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INTRODUCTION
Pulsatile tinnitus (PT) is characterized by the noise percep-
tion synchronized with the heart rate.1 It can be classified 
as arterial, venous and arteriovenous,2 and venous PT 
accounts for 84% of all PT patients.3 Sigmoid sinus wall 
dehiscence with or without diverticulum has been reported 
as a primary etiology of venous PT.4–6 The sound caused 
by abnormal blood flow in the venous sinus is trans-
mitted to the inner ear through the dehiscent area. After 
sigmoid sinus wall reconstruction, the sound can disappear 
completely or is significantly relieved.7,8 Long-term PT 
seriously interferes with patients’ quality of life, and some-
times even leads to depression and suicide.9

More attention has been paid to the central nervous mech-
anism of tinnitus. Previous studies using resting-state 
fMRI found abnormal neuronal activity10,11 and functional 
connectivity in unilateral PT patients.12,13 These findings 

indicate that pathophysiological changes exist in the brains 
of PT patients. As neuronal activity and regional brain 
perfusion are closely coupled, increased neuronal activity 
may cause an increase in regional cerebral blood flow 
(CBF).14,15 Thus, we speculate that CBF alterations may be 
presented in PT patients, a hypothesis that has not been 
tested by other researchers.

Arterial spin labeling (ASL) is a perfusion imaging tech-
nique that uses magnetically labeled arterial blood protons 
as an endogenous contrast medium.16 Due to its ease of 
implementation and high signal-to-noise ratio, 3D pseudo-
continuous ASL has been considered an important method 
for clinical imaging research in recent years.17 Compared 
with traditional perfusion imaging techniques such as 
positron emission tomography (PET), dynamic contrast-
enhanced and dynamic susceptibility contrast MRI, ASL 
has the advantages of non-invasiveness, simplicity, and low 
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Objectives: Abnormal neuronal activity and functional 
connectivity have been reported in patients with venous 
pulsatile tinnitus (PT). As neuronal activity is closely 
coupled to regional brain perfusion, the purpose of this 
study was to investigate the cerebral blood flow (CBF) 
alterations in patients with unilateral venous PT using 
arterial spin labeling (ASL).
Methods: This study included patients with right-sided 
PT between January 2018 and July 2019. A healthy 
control (HC) group matched 1:1 for gender and age was 
also recruited. All subjects underwent ASL scanning 
using 3.0T MRI. The correlation between altered CBF 
and Tinnitus Handicap Inventory (THI) score as well as 
PT duration was analyzed.
Results Twenty-one patients with right-sided PT and 21 
HCs were included. The mean PT duration of the patients 

was 35.9 ± 32.2 months, and the mean THI score was 64.1 
± 20.3. Compared with the HCs, the PT patients exhib-
ited increased CBF in the left inferior parietal gyrus and 
decreased CBF in the bilateral lingual gyrus (family-wise 
error corrected, p < 0.05). The increased CBF in the left 
inferior parietal gyrus showed a positive correlation with 
the THI score in PT patients (r = 0.501, p = 0.021).
Conclusions PT patients exhibit regional CBF alterations. 
The increased CBF in the left inferior parietal gyrus may 
reflect the severity of PT.
Advances in knowledge: This study not only presents 
evidence for the potential neuropathology of PT from 
the perspective of CBF alterations but also offers a new 
method for investigating the neuropathological mecha-
nism of PT.
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cost. Because CBF and neuronal activity are closely linked,15 
ASL may be an alternative functional marker.17 Moreover, 
since the ASL signal originates from capillaries, it provides 
increased spatial specificity for neuronal activity.18,19 Therefore, 
ASL has been increasingly used in neurological and psychiatric 
disorders.20–22

In this study, we used the 3D pseudo-continuous ASL technique 
to investigate the CBF alterations in patients with unilateral 
venous PT. In addition, the correlation between altered CBF and 
tinnitus severity as well as tinnitus duration was analyzed.

METHODS AND MATERIALS
Subjects
All PT patients for this study were recruited from the ear, 
nose, and throat department between January 2018 and July 
2019. Patients meeting the following criteria were included: 1. 
persistent pulse-synchronous tinnitus in the right ear; 2. signif-
icant improvement in symptoms with compression of the right 
internal jugular vein8; 3. normal otoscopic, audiometric and 
tympanometric evaluations; 4. sigmoid sinus wall dehiscence 
with or without diverticulum found on CT arteriography and 
venography (CTA/V) examination and diagnosed as the main 
etiology23,24; 5. ASL performed before the operation and 6. the 
complete disappearance of the sound after sigmoid sinus wall 
reconstruction.

