_2H_2/CO_2 separation.

To further evaluate the separation performance of CAU-10-CH₃ toward the $\rm C_2H_2/CO_2$ mixture, the adsorption selectivity was calculated through the extensively studied ideal adsorbed solution theory (IAST). As shown in Figure S11, the IAST selectivity of CAU-10-CH₃ for an equimolar $\rm C_2H_2/CO_2$ mixture is estimated to be 4.6 at 298 K and 100 kPa, which is slightly higher than that of the prototype CAU-10-H (4.0). In addition, this IAST selectivity value is comparable to those of many promising materials, including JNU-1 (3.6), 40 MUF-17 (6.0), 41 IPM-101 (5.4), 42 NUM-20 (5.4), 43 JXNU-11(Fe₂Ni) (2.7), 44 FJU-90a (4.3), 45 SIFSIX-Cu-TPA (5.3), 46 CAU-23 (3.8), 38 UPC-200(Al)-F-BIM (3.15), 47 PCP-31 (7.0), 48 etc. The high uptake difference and $\rm C_2H_2$ packing

density and good IAST selectivity indicated the potential of CAU-10-CH₃ for efficient C_2H_2/CO_2 separation.

From the perspective of practical implementation of MOF materials as porous solid adsorbents, the heat of adsorption (Q_{st}) could also be a crucial factor, as adsorbents with low Q_{st} expend less energy for adsorbent regeneration and adsorbate recycling. In addition, the binding affinity between the guest molecule and the host framework could be assessed through the low-coverage heat of adsorption. Therefore, Qst was calculated by fitting adsorption isotherms of C₂H₂ and CO₂ at different temperatures using the Virial model. As shown in Figure 2f, the Q_{st} values of C₂H₂ and CO₂ for CAU-10-CH₃ are determined as 25.18 and 23.40 kJ mol-1 at zero coverage, respectively, indicating that CAU-10-CH₃ exhibits a stronger binding affinity for C₂H₂ over CO₂. Compared with prototype CAU-10-H (\sim 25 and 28 kJ mol⁻¹ for CO₂ and C₂H₂, respectively), the introduction of a methyl group slightly decreases the initial Q_{st} for CAU-10-CH₃, which is consistent with the tendency of adsorption profiles, indicating less energy for adsorbent regeneration. However, the Q_{st} value of C₂H₂ for CAU-10-CH₃ is still very low compared with those of many benchmark MOFs, such as Cu^I@UiO-66-(COOH)₂ (74.5 kJ mol⁻¹),³⁴ ATC-Cu (79.1 kJ mol⁻¹),⁴⁹ NKMOF-1-Ni (60.3 kJ mol⁻¹),³³ ZJU-50a (40 kJ mol⁻¹),⁵⁰ TIFSIX-2-Ni-i (40 kJ mol⁻¹),⁵¹ NTU-67 (44.1 kJ mol⁻¹),⁵² and NUM-20 (38.83 kJ mol^{-1}). The moderate Q_{st} value for CAU-10-CH₃ suggests that this MOF adsorbent could be regenerated under mild conditions, which shows promising potential for efficient C₂H₂/CO₂ separation.

To further comprehensively understand the adsorption mechanism of CAU-10-CH₃, grand canonical Monte Carlo (GCMC) simulations were conducted to explore the binding sites of CO₂ and C₂H₂. As shown in Figure 3a,b, the preferential adsorption sites for C₂H₂ and CO₂ were located on one side of the inner pore, and the density distribution of C_2H_2 and CO₂ molecules indeed proved this result (Figure S18). It was observed that the C₂H₂ molecule interacted with the benzene ring of the organic ligand to form one $C-H\cdots\pi$ interaction (3.305 Å) and bound the oxygen atoms from carboxylate groups through multiple C-H···O interactions ranging from 2.812 to 3.492 Å (Figure 3a). In contrast, the CO₂ molecule only interacted with oxygen atoms from carboxylate groups, forming four (CO₂) $C^{\delta+} \cdots O^{\delta-}$ electrostatic interactions (4.510-4.545 Å) (Figure 3b). Comparing with the host-guest interactions within the prototype CAU-10-H, the C₂H₂-framework interaction was basically equivalent for CAU-10-CH₃ and CAU-10-H, yet the CO₂-framework interaction was obviously weaker for CAU-10-CH3 than for CAU-10-H because it had longer distances (4.510-4.545 Å for CAU-10-CH₃ vs 3.692-3.729 Å for CAU-10-H). Such hostguest interaction differences agree well with the adsorption profile behavior. The static binding energies for C₂H₂ and CO₂ molecules in CAU-10-CH3 were calculated from GCMC simulations to be 29.13 and 24.12 kJ mol⁻¹, respectively, which are well consistent with the tendency in the zero-coverage $Q_{\rm st}$ values (25.18 and 23.40 kJ mol⁻¹ for C₂H₂ and CO₂, respectively). Overall, compared to CO2-framework interactions, C₂H₂ displays typically more interactions with shorter distances with CAU-10-CH₃ at the preferential binding site, which explains the stronger binding affinity between C₂H₂ and the CAU-10-CH₃ framework.

