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Abstract

Tetraena mongolica, Zygophyllum xanthoxylon, and Z. fabago are three typical dryland

plants with important ecological values in subfamily Zygophylloideae of Zygophyllaceae.

Studies on the chloroplast genomes of them are favorable for understanding the diversity

and phylogeny of Zygophyllaceae. Here, we sequenced and assembled the whole chloro-

plast genomes of T. mongolica, Z. xanthoxylon, and Z. fabago, and performed comparative

genomic and phylogenetic analysis. The total size, structure, gene content and orders of

these three chloroplast genomes were similar, and the three chloroplast genomes exhibited

a typical quadripartite structure with a large single-copy region (LSC; 79,696–80,291 bp), a

small single-copy region (SSC; 16,462–17,162 bp), and two inverted repeats (IRs; 4,288–

4,413 bp). A total of 107 unique genes were identified from the three chloroplast genomes,

including 70 protein-coding genes, 33 tRNAs, and 4 rRNAs. Compared with other angio-

sperms, the three chloroplast genomes were significantly reduced in overall length due to

an unusual 16–24 kb shrinkage of IR regions and loss of the 11 genes which encoded sub-

units of NADH dehydrogenase. Genome-wide comparisons revealed similarities and varia-

tions between the three species and others. Phylogenetic analysis based on the three

chloroplast genomes supported the opinion that Zygophyllaceae belonged to Zygophyllales

in Fabids, and Z. xanthoxylon and Z. fabago belonged to Zygophyllum. The genome-wide

comparisons revealed the similarity and variations between the chloroplast genomes of the

three Zygophylloideae species and other plant species. This study provides a valuable

molecular biology evidence for further studies of phylogenetic status of Zygophyllaceae.

Introduction

Tetraena mongolica, Z. xanthoxylon, and Z. fabago are three typical dryland plants belonging

to the subfamily Zygophylloideae of Zygophyllaceae [1–3]. Zygophyllaceae are a family of

about 350 species in 27 genera, and plants in Zygophyllaceae are mainly distributed in tropical,
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subtropical and temperate regions in Asia, Africa, Europe, America, and Australia. In China,

there are 5 subfamilies, 6 genera, 31 species, 2 subspecies, and 4 varieties of Zygophyllaceae

plants. Zygophyllaceae plants are usually herbs, shrubs, or subshrub, and most of them are tol-

erant to drought and salt stress, and can grow in barren soil in the arid and semi-arid regions,

that represents high ecological importance of the species.

There are different points of view on the taxonomic status of Zygophyllaceae. According to

Cronquist system [3], Zygophyllaceae was classified into Sapindales based on its morphologi-

cal characteristic. However, Zygophyllaceae was classified in the order of Geraniales in Flora
Reipublicae Popularis Sinicae [4] and Flora of China [5], based on the morphological feature.

The angiosperm taxonomy published by the angiosperm phylogenetic group (APG) from 1998

is making efforts to build a consensus view of the taxonomy of flowering plants based on DNA

sequence data [6]. In APG IV system published in 2016 [7], Zygophyllaceae were included in

Zygophyllales, and Zygophyllales was classified in the legumes of Rosids in the core eudicotyle-

dons, as a base group of this branch. In addition, according to Flora Reipublicae Popularis Sini-
cae, there are six genera in Zygophyllaceae, including Tetrahedral, Sarcozygium, Zygophyllum,

Nitraria, Peganum, and Tribulus, but in Flora of China, there are only three genera included in

Zygophyllaceae, Tetrahedral, Zygophyllum, and Tribulus. Sarcozygium was classified into Zygo-
phyllum, and Nitraria and Peganum are classified as two new families, Nitrariaceae and Pega-

naceae. More evidence is needed to clarify these taxonomic issues.

The chloroplast genome is a suitable tool for studying evolution and phylogenetics of plants

because of its highly conserved sequence and structure [8]. As one of the two semi-autono-

mous organelles in plant cells [9], chloroplast is the main site of photosynthesis [10, 11]. The

chloroplast genome of most angiosperms is inherited from the maternal line, while that of

gymnosperms is mainly inherited from the paternal line [12]. In general, chloroplast genome

exhibits a typical quadripartite structure, ranging in size from 120kb to 200kb, including a

double-stranded closed loop with a long single-copy sequence (LSC, 80 kb-90 kb), a short sin-

gle-copy sequence (SSC, 16 kb-27 kb), and two reverse repeat sizes (IRs, 20 kb-28 kb) with

roughly equal length [9, 13]. The nucleotide sequence of chloroplast DNA provides a large

amount of information, including not only related information on protein-encoding and non-

coding genes, but also data to infer gene rearrangement and evolutionary relationships [14,

15]. The chloroplast genome has become an indispensable molecular resource for species iden-

tification, molecular barcode, population genetics and phylogenetic research [16–18], also the

comparative analysis based on chloroplast genomes reveals gene rearrangement events and

evolutionary histories.

Previous studies have reported the chloroplast genomes of T. mongolica, Z. xanthoxylon,

and Z. fabago. However, further studies are needed to deeply explore the structure and phylo-

genetic status of the three species [19, 20]. In the present study, the complete chloroplast

genomes of T. mongolica, Z. xanthoxylon, and Z. fabago were sequenced by using Illumina

sequencing platform, and then assembled and annotated. Comparative genomics tools were

used to reveal the conservation and variations in chloroplast genomes of these three species.

The phylogenetic analysis was conducted by using the complete chloroplast genome sequences

of various species to explore the phylogenetic position of these three species in Zygophyllaceae.