A 1:1 gender-, age-, handedness- and education level-matched 
healthy control (HC) group was also enrolled. The exclu-
sion criteria for all PT patients and HCs were as follows: non-
PT, hearing loss (hearing thresholds＞25 dB hearing level for 
0.250, 0.500, 1, 2, 3, 4, 6, and 8 kHz frequencies),25 hyperacusis, 
neurological diseases, tumor, stroke, systemic diseases (such as 
diabetes, hypertension, and hyperlipidemia), a history of drug 
and alcohol abuse within the past 3 months or contraindication 
to MRI examination. The severity of tinnitus in PT patients was 
evaluated by the Tinnitus Handicap Inventory (THI) score.

The Medical Research Ethics Committee of our institution 
approved this study protocol. In accordance with the Helsinki 
Declaration, every participant in this study provided written 
informed consent.

Image acquisition
Brain imaging was obtained on a GE Discovery MR750W 3.0-
Tesla scanner (Milwaukee, WI, USA) and eight-channel phased 
array coil. ASL data were obtained by a 3D pseudo-continuous 
fast spin echo sequence with background suppression (36 slices; 
echo time [TE], 10.7 ms; repetition time [TR], 4854 ms; post-
label delay [PLD], 2025 ms; slice thickness, 4 mm without gap; 
number of excitations, 3; in-plane resolution, 3.37×3.37 mm; 
field of view [FOV], 240×240 mm; flip angle [FA], 111°). The 
scanning time of the ASL sequence was 4 min and 42 s. We used 
foam padding to prevent head movement and earplugs to reduce 
noise. During the ASL data acquisition, all HCs and patients with 
PT were asked to stay awake, keep their eyes closed, and avoid 
thinking of anything.

Image processing
We obtained the maps of CBF by pairwise subtraction of the ASL 
control and label images. The CBF images of 21 HCs were co-reg-
istered to a PET-perfusion template in the standard space of 
Montreal Neurological Institute (MNI) by Statistical Parametric 
Mapping (SPM8). Subsequently, the standard CBF template of 
the MNI specific to this study was obtained by averaging the 
co-registered CBF images for the 21 HCs. We co-registered all 
the CBF images to the standard CBF template with resampling to 
2×2×2 mm3. The CBF of each voxel was normalized by dividing 
the average CBF of the whole brain to detect smaller CBF differ-
ences between groups.26 Finally, the CBF images were smoothed 
with an 8 mm full-width at half maximum (FWHM) Gaussian 
kernel.

Statistical analysis
SPSS v.22.0 was used for the statistical analysis. Fisher’s exact 
test and two-sample t-test were performed to calculate the group 
differences in baseline data. Significant difference was set as p < 
0.05.

Two-sample t-test was used to explore the group difference in 
CBF, with gender and age as covariates. The significance threshold 
of cluster-level family-wise error (FWE) correction was set to 
p＜0.05. A correlation analysis was performed between altered 
CBF and the clinic data.

RESULTS
Demographic characterization
In this study, 21 patients with right-sided PT and 21 HCs were 
included. No subjects were excluded during the pretreatment 
phase. Baseline information on the participants is shown in 
Table 1. The mean PT duration of the patients was 35.9 ± 32.2 
months, and the mean THI score was 64.1 ± 20.3. The two groups 
were well-matched in terms of gender (fisher’s exact test, p = 
1.000), age (two-sample t-test, p = 0.951), education level (two-
sample t-test, p = 0.480), and handedness (two-sample t-test, p 
= 1.000).

CBF differences between groups
The group differences in CBF are exhibited in Table  2 and 
Figure  1. Compared with the HCs, the PT patients demon-
strated significantly increased CBF in the left inferior pari-
etal gyrus (FWE corrected, p < 0.05). In contrast, the bilateral 
lingual gyrus demonstrated decreased CBF in PT patients 
compared with HCs (FWE corrected, p < 0.05). The CBF values 
of analyzed brain regions in PT patients and HCs are shown in 
Table 3.