Attributed to the suitable pore environment and optimal pore size, CAU-10-CH₃ displayed a significant difference in adsorption between C₂H₂ and CO₂ and good IAST selectivity. The moderate heat of adsorption and high C₂H₂ packing density motivated us to explore the actual performance of CAU-10-CH₃ for the challenging C₂H₂/CO₂ mixture separation. The dynamic column breakthrough experiments were conducted at ambient conditions, and the activated sample was packed within a column with the equimolar C_2H_2/CO_2 mixture flowing at a total flow rate of 1.5 mL min⁻¹. As shown in Figure 3c, the C₂H₂/CO₂ mixture could be clearly separated by the MOF CAU-10-CH₃. When the C₂H₂/CO₂ mixture was passed over the fixed-bed column of CAU-10-CH₃, as predicted, the CO₂ substance was first eluted through the fixed-bed column at 22.5 min, and this process continued for 27 min, followed by C₂H₂ 49.5 min later. The column breakthrough experiment was continued until the concentrations of the expelled gases were constant. In particular, a marked roll-up behavior of CO2 was exhibited in the breakthrough experiments, suggesting that a large amount of previously adsorbed CO₂ could be replaced by the later inflow of C₂H₂, which indicates that C₂H₂ has a better competition capacity than that of CO₂ in the binding sites of CAU-10-CH₃. The dynamic captured amount of C₂H₂ was estimated to be 48.7 mL g⁻¹. In addition, the CAU-10-CH₃ adsorbent could maintain the same separation capacity after multiple cycles of dynamic column breakthrough measurements (Figure 3d), suggesting its good recycling separation capability. By virtue of the moderate adsorption heat of C₂H₂, CAU-10-CH₃ material could be easily regenerated by purging the fixed-bed column with inert gas under ambient conditions. Such results further

show that the CAU-10-CH₃ adsorbent is a highly desirable adsorbent for C_2H_2/CO_2 separation. Combining with the low-cost precursors, stability framework, moderate heat of adsorption, and good C_2H_2/CO_2 separation performance, CAU-10-CH₃ could be a promising candidate adsorbent for addressing the challenging separation of C_2H_2/CO_2 mixture.

CONCLUSIONS

By virtue of isoreticular chemistry, we report a microporous MOF, CAU-10-CH₃, with high chemical stability and thermal stability featuring a suitable pore environment for effective C_2H_2/CO_2 separation, which could be synthesized by using low-cost precursors. CAU-10-CH₃ exhibits a high C₂H₂ storage density of 486 g L⁻¹ and highly preferential adsorption of C₂H₂ over CO₂ at ambient conditions. In addition, this material displays a relatively low heat of adsorption for C2H2 (25.18 kJ mol⁻¹). Dynamic breakthrough experiments suggest a good C_2H_2/CO_2 separation performance, and the material could be easily regenerated through purging at ambient temperature. With the ultrahigh stability, low cost, feasibility of production, and good C₂H₂/CO₂ separation performance, CAU-10-CH₃ represents a good porous solid material with an outstanding balance among stability, separation performance, and cost, making it an excellent adsorbent for actual separation implementation. This study not only provides a promising strategy to achieve good C₂H₂/CO₂ separation behavior but also paves the route for constructing MOF materials with balanced stability, separation performance, and cost to facilitate their practical industrial implementation for important yet challenging gas separations.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/cbe.3c00073.