Materials and methods

Plant material, DNA extraction and sequencing

Fresh leaves of T. mongolica, Z. xanthoxylon, and Z. fabago were gathered from adult plants in

Mengxi Town, Erdos City, Inner Mongolia Autonomous Region, in China. Total genomic

DNA was extracted from the leaves utilizing the Plant Genomic DNA Kit (Tiangen Biotech
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Co., Beijing, China). The quality of DNA samples was assessed using a NanoDrop 2000 spec-

trophotometer (Nanodrop technologies, Wilmington, DE, USA) and agarose gel electrophore-

sis. Illumina paired-end DNA libraries with approximately 300 bp insert fragment were built

using the NEBNext1Ultra™ DNA Library Prep Kit and sequenced using an Illumina

HiSeq2500.

Chloroplast genome assembly and annotation

The raw data were processed by filtering adapter and low-quality reads using fastQC (http://

www.bioinformatics.babraham.ac.uk/projects/fastqc/), then the clean data were used for

genome assembly. GetOrganelle (https://github.com/Kinggerm/GetOrganelle) [21] and

SPAdes (v. 3.9.0) [22] were used to assemble the clean data using the default parameter. The

chloroplast genome assembly was then identified from the assembled sequences by align to

Tribulus terrestris (NC_046758), Arabidopsis and tobacco chloroplast genomes [11, 23]. The

online annotation tool DOGMA (http://dogma.ccbb.utexas.edu) [24] was utilized to annotate

the protein-coding genes, tRNAscan-SE [25, 26] software was used to annotate the tRNA gene,

and RNAmmer 1.2 server (http://www.cbs.dtu.dk/services/RNAmmer/) [27] was used for

rRNA identification. The annotation results were edited using Sequin, and the resulting Sqn

file was submitted to the GenBank database. The GenBank accession number of the chloro-

plast genomes of T. mongolica, Z. xanthoxylon, and Z. fabago were MK331720, MZ427318,

and MK341052, respectively. The GenBank annotation files were submitted to Organellar

Genome DRAW (OGDRAW) [28] to draw the visualized chloroplast genome map.

Loss of ndh genes verification

To verify the loss of ndh genes in the chloroplast genomes of T. mongolica, Z. xanthoxylon, and

Z. fabago, leaf DNA samples were extracted from tobacco and these three species and PCR

experiments were performed on fragment psaC-ndhE-ndhG-ndhI-ndhA-ndhH-rps15 and

rps7-ndhB-trnL-CAA of the tobacco chloroplast genome and the fragment psaC-rps15 and

rps7-trnL-CAA of the chloroplast genomes in the three species. The PCR products were

sequenced (BBI Life Sciences Co., Shanghai, China), and the sequencing results were spliced

and compared with the references of the corresponding species. Details of gene fragments

selected and primers in PCR were list in S1 Table.

Genomic structure analysis

The Perl script MISA (https://webblast.ipk-gatersleben.de/misa/) [29] was used to detect

microsatellites (mononucleotides, dinucleotides, trinucleotides, tetranucleotides, pentanucleo-

tides, hexanucleotides) from three chloroplast genomes of Zygophyllaceae plants with the fol-

lowing thresholds: 10 repeat units of mononucleotide SSR, 6 repeat units of dinucleotide SSR,

5 repeat units of trinucleotide, tetranucleotide, pentanucleotide and hexanucleotide SSR. The

online software REPuter (https://bibiserv.cebitec.uni-bielefeld.de/reputer) (University of Biele-

feld, Bielefeld, Germany) [30] was utilized to predict the location and size of the repeat

sequences, with the parameter set to spread the repeat copy at a percentage of at least 90%

similarity, the minimum repeat size parameter was set as 30 bp.

Identification of polymorphic loci

Multiple alignment was conducted among the chloroplast genomes of T. mongolica, Z.

xanthoxylon, and Z. fabago after removing of IRA region utilizing MAFFT v7 [31]. The pro-

tein-coding regions and intergenic spacer regions were isolated from the alignment using
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Geneious R8.1 [32]. The nucleotide diversity values (Pi) and polymorphism of each sequence

were calculated in DnaSP 6.12 [33] to investigate the polymorphic loci.

Codon usage analysis

The distribution of codon usage was analyzed using the software CodonW (University of

Texas, Houston, TX USA) [34] with the Relative synonymous codon usage (RSCU) value.

RSCU value is an efficient index reflecting non-uniform usage of synonymous codons in a

given coding sequence. In general, the RSCU value without any codon usage bias equals 1.00,

and a RSCU below 1.00 indicates the relative probability of codon utilization is lower than

expectation, just as the codon utilization frequency is higher than expectation while the RSCU

may be above 1.00.

Comparative genomics analysis

The comparison of gene order between chloroplast genomes of T. mongolica (MK331720), Z.

xanthoxylon (MZ427318), Z. fabago (MK341052), A. trichopoda (NC_005086.1), A. carambola
(NC_033350.1), L. usitatissimum (NC_036356.1), E. novogranatense (NC_030601.1), G.

maderense (NC_029999.1), and E. carvifolium (NC_015083.1) was performed using MAUVE

[35]. The online program mVISTA (http://genome.lbl.gov/vista/mvista/submit.shtml) [36]

was utilized to find the divergence of chloroplast genomes of three species in Shuffle-LAGAN

mode. The sequences were initially aligned according to MAFFT v7 [31] and manually

adjusted based on BioEdit v7.0.9 [37].

