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Aging is the time-dependent functional decline that increases the vulnerability to
different forms of stress, constituting the major risk factor for the development of
neurodegenerative diseases. Dysfunctional mitochondria significantly contribute to aging
phenotypes, accumulating particularly in post-mitotic cells, including neurons. To cope
with deleterious effects, mitochondria feature different mechanisms for quality control.
One such mechanism is the mitochondrial unfolded protein response (UPRMT), which
corresponds to the transcriptional activation of mitochondrial chaperones, proteases,
and antioxidant enzymes to repair defective mitochondria. Transcription of target UPRMT

genes is epigenetically regulated by Histone 3-specific methylation. Age-dependency
of this regulation could explain a differential UPRMT activity in early developmental
stages or aged organisms. At the same time, precise tuning of mitochondrial stress
responses is crucial for maintaining neuronal homeostasis. However, compared to other
mitochondrial and stress response programs, the role of UPRMT in neurodegenerative
disease is barely understood and studies in this topic are just emerging. In this review, we
document the reported evidence characterizing the evolutionarily conserved regulation of
the UPRMT and summarize the recent advances in understanding the role of the pathway
in neurodegenerative diseases and aging.

Keywords: mitochondrial unfolded protein response, neurodegenerative diseases, aging, mitochondria,
epigenetic regulation, stress response

UPRMT MACHINERY AND MITOCHONDRIAL HOMEOSTASIS
REGULATION

Mitochondria are the main energy producers within the cell and the coordinators of several
pathways that control essential metabolites, which include not only ATP and NAD+,
but also acetyl-CoA and S-adenosyl methionine for protein acetylation and methylation,
respectively (Teperino et al., 2010; Menzies et al., 2016). Mitochondria are unique in that
they have an independent genome (mtDNA), which encodes 2 rRNAs, 22 tRNAs, and
13 proteins that constitute the OXPHOS complexes (Wallace and Chalkia, 2013). Remaining
mitochondrial proteins are encoded in the nucleus, so the function of the organelle
heavily depends on the coordinated regulation of nuclear and mitochondrial genomes
(Couvillion et al., 2016). Imbalances in protein expression in any of these two sources activate
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an anterograde regulation of mitochondrial function (from
the nucleus towards mitochondria) that adjusts its activity
to match cellular needs (Cui et al., 2006; Kaarniranta et al.,
2018). Mitochondria can also control the expression of nuclear
genes through a retrograde regulatory mechanism (Lin and
Haynes, 2016). This bidirectional communication between
mitochondria and the nucleus forms a molecular network
that maintains cellular homeostasis. Part of the network that
synchronizes the cellular adaptation to a variety of stressors is
termed the mitochondrial unfolded protein response (UPRMT).
Thus, UPRMT is the transcriptional program that stabilizes
mitochondrial homeostasis and reduces misfolded protein
amount in the organelle, increasing the mitochondrial response
capability to stress stimuli (reviewed in Jensen and Jasper,
2014; Shpilka and Haynes, 2018; Gomez and Germain, 2019;
Tran and Van Aken, 2020). Known activators of UPRMT

include the impairment of the Electron Transport Chain
(ETC), alteration of mitochondrial dynamics, accumulation of
unfolded proteins, deletion of mitochondrial DNA (mtDNA),
inhibition of mitochondrial chaperones or proteases, and the
increase of reactive oxygen species (ROS) levels (Nargund
et al., 2012; Pimenta de Castro et al., 2012; Runkel et al.,
2013; Qureshi et al., 2017). Despite the mechanisms underlying
the UPRMT are less understood than endoplasmic reticulum
UPR (Hetz et al., 2020), this mitochondrial stress pathway
is emerging as an important response that guarantees the
organelle function.

