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Abstract. Mesenchymal stem cells (MSCs) are used to 
investigate regeneration and differentiation. MicroRNA‑204 
(miR‑204) in involved in the Runt‑related transcription 
factor 2/alkaline phosphatase/bone morphogenic protein 2 
(Runx2/ALP/BMP2) signaling pathway that regulates bone 
marrow mesenchymal stem cell (BMSC) differentiation; 
however, the mechanisms underlying the effects of miR‑204 
are yet to be determined. The aim of the present study was to 
investigate the effects of miR‑204 on BMSC differentiation. 
BMSCs were derived from rat bone marrow. The expression 
levels of Runx2, ALP and BMP2 were measured via reverse 
transcription‑quantitative polymerase chain reaction and 
western blot analyses following transfection of BMSCs 
with miR‑204 agomir or BMP2 expression vector. The 
ability of the miR‑204 gene to directly bind BMP2 mRNA 
was assessed using dual‑luciferase assays. Ossification was 
measured via alizarin red stain assays. It was observed that 
the expression levels of Runx2 and ALP increased over time, 
whereas those of miR‑204 decreased; additionally, miR‑204 
agomir upregulation inhibited the expression of Runx2, 
ALP and BMP2 in BMSCs. It was revealed that miR‑204 
directly interacted with BMP2 mRNA, and that transfection 
with miR‑204 agomir suppressed ossification in BMSCs by 
targeting the BMP2/Runx2/ALP signaling pathway.

Introduction

A balance between bone formation and resorption maintains 
the integrity of skeleton, and such a balance is realized by 

osteoclasts and osteoblasts (1,2). Osteoblast differentiation 
stimulates bone formation and repair (3). Therefore, osteo-
genic differentiation has a connection with bone disease 
(bone fracture and osteoporosis) and bone implantation (4‑7). 
The differentiation of bone marrow mesenchymal stem cells 
(BMSCs) involves a number of signaling pathways, including the 
hypoxia‑inducible factor 1α pathway, mechano‑growth factor 
signaling, the leukemia inhibitory factor/STAT/suppressor of 
cytokine signaling 3 pathway and NF‑κB signaling (8‑10).

MicroRNAs (miRNAs), small non‑protein coding RNAs 
(~22 nucleotides), serve important roles in the regulation of 
gene expression by binding to the 3'‑untranslated region 
(3'‑UTR) of target messenger RNAs (mRNAs)  (11,12). 
Located at cancer‑related gene regions 9q21.1‑q22.3 (13), a 
previous study reported that miR‑204 regulated cancer cell 
proliferation and invasion by targeting cyclin D2 and matrix 
metalloproteinase‑9 (14). In addition, prior evidence suggested 
that miR‑204 overexpression inhibited osteogenic differentia-
tion and promoted adipogenic differentiation (14,15); however, 
the main mechanisms underlying the effects of miR‑204 on 
BMSCs are yet to be determined. The present study investi-
gated the role of the Runt‑related transcription factor 2/alkaline 
phosphatase/bone morphogenic protein 2 (Runx2/ALP/BMP2) 
signaling pathway in the effects of miR‑204 on BMSCs.

It was previously demonstrated that increased Runx2 
levels were observed in mesenchymal stem cells derived from 
multiple myeloma patients compared with normal MSCs, 
and that upregulation of Runx2 resulted in bone defects (16). 
ALP is a glycoprotein involved in mineral formation in bone 
tissue; ALP activity has a positive effect on the mineralization 
process for cellular cementum formation (17). Increased serum 
alkaline phosphatase (ALP) activity has been reported in rheu-
matoid arthritis (RA) (18). BMP2 belongs to the BMP family, 
which possess diverse biological functions during osteogen-
esis and osteogenic differentiation, including the maintenance 
of normal bone and bone regeneration (19‑22). Furthermore, 
the BMP family regulates osteogenic differentiation (23,24).