Full experimental details, including materials syntheses, PXRD patterns, TGA curves, C_2H_2 sorption data, grand canonical Monte Carlo (GCMC) simulations, breakthrough experiments, and Figures S1–S18 (PDF)

AUTHOR INFORMATION

Corresponding Author

Tong-Liang Hu — School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China; ⊚ orcid.org/ 0000-0001-9619-9867; Email: tlhu@nankai.edu.cn

Authors

Shan-Qing Yang — School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China

Bo Xing – School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China

Lu-Lu Wang – School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China

Lei Zhou — School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China

- Fei-Yang Zhang School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
- Yi-Long Li School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China

Complete contact information is available at: https://pubs.acs.org/10.1021/cbe.3c00073

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (22275102).

REFERENCES

- (1) Matsuda, R.; Kitaura, R.; Kitagawa, S.; Kubota, Y.; Belosludov, R. V.; Kobayashi, T. C.; Sakamoto, H.; Chiba, T.; Takata, M.; Kawazoe, Y.; Mita, Y. Highly Controlled Acetylene Accommodation in a Metal-Organic Microporous Material. *Nature* **2005**, *436*, 238–241.
- (2) Liu, X.; Zhang, P.; Xiong, H.; Zhang, Y.; Wu, K.; Liu, J.; Krishna, R.; Chen, J.; Chen, S.; Zeng, Z.; Deng, S.; Wang, J. Engineering Pore Environments of Sulfate-Pillared Metal-Organic Framework for Efficient C₂H₂/CO₂ Separation with Record Selectivity. *Adv. Mater.* **2023**, 35, 2210415.
- (3) Di, Z.; Liu, C.; Pang, J.; Chen, C.; Hu, F.; Yuan, D.; Wu, M.; Hong, M. Cage-Like Porous Materials with Simultaneous High C₂H₂ Storage and Excellent C₂H₂/CO₂ Separation Performance. *Angew. Chem. Int. Ed.* **2021**, *60*, 10828–10832.
- (4) Yang, L.; Yan, L.; Wang, Y.; Liu, Z.; He, J.; Fu, Q.; Liu, D.; Gu, X.; Dai, P.; Li, L.; Zhao, X. Adsorption Site Selective Occupation Strategy within a Metal-Organic Framework for Highly Efficient Sieving Acetylene from Carbon Dioxide. *Angew. Chem. Int. Ed.* **2021**, 60, 4570–4574.
- (5) Yang, S.-Q.; Hu, T.-L. Reverse-Selective Metal-Organic Framework Materials for the Efficient Separation and Purification of Light Hydrocarbons. *Coord. Chem. Rev.* **2022**, *468*, 214628.
- (6) Wang, X.; Liu, H.; Li, Y.; Yang, X.; Gao, F.; Wang, X.; Kang, Z.; Fan, W.; Sun, D. Metal-Organic Frameworks for C₂H₂/CO₂ Separation: Recent Development. *Coord. Chem. Rev.* **2023**, 482, 215093.
- (7) Han, X.; Yang, S. Molecular Mechanisms behind Acetylene Selectivity in Functional Porous Materials. *Angew. Chem. Int. Ed.* **2023**, *62*, No. e202218274.
- (8) Zhang, Y.; Sun, W.; Luan, B.; Li, J.; Luo, D.; Jiang, Y.; Wang, L.; Chen, B. Topological Design of Unprecedented Metal-Organic Frameworks Featuring Multiple Anion Functionalities and Hierarchical Porosity for Benchmark Acetylene Separation. *Angew. Chem. Int. Ed.* **2023**, 62, No. e202309925.
- (9) Kumar, N.; Mukherjee, S.; Harvey-Reid, N. C.; Bezrukov, A. A.; Tan, K.; Martins, V.; Vandichel, M.; Pham, T.; van Wyk, L. M.; Oyekan, K.; Kumar, A.; Forrest, K. A.; Patil, K. M.; Barbour, L. J.; Space, B.; Huang, Y.; Kruger, P. E.; Zaworotko, M. J. Breaking the Trade-Off between Selectivity and Adsorption Capacity for Gas Separation. *Chem.* **2021**, *7*, 3085–3098.
- (10) Zhu, X.; Ke, T.; Zhou, J.; Song, Y.; Xu, Q.; Zhang, Z.; Bao, Z.; Yang, Y.; Ren, Q.; Yang, Q. Vertex Strategy in Layered 2D MOFs: Simultaneous Improvement of Thermodynamics and Kinetics for Record C_2H_2/CO_2 Separation Performance. *J. Am. Chem. Soc.* **2023**, 145, 9254–9263.
- (11) Wang, S.-M.; Shivanna, M.; Yang, Q.-Y. Nickel-Based Metal-Organic Frameworks for Coal-Bed Methane Purification with Record CH₄/N₂ Selectivity. *Angew. Chem. Int. Ed.* **2022**, *61*, No. e202201017. (12) Li, S.; Zeng, S.; Tian, Y.; Jing, X.; Sun, F.; Zhu, G. Two Flexible Cationic Metal-Organic Frameworks with Remarkable Stability for CO₂/CH₄ Separation. *Nano Res.* **2021**, *14*, 3288–3293.