UPRMT was originally observed in mammalian cells,
where mitochondrial stress was induced by mtDNA deletions
(Martinus et al., 1996) and by aggregation of mutant ornithine
transcarboxylase (∆OTC) (Zhao et al., 2002). Both stress
stimuli upregulated the expression of mitochondrial chaperones
Hsp60, Hsp10 under the control of the transcription factor
CHOP (Zhao et al., 2002; Horibe and Hoogenraad, 2007).
Three nuclear components were then identified in C. elegans as
UPRMT regulators: ATFS-1, DVE-1, and UBL-5. These proteins
are part of the UPRMT-ATF5 axis, an ATFS-1/ATF5 dependent
response that is themost characterized UPRMT pathway (Table 1,
Kenny and Germain, 2017; Ji et al., 2020). ATFS-1, a leucine
zipper protein, carries a nuclear localization sequence and a
mitochondrial targeting sequence. Under mitochondrial stress,
ATFS-1 normal transport towards mitochondria is blocked
and translocates instead to the nucleus where it interacts with
DVE-1 and UBL-5 (Figure 1; Nargund et al., 2012, 2015).
In mammals, the CHOP target ATF5 was identified as the
functional ortholog for ATFS-1, which also contains targeting
sequences for mitochondria and nucleus and upregulates
UPRMT genes (Teske et al., 2013; Fiorese et al., 2016). On the
other hand, DVE-1 is a DNA binding protein that together
with its coregulator UBL-5, interacts with chromatin regions to
maintain an ATFS-1-dependent active transcription of UPRMT-
related genes (Benedetti et al., 2006; Haynes et al., 2007; Tian
et al., 2016). The coordinated action of these three proteins
upregulates the expression of mitochondrial chaperones hsp-60,
hsp-6, and protease clpp-1 (Table 1, Haynes and Ron, 2010).

Two other pathways have been associated with this stress
response (Figure 1). The UPRMT-ERα axis, a pathway dependent

on the activation of the estrogen receptor α (ERα), was
described as associated with the accumulation of proteins in
the mitochondrial intermembrane space (Papa and Germain,
2011). Mitochondrial stress and ROS production trigger the
phosphorylation of the protein kinase AKT and consequently,
the activation of ERα. This cascade increases the transcription
of protease HTRA2 and the mitochondrial biogenesis regulator
NFR1, which translates in an increased proteasome activity
independent of activation of the UPRMT-ATF5 axis (Table 1,
Papa and Germain, 2011). Finally, the UPRMT-SIRT3 axis is
based on the activation of Sirtuin 3 that modulates the expression
of SOD1, SOD2, and catalase, through activation of FOXO
(Papa and Germain, 2014; Kenny et al., 2017). The UPRMT-
SIRT3 axis has been validated also in worms and mammalian
cells, supporting the high evolutionary conservation of the
pathway (Mouchiroud et al., 2013). Importantly, both ERα-
and SIRT3-UPRMT axes work independently of CHOP (Papa
and Germain, 2014), upholding the idea of three parallel paths
coordinating the same stress response (Figure 1).

Chromatin remodeling has been shown to play a central
role in UPRMT regulation. Histone 3 is a target for methylation
catalyzed specifically by methyltransferase MET-2 in C. elegans
(ortholog of human SETDB1). Activation of UPRMT requires the
dimethylation of lysine 3 of histone 3 (H3K9), which translates
into a compacted and overall silenced chromatin state. At the
same time although, other chromatin portions remain loose,
favoring the binding of UPRMT regulators such as DVE-1
(Tian et al., 2016). Also required for UPRMT activation are
the conserved demethylases JMJD-3.1 and JMJD-1.2, which
reduce the chromatin compaction by removingmethylation from
H3K9 and H3K27 (Figure 1; Merkwirth et al., 2016; Sobue et al.,
2017). Interestingly, chromatin remodeling acts independently
of ATFS-1, as its downregulation does not affect the nuclear
localization of DVE-1 (Tian et al., 2016). It is known that besides
genes encoding chaperones and proteases, UPRMT activation
increases the expression of glycolysis and amino acid catabolism
genes, and represses TCA-cycle and OXPHOS encoding genes
(Nargund et al., 2015; Gitschlag et al., 2016; Lin and Haynes,
2016). To date, it is not clear whether UPRMT can activate any
other quality control mechanism such as mitochondrial fission,
fusion, and mitophagy. It has been reported, however, that
the same mitochondrial stressors can activate mitophagy and
UPRMT (Nargund et al., 2012; Pimenta de Castro et al., 2012; Jin
and Youle, 2013; Runkel et al., 2013; Lin et al., 2016). Organisms
that have adapted after constant exposure to low doses of these
stressors (misregulation of ETC components and low doses of
the UPRMT activator paraquat) exhibit a hormetic phenotype as
they show increased longevity despite their mild mitochondrial
dysfunction (Yoneda et al., 2004; Owusu-Ansah et al., 2013). This
homeostatic regulation is particularly important in post-mitotic
cells such as neurons.