Correlation between CBF and the duration as well 
as severity of PT
In PT patients, the increased CBF in the left inferior parietal 
gyrus showed a positive correlation with the THI score (r = 
0.501, p = 0.021) (Figure 2). There were no significant correla-
tions between the CBF in the bilateral lingual gyrus and the THI 
score as well as the duration in PT patients.
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DISCUSSION
In this study, we used 3D pseudo-continuous ASL to investigate 
CBF alterations in patients with unilateral venous PT. These 
patients revealed increased CBF in the left inferior parietal gyrus 
and decreased CBF in the bilateral lingual gyrus. Moreover, the 
increased CBF in the left inferior parietal gyrus showed a posi-
tive correlation with the THI score.

PT patients revealed increased CBF in the left inferior pari-
etal gyrus, the core of the tinnitus network.27 This network, 
confirmed by several studies,28–30 comprises the ventrolateral 
prefrontal cortex, inferior parietal area, parahippocampal cortex 
and auditory cortex.27 It constitutes a basic framework for under-
standing the pathophysiology of tinnitus. De Ridder asserted 
that the inferior parietal gyrus was involved in auditory memory, 
auditory memory retrieval and auditory perception in this 
tinnitus network.27 This region was even considered to represent 
the minimum brain activity required for effective sound retrieval 
from auditory memory.27 The inferior parietal gyrus is also a key 
component of the dorsal visual stream,31 which is responsible 
for processing acoustic information.32,33 A magnetoencepha-
lography study found that the inferior parietal gyrus can regu-
late the activity of auditory-related cortex in tinnitus patients.34 
Transcranial magnetic stimulation in this region can signifi-
cantly relieve tinnitus symptoms.29,30 These findings suggest 
that the inferior parietal gyrus may play a causal role in tinnitus 
perception. Notably, the abovementioned studies mainly focused 
on non-PT patients. An fMRI study of PT found increased 

amplitude of low-frequency fluctuation (ALFF) and regional 
homogeneity (ReHo) in the inferior parietal gyrus, suggesting 
that the neuronal activity was increased in this brain region.11 
As neuronal activity and brain perfusion are closely coupled, 
increased neuronal activity in the left inferior parietal gyrus may 
lead to an increase in CBF in this region, which is consistent with 
our finding. Moreover, this region, as a component of the cogni-
tive control network (CCN),35 is involved in abnormal functional 
connectivity in PT patients.12 Thus, the inferior parietal gyrus 
plays a key role in PT. In this study, we also found that increased 
CBF in the left inferior parietal gyrus was positively correlated 
with the THI score. This finding suggests that increased CBF in 
the left inferior parietal gyrus is more likely a reflection of the 
severity of PT. Based on these findings, we will investigate the 
CBF changes in patients with different treatment outcomes after 
surgery, and further explore whether the changed CBF in the left 
inferior parietal gyrus can be used as a non-invasive biomarker 
for PT diagnosis and treatment evaluation.

Table 1. Demographic and clinical data for PT patients and HCs

PT (n = 21) HC (n = 21) P value
Age (years) 39.3 ± 10.2 39.1 ± 9.7 0.951b

Gender (male/female) 2/19 2/19 1.000a

Education (years) 11.3 ± 3.7 12.1 ± 3.2 0.480b

Handedness 21 right-handed 21 right-handed 1.000b

PT duration (months) 35.9 ± 32.2 NA NA

THI score 64.1 ± 20.3 NA NA

Data are presented as the mean ± standard deviation. PT: pulsatile tinnitus; HC: healthy control; THI: Tinnitus Handicap Inventory; NA: not applicable
a Fisher’s exact test; b Two-sample t-test.

Table 2. Brain regions with significant CBF differences 
between PT patients and HCs

Brain region

Peak MNI 
(mm)
x y z

Peak T 
value

Cluster 
size (mm3)

PT >HC  �

L inferior parietal 
gyrus

−42–44 46  �  4.58 344

PT <HC  �

R lingual gyrus 32–64 −8 −4.80 273

L lingual gyrus −14–82 −2 −4.86 296

PT: pulsatile tinnitus; HC: healthy control; CBF: cerebral blood flow; 
MNI: Montreal Neurological Institute; L: left; R: right.