The aim of the present study was to investigate whether 
miR‑204 affected osteoblast differentiation and the potential 
underlying mechanisms. The effects of miR‑204 on the osteo-
genic differentiation of MSCs were determined by evaluating 
Runx2, BMP2 and ALP expression. Additionally, the regula-
tory target of miR‑204 was explored.
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Materials and methods

Cell identification and cell culture. BMSCs were isolated 
from rat bone marrow. Male Sprague‑Dawley (SD) rats aged 
4 weeks were purchased from Shangdong Laboratory Animal 
Center (Jinan, C hina). The rat bone marrow tissues were 
extracted after the rats were sacrificed. The femur and tibia 
were washed with phosphate buffered saline (PBS; Gibco; 
Thermo Fisher Scientific, Inc.) and cut into 5 mm pieces, 
high‑glucose DMEM (basic medium; Thermo Fisher Scientific, 
Inc.) was used to wash the bone fragments, and the solution 
was centrifuged at 675 x g for 5 min at room temperature prior 
to resuspension of cells in PBS. The cells were separated using 
lymphocyte separation medium (Beijing Solarbio Science & 
Technology Co., Ltd.) and the BMSCs were acquired. The 
animal study was approved by the Institutional Animal Care 
and Use Committee of Yantai Yuhuangding Hospital. BMSCs 
were seeded at 3.5x105 cells/dish in 75‑mm culture dishes 
(Corning Inc.) in basic medium with 10% fetal bovine serum 
(FBS; Gibco; Thermo Fisher Scientific, Inc.) and 100 U/ml 
penicillin/100 µg/ml streptomycin (Gibco; Thermo Fisher 
Scientific, Inc.) in a 5% CO2 atmosphere at 37˚C. BMSCs were 
subcultured when the cells reached 90% confluency. The cells 
were centrifuged at 750 x g for 5 min at room temperature after 
digestion using 0.25% trypsin‑EDTA (Gibco; Thermo Fisher 
Scientific, Inc.) at 37˚C for 5 min in an incubator (Thermo Fisher 
Scientific, Inc.). Purified BMSCs (2x107 cells/ml) were seeded 
in 6‑well plates and cluster of differentiation (CD) 90‑allo-
phycocyanin (APC; 1:20; cat.  no.  17‑5900‑42; Invitrogen; 
Thermo Fisher Scientific, Inc.), CD45‑phycoerythrin/cyanine7 
(PE/CY7; 0.1 mg/ml; cat. no. 1660‑17, SouthernBiotech) and 
CD11b/c‑FITC (30  µg/ml, cat.  no.  130‑105‑273; Miltenyi 
Biotec, Inc.) antibodies were used to stain the samples in a 
final volume of 100 µl at 4˚C for 20 min. Then, BMSCs in 
solution were identified via flow cytometry and analyzed 
with CellQuest pro software version 5.1 (BD Biosciences), by 
detecting the absorbance at 647 nm for CD90‑APC, 532 nm 
for CD45‑PE/CY7 and 488 nm for CD11b/c‑FITC.

Cell transfection. BMSCs were seeded in 75‑mm culture 
dishes at 3.5x105 cells/dish and incubated for 24 h. miR‑204 
agomir (5'‑UUC​CCU​UUG​UCA​UCC​UAU​GCC‑3'), miR‑204 
antagomir (5'‑AGG​CAU​GGA​UGA​CAA​AGG​GAA‑3') and 
negative control (NC, 5'‑CAG​UAC​UUU​UGU​GUA​GUA​
CAA‑3') sequences were purchased from Guangzhou RiboBio 
Co., Ltd. pLVX‑AcGFP‑C1‑BMP2 was constructed by cloning 
amplified BMP2 into pLVX‑AcGFP‑C1 (Sangon Biotech Co., 
Ltd.). pLVX‑AcGFP‑C1 was used as the negative control. 
Transfections were performed using Lipofectamine® 2000 
(Invitrogen; Thermo Fisher Scientific, Inc.). Transfection 
complexes were added to the medium at a final concentration 
of 50 nM. The transfection solution was added to BMSCs for 
3, 5 and 7 days at 37˚C in a 5% CO2 in an incubator.