THE ROLE AND REGULATION OF UPRMT

IN AGING

Aging is defined as the time-dependent functional decline that
increases vulnerability to different forms of stress, ultimately
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TABLE 1 | Mitochondrial UPR regulators and their function in conserved species.

Name CE DM MM HS Function References

UPRMT-ATF5 axis
Activating Transcription Factor 5 Atfs-1 crc Atf5 ATF5 Transcription factor with basic leucine zipper domain.

Carries an MTS in the N-term and an NLS in the C-term.
Yoneda et al. (2004),
Nargund et al. (2012),
Fiorese et al. (2016) and Wu
et al. (2018)

Special AT-Rich Sequence-Binding
Protein 2

dve DVE Satb2 SATB2 DNA binding protein. Stabilizes open chromatin for
UPRMT-associated transcription.

Haynes et al. (2007) and
Tian et al. (2016)

Ubiquitin Like 5 UBL-5 ubl Ubl5 UBL5 Protein binding. Binds DVE to activate transcription of
Hsp60

Benedetti et al. (2006)

ATP Binding Cassette Subfamily B
Member 10

haf-1 CG3156 ABCB10 ABCB10 Mitochondrial inner membrane transporter. Exports
peptides from the matrix.

Haynes and Ron (2010)
and Yano (2017)

Caseinolytic Mitochondrial Matrix
Peptidase Proteolytic

clpp-1 ClpP ClpP CLPP Mitochondrial ATP-dependent protease. Its attenuation
reduces the UPRMT activation and the formation of the
UBL/DVE complex.

Haynes et al. (2007) and
Al-Furoukh et al. (2015)

Translocase of Inner Mitochondrial
Membrane 23

timm-23 Tim23 Timm23 TIMM23 Protein transmembrane transporter. Required for full
induction of UPRMT mediated by ATFS-1.

Rainbolt et al. (2013)

Lon Peptidase 1 , lonp-1 Lon Lonp1 LONP1 Mitochondrial protease. Degrades ATFS-1 when imported
to mitochondria under stress conditions.

Nargund et al. (2012)

Heat Shock Protein Family D
(Hsp60) Member 1

hsp-60 Hsp60A
Hsp60B
Hsp60C

Hspd1 HSPD1 Mitochondrial heat-shock protease. Upregulated upon
mitochondrial stress.

Zhao et al. (2002), Yoneda
et al. (2004), Haynes et al.
(2007) and Owusu-Ansah
et al. (2013)

Heat Shock Protein Family A
(Hsp70) Member 9

hsp-6 Hsc70–5 Hspa9 HSPA9 Mitochondrial heat-shock protease. More sensitive to
oxidative stress than unfolded protein stress.

Yoneda et al. (2004),
Benedetti et al. (2006) and
Merkwirth et al. (2016)

UPRMT- ERα axis
Estrogen Receptor 1 nhr-107 ERR Esr1 ESR1 Ligand-activated transcription factor. Regulates the

expression of Htra2 and NRF1 after Akt phosphorylation.
Papa and Germain (2011)
and Riar et al. (2017)

HtrA Serine Peptidase 2 psmd-9 HtrA2 HtrA2 HTRA2 Serine protease. Protein import checkpoint in IMS.
Increased expression upon stress.