Phylogenetic analysis

Chloroplast genomes of 69 plant species were used to reconstruct the phylogenetic trees, and

these species belong to Caryophyllales, Santalales, Vitales, Myrtales, Brassicales, Huerteales,

Malvales, Sapindales, Oxalidales, Malpighiales, Celastrales, Rosales, Fagales, Cucurbitales,

Zygophyllales, Fabales and Geraniales (S2 Table). The chloroplast genomes of 66 species were

downloaded from the NCBI database to construct the phylogenetic tree using the Maximum

Likelihood method. A. trichopoda were set as outgroup. The sequences of 50 shared protein-

coding genes (atpA, atpB, atpE, atpF, atpH, atpI, ccsA, cemA, matK, petA, petB, petD, petG,

petL, petN, psaA, psaC, psaI, psaJ, psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK,

psbM, psbN, psbT, rbcL, rpl14, rpl16, rpl20, rpl22, rpl32, rpl36, rpoA, rpoB, rpoC1, rpoC2, rps3,

rps4, rps8, rps14, rps18, ycf3, ycf4) were extracted using TBtools V0.6669 [38] and aligned by

MAFFT v7.427 [31]. After manual adjustment of the alignment, phylogenetic trees were

rebuilt based on 50 common protein-coding gene sequences using MEGA X [39] software

with 1000 bootstrap replicates.

Results

Genome content and organizations

Approximately 3 G, 3 G, and 7.1 G of 150 bp pair-end clean reads for T. mongolica, Z. xanthox-
ylon, and Z. fabago, respectively, were got from the Illumina sequencing, while the reads were

assembled using GetOrganelle and SPAdes (Fig 1). The overall size of T. mongolica, Z.

xanthoxylon, and Z. fabago chloroplast genomes are 106,081 bp, 105,423 bp, and 104,984 bp,

respectively, which are significantly smaller than most of the plant chloroplast genomes. The

chloroplast genomes of the three species show the typical quadripartite structure of angio-

sperm cpDNA, which consist of a large single copy (LSC) region of 80,291 bp in T. mongolica,

79,877 bp in Z. xanthoxylon, and 79,696 bp in Z. fabago, a small single copy (SSC) region of
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17,162 bp in T. mongolica, 16,970 bp in Z. xanthoxylon, and 16,462 bp in Z. fabago, and a pair

of inverted repeats (IRs) of 4,315 bp in T. mongolica, 4,288 bp in Z. xanthoxylon, and 4,413 bp

in Z. fabago. The GC content of the chloroplast genomes are 33.7%, 34.06%, and 36.0%,

respectively.

All the three chloroplast genomes encode 107 unique genes, including 70 protein-coding

genes, 4 rRNA genes, and 33 tRNA genes (Tables 1 and 2). It is noteworthy that the rRNA

genes located in IRs region in most higher plants present in the SSC region of the three Zygo-

phyllaceae plants, and subsequently the copy number of rRNA genes change from 2 to 1. We

compared the three Zygophyllaceae chloroplast genomes with that of Amborella trichopoda,

which was thought to be the most primitive group of angiosperms, and the result showed that

all the ndh genes encoding subunits of NADH oxidoreductase were lost in T. mongolica, Z.

xanthoxylon, and Z. fabago which usually located in SSC and IRs. Moreover, rps16, rpl12, ycf2
and infA, which were common in the chloroplast genomes of most angiosperms, lost in the

chloroplast genomes of these three Zygophyllaceae plants.

To verify the loss of ndh genes in chloroplast genomes of these three species, utilizing

tobacco as the reference, the gene fragment psaC-ndhE-ndhG-ndhI-ndhA-ndhH-rps15 and

rps7-ndhB-trnL-CAA located in SSC and IRA regions of tobacco chloroplast genome and the

corresponding fragments in chloroplast genomes of T. mongolica, Z. xanthoxylon, and Z.

fabago were selected for verification. The results showed that ndhE, ndhG, ndhI, ndhA, ndhH
and ndhB genes were lost in the selected fragments of chloroplast genomes of T. mongolica, Z.

xanthoxylon, and Z. fabago (Fig 2).

Introns play crucial roles in the regulation of gene expression [40–42]. In the chloroplast

genomes of T. mongolica, Z. xanthoxylon and Z. fabago, 14 genes (trnK-UUU, trnG-GCC, atpF,

rpoC1, trnL-UAA, trnV-UAC, clpP, petB, petD, rpl16, rpl2, trnA-UGC, trnl-GAU and rpl2) con-

tain one intron, while one gene (ycf3) contain two introns (Table 3). The trnK-UUU gene,

which contains the matK gene, has the largest intron with a length of 2544–2551 bp, while the

length of other introns ranged from 455 bp to 943 bp.

Repeat and SSRs analysis

Basic units made by 1–6 nucleotides repeated for several times form SSRs (Simple sequence

repeats), which are widely utilized as molecular markers in molecular biology studies [43–45].