- (13) Zheng, F.; Chen, L.; Chen, R.; Zhang, Z.; Yang, Q.; Yang, Y.; Su, B.; Ren, Q.; Bao, Z. A Robust Two-dimensional Layered Metal-Organic Framework for Efficient Separation of Methane from Nitrogen. Sep. Purif. Technol. 2022, 281, 119911.
- (14) Qiao, J.; Liu, X.; Liu, X.; Liu, X.; Zhang, L.; Liu, Y. Two Urea-Functionalized pcu Metal-Organic Frameworks based on Pillared-Layer Strategy for Gas Adsorption and Separation. *Inorg. Chem. Front.* **2020**, *7*, 3500–3508.
- (15) Kim, T.-H.; Kim, S.-Y.; Yoon, T.-U.; Kim, M.-B.; Park, W.; Han, H. H.; Kong, C.-i.; Park, C.-Y.; Kim, J.-H.; Bae, Y.-S. Improved Methane/Nitrogen Separation Properties of Zirconium-based Metal-Organic Framework by Incorporating Highly Polarizable Bromine Atoms. *Chem. Eng. J.* **2020**, 399, 125717.
- (16) Chen, Y.; Wu, H.; Yuan, Y.; Lv, D.; Qiao, Z.; An, D.; Wu, X.; Liang, H.; Li, Z.; Xia, Q. Highly Rapid Mechanochemical Synthesis of a Pillar-Layer Metal-Organic Framework for Efficient CH_4/N_2 Separation. *Chem. Eng. J.* **2020**, 385, 123836.
- (17) Shi, Z.; Tao, Y.; Wu, J.; Zhang, C.; He, H.; Long, L.; Lee, Y.; Li, T.; Zhang, Y.-B. Robust Metal-Triazolate Frameworks for $\rm CO_2$ Capture from Flue Gas. J. Am. Chem. Soc. 2020, 142, 2750–2754.
- (18) Chen, K.-J.; Madden, D. G.; Pham, T.; Forrest, K. A.; Kumar, A.; Yang, Q.-Y.; Xue, W.; Space, B.; Perry IV, J. J.; Zhang, J.-P.; Chen, X.-M.; Zaworotko, M. J. Tuning Pore Size in Square-Lattice Coordination Networks for Size-Selective Sieving of CO₂. *Angew. Chem. Int. Ed.* **2016**, *55*, 10268–10272.
- (19) Liu, D.; Pei, J.; Zhang, X.; Gu, X.-W.; Wen, H.-M.; Chen, B.; Qian, G.; Li, B. Scalable Green Synthesis of Robust Ultra-Microporous Hofmann Clathrate Material with Record C₃H₆ Storage Density for Efficient C₃H₆/C₃H₈ Separation. *Angew. Chem. Int. Ed.* **2023**, *62*, No. e202218590.
- (20) Yu, L.; Han, X.; Wang, H.; Ullah, S.; Xia, Q.; Li, W.; Li, J.; da Silva, I.; Manuel, P.; Rudić, S.; Cheng, Y.; Yang, S.; Thonhauser, T.; Li, J. Pore Distortion in a Metal-Organic Framework for Regulated Separation of Propane and Propylene. *J. Am. Chem. Soc.* **2021**, *143*, 19300–19305.