Papa and Germain (2011)

Nuclear respiratory factor 1 - - Nrf1 NRF1 Transcription factor. Papa and Germain (2011)
UPRMT- SIRT3 axis
Sirtuin 3 Sir-2.1 Sirt2 Sirt3 SIRT3 NAD+ dependent deacetylase. Regulates the activity of

FOXO3 upon oxidative stress in the mitochondria.
Mouchiroud et al. (2013);
Papa and Germain (2014);
Gariani et al. (2016) and
Kenny et al. (2017)

Forkhead box daf-16 foxo Foxo3 FOXO3 Transcription factor. Translocate to the nucleus to activate
transcription of SOD1, SOD2, and Catalase.

Mouchiroud et al. (2013);
Gariani et al. (2016) and
Kenny et al. (2017)

Superoxide dismutase 1 sod-1 Sod Sod1 SOD1 Superoxide dismutase. Soluble cytoplasmic isoenzyme. Mouchiroud et al. (2013);
Gariani et al. (2016) and
Kenny et al. (2017)

Superoxide dismutase 2 sod-2 Sod2 Sod2 SOD2 Superoxide dismutase. Mitochondrial isoenzyme. Mouchiroud et al. (2013);
Gariani et al. (2016) and
Kenny et al. (2017)
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leading to death (Kennedy et al., 2014). Aging has particularly
severe consequences for organs composedmostly by post-mitotic
cells, such as the heart and brain (Kowald and Kirkwood, 2000;
Terman et al., 2010). For instance, aging is the major risk factor
for the onset of chronic, brain-related, and neurodegenerative
diseases (ND). Current studies in the field introduced critical
questions aiming to understand the physiological sources of
time-dependent damage, the compensatory cellular responses
that reestablish homeostasis, and their interconnection to
find potential targets to intervene and delay aging. Seven
cellular pillars of aging have been described, including among
others, alterations to proteostasis, epigenetics, metabolism, and
adaptation to stress (Kennedy et al., 2014). Mitochondrial
dysfunction is a common factor for these events, suggesting a
role of mitochondrial reparative machinery in aging progression.
Furthermore, it is accepted that aging in model organisms is
functionally associated with mitochondrial decline, contributing
to the time-dependent tissuemalfunction (Chistiakov et al., 2014;
Kim et al., 2018). Therefore, activation of UPRMT, as one of
the mitochondrial mechanisms against different forms of aging-
causing damage, could be in part bridging the adaptation to stress
and other pillars of aging as proteostasis and epigenetics.

Current evidence highlights an age-dependent effect of
UPRMT on lifespan. For instance, activation of UPRMT triggered
by downregulation of ETC complexes I and IV promotes
longevity (Dillin et al., 2002; Durieux et al., 2011; Mouchiroud
et al., 2013). Histone demethylases JMJD-1.2 and JMJD-
3.1 mediate in part that extension, as their overexpression is
sufficient to extend the lifespan of worms (Merkwirth et al.,
2016). On the other hand, reducing the expression of nuclear
effectors ATFS-1, UBL-5 and DVE-1, or demethylases JMJD-
1.2 and JMJD-3.1, suppresses the lifespan extension (Table 1,
Durieux et al., 2011; Houtkooper et al., 2013; Merkwirth et al.,
2016; Lan et al., 2019). It is interesting that UPRMT activation
after exposure to mitochondrial stress is strongly responsive
only during development and not in later stages of the lifespan
(Dillin et al., 2002; Copeland et al., 2009; Durieux et al., 2011;
Houtkooper et al., 2013). UPRMT appears less active in adult
organisms, so there is no increased lifespan as a response to
mitochondrial stressors, as observed in developmental stages in
worms and flies (Dillin et al., 2002; Owusu-Ansah et al., 2013;
Jensen et al., 2017).