Western blotting. BMSCs were transfected for 3 days. Then, the 
total proteins were extracted using RIPA buffer (Invitrogen; 
Thermo Fisher Scientific, Inc.) at 4˚C. Protein concentration 
were determined using the BCA method. Proteins (20 µg/lane) 
were electrophoresed on 10% SDS‑PAGE gels and trans-
ferred to polyvinylidene fluoride membranes (Thermo Fisher 

Scientific, Inc.). After blocking with 5% non‑fat milk at room 
temperature for 2 h, membranes were incubated overnight at 
4˚C with antibodies against Runx2 (1:1,000; cat. no. 12556; Cell 
Signaling Technology, Inc.), ALP (1:1,000; cat. no. ab83259; 
Abcam), BMP2 (1:1,000; cat. no. ab14933; Abcam) and β‑actin 
(1:1,000; cat.  no.  4970; Cell Signaling Technology, Inc.). 
After the membranes were washed three times in TBS‑0.5% 
Tween‑20 (TBST), a horseradish peroxidase‑conjugated 
secondary antibody (1:10,000; cat.  no.  10285‑1‑AP; 
ProteintTech Group, Inc.) was used to incubate the membranes 
for 2‑3 h at room temperature. The membranes were then 
washed 2‑3 times in TBST solution. The blots were visualized 
using ECL (Thermo Fisher Scientific, Inc.). An ECL system 
(Amersham; GE Healthcare) was used to visualize the bands. 
Quantity one software version 4.6.2 (Bio‑Rad Laboratories, 
Inc.) was used for densitometry analysis.

Bioinformatics analysis. TargetScan (http://www.targetscan.
org/vert_72/) was used to predict the targets of miR‑204.

Dual‑luciferase assay. The BMP2‑3'‑UTR and mutant (mut) 
BMP2‑3'‑UTR were inserted into psi‑CHECK‑2 plasmids 
(Promega Corporation), and then BMSCs were incubated with 
BMP2‑3'‑UTR or BMP2‑3'‑UTR mut plasmids at 37˚C with 
5% CO2 in an incubator for 72 h. The total protein of BMSCs 
transfected with luciferase plasmids was extracted using RIPA 
buffer (Invitrogen; Thermo Fisher Scientific, Inc.) on ice. Prior 
to analysis using a luciferase reporter assay kit (BioVision, 
Inc.), cells (2x105 cells/well) were plated in 24‑well plates and 
were co‑transfected with miR plasmids at a final concentration 
of 50 nM using Lipofectamine 2000®. The luciferase activity 
of BMSCs was measured 3 days after transfection using a 
luciferase reporter assay kit (BioVision, Inc.). Firefly lucif-
erase activity was normalized with renilla luciferase activity 
(Promega Corporation).

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR). Total RNA was collected as follows: BMSCs were 
treated with TRIzol® (Invitrogen; Thermo Fisher Scientific, 
Inc.) via centrifugation at 3,000 x g for 10 min at room tempera-
ture. RT was performed to synthesize cDNA using 2 µl FQ‑RT 
Primer Mix, 2 µl 10X Fast RT Buffer, 1 µl RT Enzyme Mix and 
RNA‑Free ddH2O (to 10 µl; all Tiangen Biotech Co., Ltd.); RT 
was conducted at 42˚C for 15 min and 95˚C for 3 min. qPCR 
was conducted using cDNA, forward and reverse primers, and 
2X PCR Taq Master Mix (MedChemExpress LLC) under the 
following conditions: 40 cycles of 94˚C for 5 min, 94˚C for 
30 sec, 60˚C for 40 sec and 72˚C for 50 sec.

The following primers were used for qPCR: U6, forward 
5'‑CTC​GCT​TCG​GCA​GCA​CA‑3', reverse 5'‑ACG​CTT​CAC​
GAA​TTT​GCGT‑3'; BMP2, forward 5'‑ACC​AGC​ATT​AGC​
ATC​ACG‑3', reverse 5'‑AGG​TCC​TTG​GGT​TGT​TTT‑3'; 
Runx2, forward 5'‑CTC​GCT​TCG​GCA​GCA​CA‑3', reverse 
5'‑AAC​GCT​TCA​CGA​ATT​TGC​GT‑3'; ALP, forward 5'‑CTG​
ATC​AGT​GTG​CCC​CTG​CAG‑3', reverse 5'‑GGA​GCT​TGG​
AAC​GAA​TGT​TCTG‑3'; and miR‑204, forward 5'‑CTG​ATC​
AGT​GTG​CCC​CTG​CA‑3' and reverse 5'‑GGA​GCT​TGG​AAC​
GAA​TGT​TCTG‑3'. U6 was used as an internal reference for 
qPCR, and the 2‑∆∆Cq method was applied to calculate relative 
expression levels (25).
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Alizarin red stain assays. BMSCs were seeded into 24‑well 
plates at 1,000 cells/well for 24 h. NC, miR‑204 agomir, BMP2 
and miR‑204 agomir + BMP2 were transfected as aforemen-
tioned when the BMSCs reached 30% confluency. After 12 h, 
basic medium was replaced with culture medium containing 
vitamin C (50 µg/ml; Invitrogen; Thermo Fisher Scientific, 
Inc.) and β‑phosphoglycerol (10 mmol/l; Invitrogen; Thermo 
Fisher Scientific, Inc.), and BMSCs were cultured with the 
aforementioned transfection reagents for a further 15 days. 
BMSCs were stained with 0.1% alizarin red at 37˚C for 30 min 
following fixation with 10% glutaraldehyde for 10 min. Images 
were acquired using an inverted light microscope (magnifica-
tion, x100; Olympus Corporation). For each sample 5 fields 
were analyzed. Images were analyzed using ImageJ software 
version 2.0.0 (National Institutes of Health).