- (21) Zeng, H.; Xie, M.; Wang, T.; Wei, R.-J.; Xie, X.-J.; Zhao, Y.; Lu, W.; Li, D. Orthogonal-Array Dynamic Molecular Sieving of Propylene/Propane Mixtures. *Nature* **2021**, *595*, 542–548.
- (22) Hu, T.-L.; Wang, H.; Li, B.; Krishna, R.; Wu, H.; Zhou, W.; Zhao, Y.; Han, Y.; Wang, X.; Zhu, W.; Yao, Z.; Xiang, S.; Chen, B. Microporous Metal-Organic Framework with Dual Functionalities for Highly Efficient Removal of Acetylene from Ethylene/Acetylene Mixtures. *Nat. Commun.* 2015, 6, 7328.
- (23) Yang, S.-Q.; Sun, F.-Z.; Krishna, R.; Zhang, Q.; Zhou, L.; Zhang, Y.-H.; Hu, T.-L. Propane-Trapping Ultramicroporous Metal-Organic Framework in the Low-Pressure Area toward the Purification of Propylene. ACS Appl. Mater. Interfaces 2021, 13, 35990–35996.
- (24) Chen, K.-J.; Madden, D. G.; Mukherjee, S.; Pham, T.; Forrest, K. A.; Kumar, A.; Space, B.; Kong, J.; Zhang, Q.-Y.; Zaworotko, M. J. Synergistic sorbent separation for one-step ethylene purification from a four-component mixture. *Science* **2019**, *366*, 241–246.
- (25) Huang, Y.; Wan, J.; Pan, T.; Ge, K.; Guo, Y.; Duan, J.; Bai, J.; Jin, W.; Kitagawa, S. Delicate Softness in a Temperature-Responsive Porous Crystal for Accelerated Sieving of Propylene/Propane. *J. Am. Chem. Soc.* **2023**, *145*, 24425–24432.
- (26) Xue, Y.-Y.; Bai, X.-Y.; Zhang, J.; Wang, Y.; Li, S.-N.; Jiang, Y.-C.; Hu, M.-C.; Zhai, Q.-G. Precise Pore Space Partitions Combined with High-Density Hydrogen-Bonding Acceptors within Metal-Organic Frameworks for Highly Efficient Acetylene Storage and Separation. *Angew. Chem. Int. Ed.* **2021**, *60*, 10122–10128.
- (27) Zhang, X.; Lin, R.-B.; Wu, H.; Huang, Y.; Ye, Y.; Duan, J.; Zhou, W.; Li, J.-R.; Chen, B. Maximizing Acetylene Packing Density for Highly Efficient C_2H_2/CO_2 Separation through Immobilization of Amine Sites within a Prototype MOF. *Chem. Eng. J.* **2022**, 431, 134184.
- (28) Zheng, F.; Chen, R.; Ding, Z.; Liu, Y.; Zhang, Z.; Yang, Q.; Yang, Y.; Ren, Q.; Bao, Z. Interlayer Symmetry Control in Flexible-Robust Layered Metal-Organic Frameworks for Highly Efficient C₂H₂/CO₂ Separation. *J. Am. Chem. Soc.* **2023**, *145*, 19903–19911.