Decreased chromatin accessibility of target UPRMT genes in
aged organisms is a potential explanation for the differential
UPRMT activation. This was recently confirmed in a study
where the methyltransferase SET-6 and the neuronal epigenetic
reader BAZ-2, mediated specifically an age-dependent regulation
of UPRMT. Both proteins when overexpressed in aged worms
increased the levels of H3K9Me3, the triple methylated state
of the protein, thus inhibiting UPRMT activation in the
H3K9-protected loci (Figure 1). Loss of function of SET-6 or
BAZ-2 increased healthspan but not longevity, a phenotype that
was inhibited downregulating UBL-5 or ATFS-1 (Yuan et al.,
2020). Histone 3 methylation appears then as a key epigenetic
mediator for UPRMT throughout the lifespan (Merkwirth et al.,
2016; Tian et al., 2016; Ono et al., 2017). Longitudinal studies
have proved that H3K9Me3 increases during aging in mice
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FIGURE 1 | Mitochondrial unfolded protein response (UPR) and its regulation in aging and neurodegeneration. Insults to mitochondria (top left) activate three
different axes of the UPRMT program. The SIRT3-UPRMT axis (green arrow) increases the transcription of superoxide dismutases and catalase, after the activation of
DAF-16/FOXO3 by the deacetylase SIR-2.1/SIRT3. In the ATF5-UPRMT axis (red arrow), the transcription factor ATFS-1/ATF5 relocalizes from mitochondria to
nucleus to upregulate mitochondrial proteostasis related genes (red box) after the interaction with the chromatin stabilizers DVE-1 and UBL-5. In the ERα-UPRMT axis
(blue arrow) the estrogen receptor is activated by the kinase Akt, to increase the expression of the protease HTRA2 and mitochondrial biogenesis regulator NRF1. On
a healthy state (center right), ATF5-UPRMT activation requires chromatin reorganization. Dimethylation of Histone 3 by MET-2, and presence of demethylases
JMJD-1.2 and JMJD-3.1, allow the binding of DVE to facilitate the ATFS-1-dependent expression of UPRMT genes and improve mitochondrial proteostasis. In
neurodegenerative states triggered by accumulation of Aβ42 (AD), α-syn (PD) or SOD1G93A (ALS, top right), UPRMT could be persistently activated, affecting
mitochondria proteostasis and neuron viability. In aging cells (bottom right), Histone 3 is preferentially trimethylated, which blocks DVE and ATFS-1 biding to
compacted DNA. Lack of expression of UPRMT-related genes decreases mitochondrial response to aging-causing damage. All protein names are taken from
C. elegans, except the ones from the ERα axis, which has only been described in mammalian cells.

hippocampus, and inhibition of this methylation state was
sufficient to block aging-associated cognitive decline in mice
(Snigdha et al., 2016). Advanced knowledge of the loci carrying
UPRMT genes on them, will contribute to further understand the
lack of UPRMT activation during aging.

UPRMT IN AGING NEURONS AND
NEURODEGENERATIVE DISEASES

Several factors influence mitochondrial homeostasis in neurons
during aging, such as oxidative damage, neuronal localization,
and quality control mechanisms. Compared to mitotic cells,
neurons are more sensitive to the accumulation of oxidative
damage and defective mitochondria (Kowald and Kirkwood,
2000; Terman et al., 2010). Neuronal unique shape, on the
other hand, generates a differential mitochondrial distribution
required to provide energy at specific compartments (Obashi and
Okabe, 2013). Indeed, evidence shows that at nerve terminals,
mitochondria are more prone to age-related dysfunction and
oxidative damage compared to non-synaptic mitochondria
(Lores-Arnaiz et al., 2016; Olesen et al., 2020). Importantly,
aging aggravates the difference between these two populations
of mitochondria (Borrás et al., 2010; Lores-Arnaiz et al.,
2016). The decreased ability of neurons to renew their pool

of healthy mitochondria and the lower activity of quality
control mechanisms, act synergistically to trigger deleterious
consequences in neurons not only in aging but also at earlier
stages. In the etiology of the most prevalent ND, shared
critical mitochondrial stressors includemisfolded and aggregated
proteins, impaired mitophagy, and oxidative stress (Niedzielska
et al., 2016; Bakula and Scheibye-Knudsen, 2020; Weidling and
Swerdlow, 2020). Considering also the number of ND-causative
genes associated with mitochondrial dysfunction (Masters et al.,
2015; Hardiman et al., 2017; Poewe et al., 2017), quality
control mechanisms such as UPRMT emerge as key intervention
targets for age-related diseases. However, compared to other
mitochondrial response programs (Pellegrino and Haynes, 2015;
Pernas and Scorrano, 2016; Misgeld and Schwarz, 2017) or even
UPRER (Hetz et al., 2020), the studies linking UPRMT and NDs
are just emerging.