Statistical analysis. Statistical analysis was performed using 
GraphPad Prism version 6.0 (GraphPad Software, Inc.). Data 
were presented as the mean  ±  standard deviation and all 
experiments were repeated at least three times. Groups were 
analyzed by ANOVA followed by a Tukey‑Kramer post hoc 
multiple comparison test. P<0.05 was considered to indicate a 
statistically significant difference.

Results

Expression of Runx2, ALP and miR‑204 in BMSCs isolated 
from rats. The phenotype of BMSCs was measured using 
f low cytometry using CD90‑APC, CD45‑PE/CY7 and 
CD11b/c‑FITC kits. It was revealed that the phenotype of the 
BMSCs was CD90+, CD45‑ and CD11b‑ (Fig.  1Aa-c). The 
expression levels of Runx2 and ALP in BMSCs increased in a 

time‑dependent manner, whereas those of miR‑204 decreased 
(Fig. 1B‑D).

Effects of miR‑204 agomir on the expression levels of Runx2 
and ALP in BMSCs. Transfection with miR‑204 antagomir 
significantly inhibited the expression of miR‑204 in BMSCs, 
whereas miR‑204 agomir induced opposing effects (Fig. 2A). 
Cells transfected with miR‑204 agomir exhibited significantly 
downregulated expression of Runx2 and ALP at the mRNA 
and protein levels; conversely, miR‑204 antagomir promoted 
the expression of Runx2 and ALP (Fig. 2B‑F).

Effects of miR‑204 on BMP2 in BMSCs. A luciferase assay 
was performed to investigate the potential association 
between miR‑204 and BMP2. Co‑transfection with miR‑204 
+ BMP2‑3'‑UTR resulted in significantly decreased relative 
luciferase activity compared with control + BMP2‑3'‑UTR 
or miR‑204 + BMP2‑3'‑UTR mut co‑transfections 
(Fig.  3D  and E ). Additionally, transfection with miR‑204 
agomir revealed that upregulation of miR‑204 significantly 
decreased the expression of BMP2 at the mRNA and protein 
levels compared with the NC, whereas miR‑204 antagomir 
induced opposing effects (Fig. 3F‑H).

Effects of miR‑204 agomir and BMP2 on the expression of 
Runx2, ALP and BMP2 in BMSCs. To investigate the role 
of BMP2 in the effects of miR‑204 on BMSCs, a BMP2 
overexpression vector was used. Transfection with the 
BMP2 vector upregulated the expression of BMP2 at the 
mRNA and protein levels (Fig. 3A‑C). Following transfec-
tion of BMSCs with miR‑204 agomir and/or BMP2 for 
3 days, the expression levels of Runx2, ALP and BMP2 