- (29) Tan, Y.-X.; Lin, J.; Li, Q.-H.; Li, L.; Anil Borse, R.; Lu, W.; Wang, Y.; Yuan, D. Overcoming the Trade-Off between C₂H₂ Sorption and Separation Performance by Regulating Metal-Alkyne Chemical Interaction in Metal-Organic Frameworks. *Angew. Chem. Int. Ed.* **2023**, *62*, No. e202302882.
- (30) Jia, T.; Gu, Y.; Huang, H.; Wang, L.; Li, F. Pore-Structure Control in Ultramicroporous Porous Coordination Polymers for Efficient Selective Capture of Acetylene. *Sep. Purif. Technol.* **2023**, 318, 123976.
- (31) Si, G.-R.; Wu, H.; He, T.; Xu, Z.-C.; Wang, K.; Li, J.-R. Stable Bimetallic Metal-Organic Framework with Dual-Functional Pyrazolate-Carboxylate Ligand: Rational Construction and C_2H_2/CO_2 Separation. ACS Materials Lett. 2022, 4, 1032–1036.
- (32) Yang, S.-Q.; Krishna, R.; Chen, H.; Li, L.; Zhou, L.; An, Y.-F.; Zhang, F.-Y.; Zhang, Q.; Zhang, Y.-H.; Li, W.; Hu, T.-L.; Bu, X.-H. Immobilization of the Polar Group into an Ultramicroporous Metal-Organic Framework Enabling Benchmark Inverse Selective CO₂/C₂H₂ Separation with Record C₂H₂ Production. *J. Am. Chem. Soc.* **2023**, *145*, 13901–13911.
- (33) Peng, Y.-L.; Pham, T.; Li, P.; Wang, T.; Chen, Y.; Chen, K.-J.; Forrest, K. A.; Space, B.; Cheng, P.; Zaworotko, M. J.; Zhang, Z. Robust Ultramicroporous Metal-Organic Frameworks with Benchmark Affinity for Acetylene. *Angew. Chem. Int. Ed.* **2018**, *57*, 10971–10975.
- (34) Zhang, L.; Jiang, K.; Yang, L.; Li, L.; Hu, E.; Yang, L.; Shao, K.; Xing, H.; Cui, Y.; Yang, Y.; Li, B.; Chen, B.; Qian, G. Benchmark C_2H_2/CO_2 Separation in an Ultra-Microporous Metal-Organic Framework via Copper(I)-Alkynyl Chemistry. *Angew. Chem. Int. Ed.* **2021**, *60*, 15995–16002.
- (35) Reinsch, H.; van der Veen, M. A.; Gil, B.; Marszalek, B.; Verbiest, T.; de Vos, D.; Stock, N. Structures, Sorption Characteristics, and Nonlinear Optical Properties of a New Series of Highly Stable Aluminum MOFs. *Chem. Mater.* **2013**, 25, 17–26.
- (36) Pei, J.; Wen, H.-M.; Gu, X.-W.; Qian, Q.-L.; Yang, Y.; Cui, Y.; Li, B.; Chen, B.; Qian, G. Dense Packing of Acetylene in a Stable and Low-Cost Metal-Organic Framework for Efficient C_2H_2/CO_2 Separation. *Angew. Chem. Int. Ed.* **2021**, *60*, 25068–25074.
- (37) Yang, S.; Ramirez-Cuesta, A. J.; Newby, R.; Garcia-Sakai, V.; Manuel, P.; Callear, S. K.; Campbell, S. I.; Tang, C. C.; Schröder, M. Supramolecular Binding and Separation of Hydrocarbons within a Functionalized Porous Metal-Organic Framework. *Nat. Chem.* **2015**, 7, 121–129.
- (38) Ye, Y.; Xian, S.; Cui, H.; Tan, K.; Gong, L.; Liang, B.; Pham, T.; Pandey, H.; Krishna, R.; Lan, P. C.; Forrest, K. A.; Space, B.; Thonhauser, T.; Li, J.; Ma, S. Metal-Organic Framework Based Hydrogen-Bonding Nanotrap for Efficient Acetylene Storage and Separation. J. Am. Chem. Soc. 2022, 144, 1681–1689.
- (39) Jiang, Z.; Wang, W.; Xue, W.; Zhu, H.; Zheng, M.; Huang, H.; Zhong, C. Construction of π Back Donation Active Site in Metal-Organic Framework for Dense Packing of C_2H_2 and Efficient C_2H_2/CO_2 Separation. Sep. Purif. Technol. 2023, 322, 124345.
- (40) Zeng, H.; Xie, M.; Huang, Y.-L.; Zhao, Y.; Xie, X.-J.; Bai, J.-P.; Wan, M.-Y.; Krishna, R.; Lu, W.; Li, D. Induced Fit of C_2H_2 in a Flexible MOF through Cooperative Action of Open Metal Sites. *Angew. Chem. Int. Ed.* **2019**, *58*, 8515–8519.
- (41) Qazvini, O. T.; Babarao, R.; Telfer, S. G. Multipurpose Metal-Organic Framework for the Adsorption of Acetylene: Ethylene Purification and Carbon Dioxide Removal. *Chem. Mater.* **2019**, *31*, 4919–4926.
- (42) Sharma, S.; Mukherjee, S.; Desai, A. V.; Vandichel, M.; Dam, G. K.; Jadhav, A.; Kociok-Köhn, G.; Zaworotko, M. J.; Ghosh, S. K. Efficient Capture of Trace Acetylene by an Ultramicroporous Metal-Organic Framework with Purine Binding Sites. *Chem.Mater.* **2021**, 33, 5800–5808.
- (43) Yang, S.-Q.; Krishna, R.; Zhou, L.; Li, Y.-L.; Xing, B.; Zhang, Q.; Zhang, F.-Y.; Hu, T.-L. A Thermostable Calcium-based Metal-Organic Framework for Efficient Capture and Separation of Acetylene from Ternary Mixture. Sep. Purif. Technol. 2024, 329, 125167.