Fig 1. The complete chloroplast genome of T. mongolica (a), Z. xanthoxylon (b) and Z. fabago (c). The predicted genes are displayed and colors

indicate functional classifications in the legend. The genes outside the circle are transcribed clockwise, whereas those inside the circle are transcribed

counterclockwise. The inner gray circle describes the GC content. The large single copy (LSC), small single copy (SSC) and inverted repeat (IR) regions

are marked in the inner circle.

https://doi.org/10.1371/journal.pone.0263253.g001
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The types and distribution of SSRs in the chloroplast genomes of T. mongolica, Z. xanthoxylon
and Z. fabago were predicted. The total number of SSRs detected in T. mongolica, Z. xanthoxy-
lon, and Z. fabago were 76, 65, and 78. The most common SSRs were A or T mononucleotide

repeats, accounting for 98.7%, 93.8%, and 97.4%, while no G or C repeats were predicted. In

addition, mononucleotide and dinucleotides were identified in T. mongolica, Z. xanthoxylon
and Z. fabago, respectively, and no trinucleotide, tetranucleotide, pentanucleotide, and hexa-

nucleotide SSRs were predicted (Table 4). Most SSRs of T. mongolica, Z. xanthoxylon and Z.

fabago were located in LSC regions (84.2%, 80.0%, and 84.6%, respectively), followed by SSC

regions (13.2%, 10.8%, and 7.7%, respectively) (Table 5).

We used REPuter [30] and Tandm Repeats Finder [46] to identify the palindrome repeats,

forward repeats, reverse repeats, and tandem repeats of chloroplast genomes of T. mongolica,

Table 1. Genes identified from the chloroplast genomes of T. mongolica, Z. xanthoxylon and Z. fabago.

Category Function Gene names

Transcription and

translation

Ribosomal proteins (LSU) rpl2�, rpl14, rpl16, rpl20, rpl22, rpl23�, rpl32, rpl33, rpl36
Ribosomal proteins (SSU) rps2, rps3, rps4, rps7, rps8, rps11, rps12, rps14, rps15, rps18, rps19�

RNA polymerase rpoA, rpoB, rpoC1, rpoC2

Ribosomal RNAs rrn4.5, rrn5, rrn16, rrn23
tRNA genes trnA-UGC, trnC-GCA, trnD-GUG, trnE-UUC, trnF-GAA, trnfM-CAU, trnG-GCC, trnG-UCC, trnH-GUG�,

trnI-CAU�, trnI-GAU, trnK-UUU, trnL-CAA�, trnL-UAA, trnL-UAG, trnM-CAU�, trnN-GUU, trnP-UGG,

trnQ-UUG, trnR-ACG, trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC,

trnV-UAC, trnW-CCA, trnY-GUA
Photosynthesis ATP synthase atpA, atpB, atpE, atpF, atpH, atpI

Cytochrome b/f complex petA, petB, petD, petG, petL, petN
Photosystem I psaA, psaB, psaC, psaI, psaJ
Photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ

Other genes Maturase matK
Envelop membrane protein cemA
Subunit Acetyl-

CoA-Carboxylate

accD

c-type cytochrome synthesis

gene

ccsA

ATP-dependent protease

subunit gene

clpP

Unknown Proteins of unknown function ycf1, ycf3, ycf4, ycf15�

� Duplicate genes.

https://doi.org/10.1371/journal.pone.0263253.t001

Table 2. Summary of major features of the three chloroplast genomes.

Item T. mongolica Z. xanthoxylon Z. fabago
Total length (bp) 106,081 105,423 104,984

LSC length (bp) 80,291 79,877 79,696

SSC length (bp) 17,162 16,970 16,462

IR length (bp) 4,315 4,288 4,413

GC (%) 33.70 34.06 36.00

Total number of gene 107 107 107

No. of protein-coding genes 70 70 70

No. of rRNA 4 4 4

No. of tRNA 33 33 33

https://doi.org/10.1371/journal.pone.0263253.t002
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Z. xanthoxylon, and Z. fabago (Fig 3). A total of 53, 40, and 38 long repeats were detected in

three chloroplast genomes (Fig 3a). The chloroplast genome of T. mongolica contained 49

tandem repeats, 3 palindrome repeats, and 1 reverse repeats. The chloroplast genome of Z.

xanthoxylon contained 36 tandem repeats and 4 palindrome repeats, while the chloroplast

genome of Z. fabago contained 34 tandem repeats, 3 palindrome repeats, and 1 reverse repeats

(Fig 3b). In the three chloroplast genomes, long repeats with the length of 10 bp was the most

common category, and then 11 bp and 12 bp categories (Fig 3c).

Fig 2. Comparison of sequencing results of PCR products among chloroplast genomes of tobacco, T. mongolica, Z. xanthoxylon, and Z. fabago to

show the loss of ndh genes. Tobacco chloroplast genome as the reference. (a) Comparison of the fragment psaC-ndhE-ndhG-ndhI-ndhA-ndhH-rps15
in tobacco and corresponding regions in the chloroplast genomes of T. mongolica, Z. xanthoxylon, and Z. fabago. (b) Comparison of the fragment rps7-

ndhB-trnL-CAA in tobacco and corresponding regions in chloroplast genomes of T. mongolica, Z. xanthoxylon, and Z. fabago. The screenshots

indicated by the blue arrows were excerpts from the PCR sequencing results of each gene.

https://doi.org/10.1371/journal.pone.0263253.g002
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Polymorphic loci analysis

The polymorphism of each region was exhibited (Fig 4). We selected 8 polymorphic regions

with the length>300 bp and nucleotide diversity values (Pi)>0.1, trnK-UUU-trnQ-UUG,

trnS-GCU-trnG-GCC, trnT-UGU-trnL-UAA, rbcL-accD, rpl33-rps18, trnI-CAU-ycf15,

rps15-trnN-GUU and trnV-GAC-rps7 (Table 6). All regions selected belonged to intergenic

spacer regions, of which 5 presented in LSC region, 2 in SSC region and 1 in IR region.