Figure 1. Properties of cultured BMSCs isolated from rat bone marrow. (A) CD expression phenotypes of BMSCs were measured using flow cytometry with  
(Aa) CD90-APC, (Ab) CD45-PE/CY7 and (Ac) CD11b/c-FITC. The green lines represent the isotype/negative control. (B‑D) Expression of Runx2, ALP and 
miR‑204 in BMSCs cultured for 0, 3, 5 and 7 days, as determined via reverse transcription‑quantitative PCR analysis. Data are presented as the mean ± stan-
dard deviation and analyzed by ANOVA followed by Tukey‑Kramer multiple comparison post hoc tests. **P<0.01 vs. day 0; ^P<0.05, ^^P<0.01. BMSC, bone 
marrow mesenchymal stem cell; miR‑204, microRNA‑204; CD, cluster of differentiation; ALP, alkaline phosphatase; Runx2, Runt‑related transcription factor 
2; APC, allophycocyanin; PE, phycoerythrin; Cy7, cyanine7.
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were determined via RT‑qPCR and western blot analyses. 
It was observed that BMSCs transfected with miR‑204 
agomir exhibited significantly downregulated expression of 
BMP2, Runx2 and ALP compared with the NC (Fig. 3I‑L). 
BMP2 overexpression significantly upregulated the expres-
sion of Runx2 and ALP in BMSCs compared with the NC; 
additionally, BMP2 overexpression significantly increased 
the expression levels of BMP2, Runx2 and ALP in miR‑204 
agomir‑treated BMSCs compared with miR‑204 agomir 
treatment alone (Fig. 3I‑L).

Effects of miR‑204 agomir and BMP2 on calcification in 
BMSCs. BMSCs were treated with NC, miR‑204 agomir, 
miR‑204 agomir + BMP2 or BMP2 for 15 days. BMSCs were 
stained with alizarin red. It was observed that the intensity 
of alizarin red staining was significantly increased in the 
BMP2‑overexpressing group compared with in the other 
groups, and that the intensity in the miR‑204 agomir group 
was significantly reduced compared with the NC (Fig. 4). 
The findings indicated that BMP2 promoted the calcifica-
tion of BMSCs, whereas miR‑204 agomir inhibited BMSCs 
calcification.

Discussion

Previous studies have reported that miR‑204 inhibited thyroid 
carcinoma cell proliferation and esophageal cancer cell 
invasion (26,27). Additionally, downregulation of miR‑204 

enhanced osteogenesis in rat BMSCs  (28). In the present 
study, it was observed that miR‑204 agomir inhibited Runx2, 
ALP and BMP2 expression, and inhibited MSC calcification, 
the underlying mechanisms of these inhibitory effects were 
investigated.

The BMSCs isolated from rat bone marrow in the 
present study exhibited a CD90+/CD45‑/CD11b‑ phenotype 
(Fig.  1A). Runx2 regulates a series of cell cycle genes 
in endothelial cells, including cyclin‑dependent kinase 
(CDK)4, CDK1 and cyclin B1 (29); additionally, reducing 
Runx2 levels decreased breast tumor cell viability and 
inhibited cell migration (30). The loss of Runx2 in chon-
drocytes impaired osteoprotegerin‑receptor signaling and 
chondroclast development (30,31). Increased bone turnover 
resulted in elevated serum ALP in females, and ALP levels 
are routinely used in the assessment of Paget's disease of 
bone  (32,33). High serum ALP levels were reported in 
patients with RA (18). The present findings revealed that the 
expression levels of Runx2 and ALP increased with longer 
durations of BMSC culturing, suggesting that differentiation 
occurred in BMSCs when the cells were cultured for a long 
period of time. Additionally, miR‑204 expression decreased 
in a time‑dependent manner. Transfection with miR‑204 
agomir downregulated the expression of Runx2 and ALP, 
suggesting that increased miR‑204 levels inhibited the 
osteogenic differentiation of MSCs.

BMP2 has been reported to promote bone regeneration, 
and abnormal BMP2 levels result in bone diseases, as BMP2 

Figure 2. Effects of miR‑204 on the expression levels of BMP2, Runx2 and ALP in BMSCs. BMSCs were treated with NC, miR‑204 agomir or miR‑204 
antagomir for 3 days. β‑actin and U6 were used as internal references. mRNA expression levels of (A) miR‑204, (B) Runx2 and (C) ALP as determined via 
reverse transcription‑quantitative PCR analysis. (D‑F) Protein expression Runx2 and ALP as determined via western blot analyses. Data are presented as the 
mean ± standard deviation and analyzed by ANOVA followed by Tukey‑Kramer multiple comparison post hoc tests. **P<0.01 vs. control; ^^P<0.01 vs. NC. 
BMSC, bone marrow mesenchymal stem cell; miRNA/miR, microRNA; ALP, alkaline phosphatase; Runx2, Runt‑related transcription factor 2; NC, negative 
control.