Parkinson’s disease (PD) is caused by decreased dopamine
secretion from damaged dopaminergic neurons (reviewed
in Poewe et al., 2017). PD pathomechanism is strongly
connected to mitochondrial dysfunction and only recently
to UPRMT (Franco-Iborra et al., 2018; Chen et al., 2019). Two
proteins encoded by PD-causative genes, serine-threonine kinase
PINK1 and E3 ubiquitin ligase Parkin, work together to unclutter
dysfunctional mitochondria through mitophagy. PINK1 or
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Parkin downregulation induces decreased mitochondrial
respiration and ATP synthesis, degeneration of dopaminergic
neurons, and reduced lifespan (Zhu et al., 2013; Moisoi et al.,
2014; Tufi et al., 2014; Choi et al., 2015). In C. elegans, the
downregulation of their orthologs (pink-1 and pdr-1) activates
UPRMT as a mitigation mechanism. Without atfs-1 dependent
UPRMT activation, lifespan decreases, and dopamine neurons
degenerate (Cooper et al., 2017).

PINK1 also interacts with the ERα target HTRA2, mediating
its phosphorylation and activation (Plun-Favreau et al., 2007).
Interestingly, mutant alleles of HTRA2were found in PD patients
(Strauss et al., 2005; Unal Gulsuner et al., 2014).

PD pathogenesis is strongly connected to the accumulation
of α-synuclein (Poewe et al., 2017). αSynA53T preferentially
accumulates in the mitochondria and interacts with the
UPRMT-regulator ClpP, suppressing its peptidase activity.
Overexpression of the protease is sufficient to decrease αSynA53T-
associated pathology in mice (Hu et al., 2019). Despite the
previous evidence, reports are suggesting a toxic role of UPRMT

over-activation. Expression in dopaminergic neurons of an
active form of ATFS-1 lacking the mitochondrial target sequence
mimics stress conditions with a constant nuclear expression
of UPRMT targets. Over-activation of UPRMT shortens
lifespan and promotes faulty mitochondria accumulation, a
phenotype synergistically increased overexpressing mutant
αSynA53T (Martinez et al., 2017). From the epigenetic point
of view, α-synuclein expression in Drosophila led to an
upregulation of the methyltransferase EHMT2, with an overall
H3K9 dimethylation effect (Sugeno et al., 2016). It would be
interesting to study whether chromatin remodeling linked to the
H3K9Me2 epigenetic mark in this PD model modifies UPRMT

activation as previously reported (Merkwirth et al., 2016; Tian
et al., 2016).

Amyotrophic lateral sclerosis (ALS) is the most common
motor neuron disease and its complex etiology is explained
by the almost 30 causative genes that have been linked to
familial cases (reviewed in Hardiman et al., 2017). Among these
genes, mutations in the superoxide dismutase SOD1 initially
unveiled a link between ALS and mitochondrial dysfunction
(Rosen et al., 1993). Post-mortem samples of ALS patients
show the altered activity of ETC complexes (Bowling et al.,
1993), while SOD1 overexpression in transgenic mice causes
dysregulated ETC activity, increased ROS production, and
diminished mitochondrial Ca2+-buffering (Mattiazzi et al.,
2002; Brookes et al., 2004). Mutant SOD1G93A localizes in the
mitochondrial intermembrane space, which is sufficient to
activate two axes of UPRMT in vivo (Gomez and Germain,
2019). CHOP is transiently activated in mice’s spinal cord,
followed by Akt-dependent phosphorylation of ERα that
upregulates NRF1 and proteasome activity (Riar et al.,
2017; Gomez and Germain, 2019). This is consistent with
recent reports showing that UPRMT activation precedes the
onset of ALS and its activity increases throughout disease
progression (Pharaoh et al., 2019). Dysregulation of TDP-
43, another ALS causative gene, impairs mitochondria
in ALS patients, suppresses ETC complex I and activates
UPRMT in cellular and animal models. Downregulation