Codon usage

Codon preference (codon usage bias) indicates the result of combined action of natural selec-

tion, species mutations, and genetic drift [47]. In the present study, according to the sequences

Table 3. Intron-containing genes in chloroplast genomes of T. mongolica, Z. xanthoxylon and Z. fabago.

Gene Location Intron length in T. mongolica (bp) Intron length in Z. xanthoxylon (bp) Intron length in Z.fabago (bp)

trnK-UUU SSC 2551 2544 2551

trnG-GCC SSC 691 695 682

atpF SSC 760 723 650

rpoC1 SSC 814 774 784

ycf3� SSC 752, 757 736, 743 786, 747

trnL-UAA SSC 460 455 465

TrnV-UAC SSC 603 621 612

clpP SSC 866 823 837

petB SSC 749 793 791

petD SSC 781 761 772

rpl16 SSC 943 855 940

rpl2 IRB 668 668 630

trnA-UGC SSC 712 716 716

trnl-GAU SSC 845 753 834

rpl2 IRB 668 671 666

� The gene has two introns.

https://doi.org/10.1371/journal.pone.0263253.t003

Table 4. Types and numbers of SSRs in chloroplast genomes of T. mongolica, Z. xanthoxylon and Z. fabago.

SSRs type Repeat unit Number in T. mongolica (bp) Number in Z. xanthoxylon (bp) Number in Z.fabago (bp)

Mono A/T 75 61 76

Di AT/TA 1 4 2

Tri - - 0 0 0

Tetra - - 0 0 0

penta - - 0 0 0

hexa - - 0 0 0

total - - 76 65 78

https://doi.org/10.1371/journal.pone.0263253.t004

Table 5. The summary of SSRs distribution in different regions of three chloroplast genomes.

Species LSC IRA SSC IRB

T. mongolica 64 1 10 1

Z. xanthoxylon 52 3 7 3

Z. fabago 66 3 6 3

https://doi.org/10.1371/journal.pone.0263253.t005
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of protein-coding genes, the frequency of codon usage of the chloroplast genomes of T. mongo-
lica, Z. xanthoxylon, and Z. fabago was assessed (Figs 5 and 6). On the whole, the coding pref-

erences of the three chloroplast genomes are very similar. All protein-coding genes of T.

mongolica, Z. xanthoxylon, and Z. fabago consist of 35360, 35141, and 34994 codons, respec-

tively. Among all these codons, isoleucine and methionine are the most frequently and the

least frequently occurring amino acids in three chloroplast genomes. Specifically, there are up

to 3362 (9.51%), 3362 (9.57%), and 3417(9.76%) isoleucine-encoding codons in chloroplast

genomes of T. mongolica, Z. xanthoxylon, and Z. fabago, respectively; while there are 590

(1.67%), 619 (1.76%), and 615(1.76%) methionine-encoding codons in chloroplast genomes

of T. mongolica, Z. xanthoxylon, and Z. fabago, respectively (Fig 5).

Fig 3. Long repeat sequences in chloroplast genomes of T. mongolica, Z. xanthoxylon, and Z. fabago. (a) Number of long

repeats; (b) Number of different long repeats types; (c) Sequence length of long repeats.

https://doi.org/10.1371/journal.pone.0263253.g003

Fig 4. The nucleotide diversity values (Pi) of all regions. Regions with Pi = 0 are excluded and are not exhibited in the figure. The black starts show 8

polymorphic loci with the length>300 bp and Pi>0.1. The X-axis indicates chloroplast regions and the y-axis nucleotide diversity values (Pi).

https://doi.org/10.1371/journal.pone.0263253.g004
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Relative synonymous codon usage analysis indicated that there was more than one syno-

nym codon for almost all (except methionine) amino acids in the three chloroplast genomes,

and the codons of UGG (tryptophan) and AUG (methionine) exhibited no usage bias

(RSCU = 1) (Fig 6). About half of the codons have a RSCU value of>1.00 (30, 30, and 32 for

the chloroplast genomes of T. mongolica, Z. xanthoxylon, and Z. fabago, respectively), and all

codons with usage bias (RSCU>1) except CGU ended with A or U.

Table 6. Polymorphic loci identified based on comparative analysis of chloroplast genomes of T. mongolica, Z. xanthoxylon, and Z. fabago.

Serial number Region Nucleotide diversity Number of polymorphic sites Alignment length Conserved length

1 trnI-CAU-ycf15 0.28721 204 729 477

2 trnK-UUU-trnQ-UUG 0.23601 179 871 524

3 rbcL-accD 0.18088 105 777 387

4 trnS-GCU-trnG-GCC 0.17105 130 918 760

5 rpl33-rps18 0.14917 80 536 362

6 trnT-UGU-trnL-UAA 0.10503 103 1065 676

7 trnV-GAC-rps7 0.10490 180 2775 1716

8 rps15-trnN-GUU 0.10426 136 1114 908

https://doi.org/10.1371/journal.pone.0263253.t006

Fig 5. Proportion of codon preference in chloroplast genome of T. mongolica, Z. xanthoxylon and Z. fabago.

https://doi.org/10.1371/journal.pone.0263253.g005
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Comparative genomics analysis

To detect gene loss and inversion, we compared the chloroplast genomes of the three Zygo-

phyllaceae species with those of Averrhoa carambola, Linum usitatissimum, Erythroxylum
novogranatense, Geranium maderense, and Erodium carvifolium, using MAUVE. The results

pointed out that the size of the chloroplast genomes of the three Zygophyllaceae species were

approximately (10–60) kb smaller than those of other species (Fig 7), and all 11 genes which

encoded the subunits of NADH dehydrogenase (ndh gene) were lost from SSC and IRs. More-

over, the 4 rRNA that appeared in the IR region in most other plant were transferred to the

SSC region in the three Zygophyllaceae species. In addition, compared with other species,

there were no gene inversions in LSC region, SSC region, and IR region in the chloroplast

genomes of the three Zygophyllaceae species.