Figure 1. CBF differences between patients with unilateral 
PT and HCs. Compared with HCs, the patients with unilateral 
PT showed increased CBF in the left inferior parietal gyrus 
as well as decreased CBF in the bilateral lingual gyrus (FWE-
corrected p < 0.05). PT: pulsatile tinnitus; HC: healthy control; 
CBF: cerebral blood flow; FWE: family-wise error
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The lingual gyrus is an essential part of the visual-related 
cortex.36 In this study, PT patients showed decreased CBF in the 
bilateral lingual gyrus, raising the question of whether PT can 
lead to CBF alterations in the visual-related cortex. A previous 
fMRI study showed decreased ALFF values in the lingual gyrus 
in PT patients, indicating decreased neuronal activity in this 
region.37 This result is line with the decrease in CBF in our 
finding. The auditory cortex is closely related to the visual cortex 
in anatomy and functional connectivity.36,38 Increased functional 
connectivity in the visual-auditory network was also observed in 
PT patients in an fMRI study.12 Furthermore, neuronal activity 
of the visual cortex may be directly modulated by the auditory 
cortex.39 In this study, we also found increased CBF in the left 
inferior temporal gyrus and middle temporal gyrus (overlapped 
with the auditory cortex) in PT patients, but the CBF in these 
regions was not significantly different. This may be related to 
the relatively small sample size of this study. In addition, a direct 

network connection exists between the left inferior parietal 
cortex and the visual association areas, as reported in a magne-
toencephalography study.34 Therefore, increased CBF in the left 
inferior parietal gyrus, as observed in this study, may be involved 
in altering the CBF of the bilateral lingual gyrus.

Our study has several shortcomings. First, this was a preliminary 
study with a small sample size. PT accounts for approximately 
4% of all tinnitus cases.23 Therefore, it is a relatively uncommon 
disease. As we enroll more PT patients in future studies, we will 
study CBF alterations in PT patients with different durations 
of PT. Second, only right-sided PT patients were included in 
this study. Right-sided PT is the most common type in clinical 
practice,40 which possibly represents the disease status of most 
patients. Moreover, a previous fMRI study found the difference 
in functional connectivity characteristics between left-sided and 
right-sided PT.25 In the future, we will include more left-sided 
PT patients to explore the effect of the laterality of PT on brain 
perfusion. Third, previous studies have reported differences in 
brain structure and function between left- and right-handed 
individuals.41–43 In order to exclude the effect of handedness, 
all the subjects in this study are right-handed. Fourth, consid-
ering the radiation exposure and low incidence of sigmoid sinus 
wall abnormalities in asymptomatic individuals,5 CTA/V was 
not performed on HCs to evaluate sigmoid sinus wall abnor-
malities in this study. Fifth, morphological changes may affect 
the measurement of CBF. Previous studies have confirmed no 
significant difference in brain volume between the PT patients 
and HCs.10,12,13,37 Hence, we did not conduct a morphological 
study in this work. In addition, we will further explore the CBF 
changes in patients after successful surgery to reveal the effect of 
PT on brain perfusion.

CONCLUSION
In conclusion, we identified altered CBF in the left inferior pari-
etal gyrus and bilateral lingual gyrus, which may be involved in 
the neuropathological process of patients with PT. In this study, 
we also found that the increased CBF in the left inferior pari-
etal gyrus may reflect the severity of PT. These findings not only 
present evidence for the potential neuropathology of PT from 
the perspective of CBF changes but also offer a new method for 
investigating the neuropathological mechanism of PT.
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Table 3. The CBF values of analyzed brain regions in PT 
patients and HCs

PT HC
L inferior parietal gyrus 52.83 ± 11.25 48.31 ± 7.92

R lingual gyrus 47.08 ± 9.93 55.74 ± 8.88

L lingual gyrus 48.01 ± 10.10 57.32 ± 9.20

Data are presented as the mean ± standard deviation. Values are in 
units of mL / 100 g / min. PT: pulsatile tinnitus; HC: healthy control; 
L: left; R: right.

Figure 2. Correlation between the normalized CBF and THI 
score in patients with unilateral PT (r = 0.501, p = 0.021). 
PT: pulsatile tinnitus; CBF: cerebral blood flow; THI: Tinnitus 
Handicap Inventory
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