- (44) Fu, X.-P.; Wang, Y.-L.; Zhang, X.-F.; Zhang, Z.; He, C.-T.; Liu, Q.-Y. Fluorous Metal-Organic Frameworks with Unique Cage-in-Cage Structures Featuring Fluorophilic Pore Surfaces for Efficient C_2H_2/CO_2 Separation. CCS Chemistry 2022, 4, 3416–3425.
- (45) Ye, Y.; Ma, Z.; Lin, R.-B.; Krishna, R.; Zhou, W.; Lin, Q.; Zhang, Z.; Xiang, S.; Chen, B. Pore Space Partition within a Metal-Organic Framework for Highly Efficient C_2H_2/CO_2 Separation. *J. Am. Chem. Soc.* **2019**, *141*, 4130–4136.
- (46) Li, H.; Liu, C.; Chen, C.; Di, Z.; Yuan, D.; Pang, J.; Wei, W.; Wu, M.; Hong, M. An Unprecedented Pillar-Cage Fluorinated Hybrid Porous Framework with Highly Efficient Acetylene Storage and Separation. *Angew. Chem. Int. Ed.* **2021**, *60*, 7547–7552.
- (47) Fan, W.; Yuan, S.; Wang, W.; Feng, L.; Liu, X.; Zhang, X.; Wang, X.; Kang, Z.; Dai, F.; Yuan, D.; Sun, D.; Zhou, H.-C. Optimizing Multivariate Metal-Organic Frameworks for Efficient C_2H_2/CO_2 Separation. *J. Am. Chem. Soc.* **2020**, 142, 8728–8737.
- (48) Duan, J.; Higuchi, M.; Zheng, J.; Noro, S.-i.; Chang, I.-Y.; Hyeon-Deuk, K.; Mathew, S.; Kusaka, S.; Sivaniah, E.; Matsuda, R.; Sakaki, S.; Kitagawa, S. Density Gradation of Open Metal Sites in the Mesospace of Porous Coordination Polymers. J. Am. Chem. Soc. 2017, 139, 11576–11583.
- (49) Niu, Z.; Cui, X.; Pham, T.; Verma, G.; Lan, P. C.; Shan, C.; Xing, H.; Forrest, K. A.; Suepaul, S.; Space, B.; Nafady, A.; Al-Enizi, A. M.; Ma, S. A MOF-based Ultra-Strong Acetylene Nano-trap for Highly Efficient C_2H_2/CO_2 Separation. *Angew. Chem. Int. Ed.* **2021**, 60, 5283–5288.
- (50) Shao, K.; Wen, H.-M.; Liang, C.-C.; Xiao, X.; Gu, X.-W.; Chen, B.; Qian, G.; Li, B. Engineering Supramolecular Binding Sites in a Chemically Stable Metal-Organic Framework for Simultaneous High C_2H_2 Storage and Separation. *Angew. Chem. Int. Ed.* **2022**, *61*, No. e202211523.
- (51) Jiang, M.; Cui, X.; Yang, L.; Yang, Q.; Zhang, Z.; Yang, Y.; Xing, H. A Thermostable Anion-Pillared Metal-Organic Framework for C_2H_2/C_2H_4 and C_2H_2/CO_2 Separations. *Chem. Eng. J.* **2018**, 352, 803–810.
- (52) Dong, Q.; Huang, Y.; Hyeon-Deuk, K.; Chang, I.-Y.; Wan, J.; Chen, C.; Duan, J.; Jin, W.; Kitagawa, S. Shape- and Size-Dependent Kinetic Ethylene Sieving from a Ternary Mixture by a Trap-and-Flow Channel Crystal. *Adv. Funct. Mater.* **2022**, *32*, 2203745.