In order to characterize genomic divergence between T. mongolica, Z. xanthoxylon, and Z.

fabago, mVISTA software was employed to identify the divergent regions in the chloroplast

genomes of the three Zygophyllaceae species, and Tribulus terrestris chloroplast genome was

utilized as reference (Fig 8). The two IR regions were more conserved than LSC and SSC

region, and the non-coding regions exhibited higher divergence than the coding regions.

Moreover, the highest divergent regions in the three chloroplast genomes were detected in the

intergenic spacer regions, including trnK-trnQ, trnQ-psbK, trnS-trnG, trnG-trnR, trnR-atpA,

Fig 6. Codon content of 20 amino acids and stop codons in all protein-coding genes of chloroplast genomes of T.

mongolica, Z. xanthoxylon, and Z. fabago.

https://doi.org/10.1371/journal.pone.0263253.g006
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atpF-atpH, trnR-atpA, rpoC1-rpoB, petN-psbM, trnE-trnT, trnG-UCC-trnfM-CAU, psbA-ycf3,

trnT-trnL, trnF-trnV, atpB-rbcL, rbcL-accD, psbE-petL, rpl33-rps18, rps18-rpl20, rpl36-rps8,

trnI-ycf15, psaC-rps15, rps15-trnN, trnN-trnR, trnV-rps12, rps7-rpl32, and rpl32-trnL.

Phylogenetic analysis

To investigate the phylogenetic status of the three Zygophyllaceae species in angiosperms and

their interspecific relationships, 50 protein-coding genes from 69 plant species were phyloge-

netically analyzed using MEGA X software (Fig 9). All the plants chosen belong to the Core

Eudicots branch according to the APG classification [6, 7, 48, 49]. The results indicated that

Caryophyllales and Santalales were early-divergent angiosperms, and order Vitales was the

earliest divergent clade of Rosids. Of Malvids and Fabids clades, Myrtales, Geraniales, and

Zygophyllales were early evolutionary groups. As expected, the three Zygophyllaceae species

were clustered in the Fabids clade together with Oxalidales, Malpighiales, Celastrales, Rosales,

Fagales, Cucurbitales, and Fabales. But unexpected, the four Zygophyllales plants were clus-

tered in one branch with Geraniales and Fabales, considered that Geraniales was classified in

Malvids according to the latest APG classification. In Zygophyllaceae, Z. xanthoxylon and Z.

fabago formed a monophyletic branch with 100% bootstrap value, and the branch was sister

clade to the genus Tetraena.

IR expansion and contraction

Although the IR region is thought to be the most conserved region in chloroplast genome, the

contraction and expansion of the IR region boundary is a common phenomenon in the evolu-

tion of the chloroplast genome and the main cause of the chloroplast genome size alteration

[50–52]. Here, we conducted a comparative analysis of the IR/LSC and IR/SSC boundary

regions of T. terrestris, T. mongolica, Z. xanthoxylon, and Z. fabago (Fig 10). In these three

chloroplast genomes of T. mongolica, Z. xanthoxylon, and Z. fabago, no pseudogenes and

genes crossing the border were found. The boundary was between rpl22 and trnH-GUG on the

IRB/LSC side, and between trnH-GUG and psbA on the IRA/LSC side. In T. mongolica, the

Fig 7. Gene order comparison of nine chloroplast genomes (A. carambola, L. usitatissimum, E. novogranatense, G.

maderense, E. carvifolium, T. mongolica, Z. xanthoxylon and Z. fabago). A. trichopoda chloroplast genome as

reference, utilizing MAUVE software. The boxes above the line indicate the gene sequences in clockwise direction and

the boxes below the line indicate gene sequences in counterclockwise direction.

https://doi.org/10.1371/journal.pone.0263253.g007
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Fig 8. Comparison of the three chloroplast genomes utilizing T. terrestris as reference. Gray arrows and thick black

lines above the alignment represent gene direction. Purple bars show exons, sky-blue bars show transfer RNA (tRNA)

and ribosomal RNA (rRNA), red bars show non-coding sequences (CNS) and white peaks show the differences

between chloroplast genomes. The y-axis indicates the identity percentage ranging from 50 to 100%.

https://doi.org/10.1371/journal.pone.0263253.g008
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boundary of IRB/SSC was located between trnL-CAA and trnL-UAG, and the boundary of

IRA/SSC was between rpl32 and trnL-CAA. In Z. xanthoxylon and Z. fabago, the boundary of

IRB/SSC was located between rpl32 and trnL-CAA, and the boundary of IRA/SSC was between

rps7 and trnL-CAA.