of the UPRMT protease LonP1 increased TDP-43 levels,
mitochondrial damage and neurodegeneration (Wang et al.,
2019). A third ALS-linked mitochondrial protein is CHCHD10,
which has an unknown function but its mutant aggregates
in mitochondria causing proteotoxic stress, mitochondrial
dysfunction and upregulation of the UPRMT regulators CHOP
and ATF5 (Anderson et al., 2019). These reports suggest
that the accumulation of ALS-associated mutant proteins
in mitochondria persistently over activates UPRMT, which
could be triggering detrimental effects on already stressed
neurons (Figure 1).

Alzheimer’s disease (AD) is characterized by key
neuropathological hallmarks such as the abnormal accumulation
of the amyloid-β (Aβ) peptide (reviewed in Masters et al., 2015).
Evidence indicates that oxidative damage and mitochondrial
dysfunction have a key role in AD pathogenesis (Butterfield
and Halliwell, 2019; Weidling and Swerdlow, 2020), but the
relationship between UPRMT and AD has only been recently
explored. Aβ accumulation activates UPRMT in human cells
and mice (Shen et al., 2020). In C. elegans, the sirtuin-activator
resveratrol reduced the Aβ-induced toxicity on a Ubl-5
dependent manner, decreasing the amount of Aβ aggregates
(Regitz et al., 2016). Further characterization of this finding could
provide clues of a potential connection between the two UPRMT

axes, and their association to AD. On the other hand, deficiency
of the mitochondrial protease PITRM1 induces UPRMT,
increased Aβ accumulation, and triggered AD-like phenotypes.
These were exacerbated by pharmacological inhibition of UPRMT

suggesting a protective role of the pathway on Aβ-associated
toxicity (Pérez et al., 2020). The expression of UPRMT-related
genes appear highly increased in post mortem samples of the
prefrontal cortex of AD patients (Beck et al., 2016). It would
be noteworthy to determine the temporality of this increased
expression to understand whether it is an early program
persistently activated throughout the disease progression, or a
late response triggered by an overall mitochondrial dysfunction.
This is especially relevant considering that the expression of
the epigenetic regulators of UPRMT EHMT1 and BAZ2B, and
therefore inhibition of UPRMT, correlates positively with the
progression of AD (Zhang et al., 2013; Yuan et al., 2020).
Therefore, future studies should try to clarify whether both
inhibition and persistent activation of UPRMT contribute to
ND pathomechanisms.

FUTURE PERSPECTIVES

Mitochondrial dysfunction is a hallmark of aging and age-related
neurodegenerative diseases (Kennedy et al., 2014). As
UPRMT activation extends mitochondrial function, further
characterization of the pathway will provide stronger hints to
understand neuronal homeostasis and healthspan extension. So
far, it seems that UPRMT activation is partially modulated by
the age-dependent methylation levels of Histone 3. As H3K9 is
differentially methylated in specific brain regions (Snigdha
et al., 2016), regulation of the UPRMT could differ in distinct
neuronal types. This fact raises concerns when thinking about
therapeutic approaches since systemic inhibition of UPRMT
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could be beneficial for cell types with a dysregulated activation of
UPRMT, but detrimental for another that requires its activation.
Therefore, the fine-tuning of UPRMT in different pathogenic
contexts will be a crucial consideration for future studies. In
the case of PD, AD and ALS, incipient evidence has emerged
in the last years highlighting also an over-activation of UPRMT

as contributors of the ND pathomechanisms. Future studies
on this topic should focus on determining whether known
ND causative genes are associated to UPRMT components on
an early neurodegenerative stage, or whether UPRMT is only
activated on a late, non-reversible stage as a consequence
of an overall neuronal decay. Precise pharmacological
modulation of the mitochondrial stress response could bring
new alternatives to restore compromised neuronal functions,
with a prospective increase in the life quality of ND patients and
the elderly population.
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