Molecular Medicine REPORTS  21:  43-50,  2020 47

Figure 3. Effects of miR‑204 agomir and BMP2 on the expression levels of Runx2, ALP and BMP2 in BMSCs. BMSCs were treated with NC, miR‑204 
agomir, miR‑204 antagomir, BMP2 vector or miR‑204 agomir + BMP2 vector for 3 days. β‑actin and U6 were used as internal references. (A‑C) BMP2 
expression in BMSCs transfected with BMP2 vector as determined via RT‑qPCR and western blot analyses. (D) Putative target genes and binding sites of 
miR‑204 were predicted using TargetScan. (E) Interactions between miR‑204 and the BMP2 3'‑UTR were evaluated using dual‑luciferase assays. (F) mRNA 
and (G and H) protein expression of BMP2 in BMSCs transfected with miR‑204 agomir or antagomir. (I‑K) mRNA levels of BMP2, Runx2 and ALP in 
BMSCs transfected with miR‑204 agomir and/or BMP2 vector, as determined via RT‑qPCR analysis. (L) Protein levels of BMP2, Runx2 and ALP in BMSCs 
transfected with miR‑204 agomir and/or BMP2 vector, as determined via western blotting. Data are presented as the mean ± standard deviation and analyzed 
by ANOVA followed by Tukey‑Kramer multiple comparison post hoc tests. *P<0.05, **P<0.01 vs. control; ^P<0.05, ^^P<0.01 vs. NC; #P<0.05, ##P<0.01. BMSC, 
bone marrow mesenchymal stem cell; miRNA/miR, microRNA; BMP2, bone morphogenic protein 2; ALP, alkaline phosphatase; Runx2, Runt‑related 
transcription factor 2; NC, negative control; 3'‑UTR, 3'‑untranslated region; mut, mutant.
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promotes chondrogenesis, myogenesis, osteogenesis and 
bone mineral density (34,35). Additionally, BMP2‑deficient 
embryos exhibited defects in cardiac development, which 
manifested as the abnormal development of the heart in the 
exocoelomic cavity (19). Reduced BMP2 in both embryonic 
and maternal tissues affected neural tube closure and body 
wall closure to varying degrees  (22). In humans, there 
was a reduction in BMP2 expression in certain parts of 
unfractured bones compared with fractures in the process 
of healing, whereas BMP2 was expressed strongly in areas 
of healing; BMP2 levels gradually decreased as healing 
progressed (36‑38). The results of the present study indicated 
that miR‑204 agomir inhibited the expression of BMP2 in 
BMSCs. It was proposed that miR‑204 agomir inhibited 
Runx2 and ALP expression by regulating BMP2. To inves-
tigate this hypothesis, the expression levels of Runx2 and 
ALP were determined in BMSCs transfected with a BMP2 
overexpression vector. It was demonstrated that overexpres-
sion of BMP2 increased the levels of Runx2 and ALP in 
BMSCs; however, miR‑204 agomir downregulated the 
expression of Runx2 and ALP in BMP2‑overexpressing 
BMSCs.

Skeletal mineralization requires connections between 
cellular activity and the extracellular environment; skeletal 
formation promotes the mineralization of the matrix  (39). 
Numerous studies reported that the alizarin red stain assay 
can be used to evaluate the osteogenic capacity of BMSCs 
as determined by the extent of mineralization (40‑43). The 

present findings suggested that BMP2 promoted the osteo-
genesis of BMSCs, and that miR‑204 agomir reduced the 
osteogenic capacity of BMSCs by inhibiting BMP2; however, 
the present study did not include the use an animal model to 
further investigate whether miR‑204 overexpression negatively 
affected osteogenic differentiation. Additionally, bioinfor-
matics analysis was not conducted to identify other putative 
target genes of miR‑204.

In conclusion, the results of the present study suggested 
that miR‑204 upregulation inhibited the BMP2/Runx2/ALP 
signaling pathway by regulating BMP2. Additionally, the 
study provided preliminary evidence that miR‑204 inhibited 
the differentiation of osteogenesis in BMSCs by targeting 
BMP2.
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