Specifically, in the IR region of T. mongolica, Z. xanthoxylon and Z. fabago, trnH-GUG devi-

ates from the IR/LSC boundary by 129 bp, 155 bp, and 164 bp, respectively. trnL-CAA is 566

bp, 449 bp, 594 bp, respectively, from the IR/SSC boundary. The gene rpl22 located in LSC,

which was 13–28 bp from the IRB/LSC border, similarly, the gene psbA deviated from the

IRA/LSC by 80–130 bp. Among the three species, the genes close to the IR/SSC border in SSC

Fig 9. The phylogenetic tree of the sequences from 69 species, using Maximum Likelihood (ML) based on concatenated sequences of 50 genes

implemented in MEGA X. A. trichopoda was set as the outgroup. Bootstrap supports were calculated from 1000 replicates. ▲ Represent the bootstrap

value.$ Represent the missing evolutionary branch of the 11 gene.

https://doi.org/10.1371/journal.pone.0263253.g009
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were different. In T. mongolica, trnL-UAG was 554bp from IRB/SSC boundary, and rpl32 was

46bp from IRA/SSC boundary. In both Z. xanthoxylon and Z. fabago, rpl32 and rps7 located

close to the border of IRB/SSC and IRA/SSC.

Discussion

The sizes of the three Zygophyllaceae chloroplast genomes are significantly shorter than those

of most angiosperms. In majority of angiosperms, the chloroplast genomes are 120–160 kb in

length, while the sizes of the chloroplast genomes of T. mongolica, Z. xanthoxylon, and Z.

fabago range from 104 to 106 kb. The LSC regions of most angiosperms are generally about

80–90 kb in length, while the SSC regions are about 16–27 kb in length, and the size of two IRs

are approximately 20–28 kb. Compared with most angiosperms, the sizes of LSC and SSC of T.

mongolica, Z. xanthoxylon, and Z. fabago don’t change significantly, and the most conspicuous

change is occurred in two IRs reduced by about 16–24 kb in size. Thus, the reduced sizes of

chloroplast genomes of these three Zygophyllaceae species are mainly associated with the

shrinkage of IRs.

Although the chloroplast genome is highly conservative, several chloroplast genomes are

significantly smaller than that of most other plants, and some of them are listed in S3 Table.

The most common reports of small chloroplast genomes came from studies of chloroplast

genomes in parasitic plants, including Taxillus chinensis and T. sutchuenensis in Loranthaceae

of Santalales [53], Epifagus virginiana in Orobanchaceae of Lamiales [54], Cuscuta chinensis
and C. japonica in Convolvulaceae of Solanales [55]. Smaller chloroplast genomes were also

found in some gymnosperms such as Welwitschia mirabilis in Welwitschiaceae of

Fig 10. IR expansion and contraction in three chloroplast genomes. Gene names are shown in boxes, and genes lengths in the corresponding regions

are marked above the boxes. These features are not to scale.

https://doi.org/10.1371/journal.pone.0263253.g010
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Welwitschiales [56], and Gnetum ula in Gnetaceae of Gnetales [57]. In non-parasitic angio-

sperms, the chloroplast genome with the size smaller than 130 kb was rarely reported except

Astragalus membranaceus, whose chloroplast genome was approximately 124 kb, partly due to

the loss of an IR [58]. The shrinkage of chloroplast genomes of the other plant species were

associated with significant reduction in size of SSCs, for example, the SSCs of chloroplast

genomes of the parasitic plants in S3 Table were less than half of that in tobacco [59], a classical

angiosperm chloroplast genome. In the three Zygophyllaceae species, the sizes of LSC and SSC

decrease slightly, but the lengths of IRs decrease dramatically. Thus, the three Zygophyllaceae

species could be utilized as novel models to investigate the evolution of chloroplast genome

structure and size.

Comparison of three Zygophyllaceae chloroplast genomes with those of other plant species

reveal that, 4 rRNA genes usually presented in IRs are located in SSC region in these three

chloroplast genomes, and thus leading to the reduction of the copy number of rRNA genes. In

addition, it had been reported that due to the contraction and expansion of IR regions in the

chloroplast genome of Pothos scandens in Araceae, some genes which existed in IR regions

transferred to the LSC region becoming single copy and most of genes which appeared in SSC

region transferred to the IR regions turning into duplicated, resulting in the change of gene

numbers and the increased size of LSC region and the decreased size of SSC region [60]. Dif-

ferent from our study, although the IR regions had contracted and expanded, there was no loss

of genes and no significant change in the size of the chloroplast genome in Pothos scandens.
Similar to our observation, previous studies had reported rRNA gene displacement in Erodium
species [61]. And all ndh genes usually located in SSC and IRs region encoding subunits of

NADH oxidoreductase are lost. Moreover, rps16, rpl12, ycf2 and infA, which are common in

most angiosperm chloroplast genomes, are lost in chloroplast genomes of T. mongolica, Z.

xanthoxylon, and Z. fabago. All above may be the possible reasons for the size reduction of IRs

region. In addition, the NADH dehydrogenase complex in plant plastids are involved in pho-

tosynthesis in response to environmental stress. Although very uncommon, the ndh gene

losses or pseudogenization are widespread phenomena in chloroplasts of different lineages of

seed plants which are photoautotrophic [62]. The phenomenon had been reported that the

ndh genes of plant plastid were specifically lost and NDH subunits which were nuclear-

encoded were expression in Pinaceae [57], Orchidaceae [63], gnetophytes [64] and Geraniales

[61]. Adaptation to the environment is especially critical for plants grow in barren soil in the

arid and semi-arid regions. The current result reveals the loss of 11 ndh genes in these chloro-

plast genomes of T. mongolica, Z. xanthoxylon, and Z. fabago, and it is not certain whether ndh
genes encoded by plastid have been lost completely or moved to cell nucleus functionally for

the three Zygophylloideae species, which deserves to be discussed.

Previously reports had shown that losses of plastid-encoded ndh genes in Pinaceae possibly

occurred before the divergence of this lineage (140 MYA) [57, 65]. The most recent losses of

plastid-encoded ndh genes were found in a long divergent branch with 13 species in Erodium
which had been supposed to predate the divergence of this branch (3 MYA) [61, 62]. A more

recent phenomenon of pseudogenization of 4 ndh genes in genus Melianthus of Geraniales

[66]. This branch was found to have diversified about 2 MYA and preserved some translatable

sequences in the plastome [62]. In our study, T. mongolica was from the genus Tetraena of

Zygophylloideae, and Z. xanthoxylon and Z. fabago belonged to the genus Zygophyllum of

Zygophylloideae. All 11 plastid-encoded ndh genes were loss in the three species. However, the

ndh genes were intact in chloroplasts of Larrea tridentata of Larreoideae and Tribulus terrestris
of Tribuloideae. Subfamily Larreoideae and Tribuloideae were classified into Zygophyllaceae.

It might suggest that the loss of plastid-encoded ndh genes in the three species involved in our

study had possibly occurred ahead of the divergence of subfamily Zygophylloideae (38 MYA)
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[67]. However, due to the limited number of species chosen in our study, more species from

Zygophyllaceae and Zygophylloideae could be added in subsequent studies which is helpful to

further explore the loss of ndh genes and the function of NADH complex in Zygophyllaceae.

In prior studies, the correlations of repeats, SNPs and InDels were analyzed in chloroplast

genomes of Malvaceae [68]. It was shown fluctuations in correlations at the family level, the

subfamily level and the genus level in quantitative researches. While up to 90% of repeats and

SNPs were simultaneous, and 52%-72% of repeats contained InDels at the family and subfam-

ily level in qualitative studies. And it was hypothesized that the correlations among mutation

events might be a usual feature in plant chloroplast genomes. This showed the important role

of repeats in the generation of SNPs and InDels. 10 polymorphic loci were identified in chloro-

plast genomes of Blumea species, among which 5 regions were concurrent with repeats [69].

In our current study, we identified 8 polymorphic loci, and 7 were existed in the regions where

repeats emerged except rps15-trnN-GUU. The co-occurrence proportion of repeats and poly-

morphic loci was as high as 87.5%. This result also supported the view that repeats could be

utilized to identify the polymorphic loci for future researches on phylogeny and taxonomic sta-

tus of plant.

Phylogenetic trees based on 50 common protein-coding genes in the chloroplast genomes

of 69 plant species provide crucial molecular evidence for exploring the phylogenetic status of

the three Zygophyllaceae species. Considered that Zygophyllaceae had been classified in the

order of Geraniales in Flora Reipublicae Popularis Sinicae [4] and Flora of China [5], our results

support the latest taxonomic classification of Zygophyllaceae described in APG IV in which

Zygophyllaceae belongs to Fabids rather than Malvids. T. mongolica, Z. xanthoxylon and Z.

fabago are clustered into a single branch with Larrea tridentata, which is another species in

Zygophyllaceae, and the four Zygophyllaceae species are clustered in the Fabids clade together

with Oxalidales, Malpighiales, Celastrales, Rosales, Fagales, Cucurbitales, and Fabales. Our

phylogenetic analyses also reveal the close relationship between Z. fabago and Z. xanthoxylon,

and support the incorporation of the Z. xanthoxylon into the genus Zygophyllum.

At the same time, our phylogenetic analysis also raises some new speculations on the evolu-

tionary status of Zygophyllaceae and other related taxonomic branch, which need to be investi-

gated further. First, our results show that Zygophyllales is clustered in a small branch with

Fabales, but not with other orders in Fabids like Oxalidales, Malpighiales, and Rosales, indicat-

ing a closer relationship between Zygophyllales and Fabales which is not reported in previous

reports. Second, it is surprisingly to find Zygophyllales of Fabids are clustered in a single clade

with many plant species in Geraniales, which are classified into Malvids according to APG IV

[7]. Our results raise a possibility that at least part of species in Geraniales belong to Fabids

instead of Malvids, just as Zygophyllales was once classified in Malvids and is now classified in

Fabids.

It should be noted that in our study the phylogenetic tree was constructed based on 69 spe-

cies belonging to 51 genera and 30 families, including plants from Oxalidales, Malpighiales,

Celastrales, Rosales, Fagales, Cucurbitales and Fabales which were also classified into Fabids

like Zygophyllaceae, and species from Malvids with disputed classification. Four species from

two subfamilies (six in total) of Zygophyllaceae, among which three species from two genera

(six in total) of Zygophylloideae, were chosen in this study. The three species were T. mongo-
lica, Z. xanthoxylon, and Z. fabago with significant shortage in size of the chloroplast genomes

which were concerned in our study. Based on the limited number of species selected, future

research could consider more species of Zygophyllaceae to conduct more detailed phylogeny

analysis. It will be helpful to explore the phylogenetic status and evolution of Zygophyllaceae.

In brief, we assemble the whole chloroplast genomes of T. mongolica, Z. xanthoxylon, and

Z. fabago. Our study reveals the unusual reduction of the three chloroplast genomes, especially
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IR regions, and the loss of 11 genes cording subunits of NADH dehydrogenase in SSC and IRs

region. Comparative genomics identify the genetic variation between the chloroplast genomes

of the three Zygophyllaceae species and other plant species. Phylogenetic analysis according to

50 common protein-coding genes of 69 plant chloroplast genomes support current under-

standing of the phylogenetic status of Zygophyllaceae.
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