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Abstract

Fibroblast growth factor‐23 (FGF23) controls the homeostasis of both phosphate and vitamin 
D. Bone-derived FGF23 can suppress the transcription of 1α‐hydroxylase (1α(OH)ase) to 
reduce renal activation of vitamin D (1,25(OH)2D3). FGF23 can also activate the transcription 
of 24‐hydroxylase to enhance the renal degradation process of vitamin D. There is a counter-
regulation for FGF23 and vitamin D; 1,25(OH)2D3 induces the skeletal synthesis and the 
release of FGF23, while FGF23 can suppress the production of 1,25(OH)2D3 by inhibiting 
1α(OH)ase synthesis. Genetically ablating FGF23 activities in mice resulted in higher levels 
of renal 1α(OH)ase, which is also reflected in an increased level of serum 1,25(OH)2D3, while 
genetically ablating 1α(OH)ase activities in mice reduced the serum levels of FGF23. Similar 
feedback control of FGF23 and vitamin D is also detected in various human diseases. Further 
studies are required to understand the subcellular molecular regulation of FGF23 and  
vitamin D in health and disease.

Vitamin D metabolism

Vitamin D regulates mineral ion homeostasis and 
skeletogenesis (1). The synthesis process of vitamin 
D initiates in the skin and is processed further in the 
liver and kidney to generate bioactive vitamin D. The 
biologically functional metabolite, 1,25 dihydroxy 
vitamin D3 (1,25(OH)2D3), is generated by two successive 
hydroxylations in the liver by 25 hydroxylase (CYP27A1) 
and in the kidney by 1α-hydroxylase (1α(OH)ase; 
CYP27B1). When 1,25(OH)2D3 level reaches optimal, the 
24-hydroxylase (CYP24) catabolizes vitamin D, mainly 
in the kidney. The homeostatic control of vitamin D is 
partly regulated by the negative feedback of 1,25(OH)2D3 
through suppressing the renal expression of 1α(OH)ase 
and stimulating the renal expression of 24-hydroxylase 
(2). The bioactive 1,25(OH)2D3 interacts with the high-
affinity vitamin D receptor (VDR) to exert its functions 
(3). VDR forms a heterodimer with the retinoid receptor 
to induce the transcription of vitamin D-dependent 
genes by interacting with vitamin D-responsive elements 

(VDREs) in the promoter region of target genes (3). 
Several important mineralization-promoting genes are 
regulated by 1,25(OH)2D3 (4). Whether 1,25(OH)2D3 
can directly influence the skeletal mineralization 
process is unclear. An exogenous infusion of calcium 
and phosphate to the severe vitamin D-deficient rats 
resulted in skeletal mineralization, similar to the group 
that received only vitamin D (5). Likewise, the rickets 
phenotype of genetically modified vitamin D-deficient 
mice could be rescued by providing adequate calcium and 
phosphate (6). However, a recent case report of rickets 
and hypophosphatasia in an infant girl with normal 
serum calcium and phosphate levels showed remarkable 
improvements in skeletal mineralization following 
vitamin D treatment, suggesting the possibility of a direct 
effect of vitamin D on the mineralization process (Fig. 
1) (7). Several factors, including phosphate-regulating 
fibroblast growth factor‐23 (FGF23), can influence vitamin 
D metabolism by suppressing 1α(OH)ase activity (8).
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FGF23

FGF23 is a member of the endocrine FGF family, along 
with FGF19 and FGF21 (9). The biologically active form 
of intact FGF23 contains 227 amino acids. FGF23 is 
mainly synthesized and released from osteoblasts and 
osteocytes (10). Bioactive FGF23 (32‐kDa), in the presence 
of αKlotho, can bind with the FGF receptors (FGFR) to exert 
downstream signaling events (11). Studies have found that 
FGF23 exerts most of its physiologic functions through 
binding with FGFR1c (11, 12). In renal proximal tubular 
epithelial cells, circulating FGF23 binds with the αKlotho/
FGFR1c complex to suppress the activities of sodium-
phosphate cotransporters (NaPi‐2a and NaPi‐2c) to increase 
urinary phosphate excretion. NaPi‐2a is responsible for the 
renal reabsorption of most of the filtered phosphate, and 
its expression is regulated by FGF23, parathyroid hormone 
(PTH), and dietary phosphate intake (13). About one-third 
of renal reabsorption is mediated by NaPi-2c and regulated 
by FGF23, metabolic acidosis, dietary magnesium, and 
phosphate (13). Genetically ablating FGF23 or its obligate 
cofactor, αKlotho, reduced urinary phosphate excretion due 
to enhanced renal reabsorption of phosphate by increased 
activities of NaPi‐2a (12, 14, 15, 16). Human studies have 
found that vitamin D supplementation or administration of 
calcitriol (1,25(OH)2D3) could increase urinary phosphate 
excretion, perhaps by inducing FGF23 secretion (17). 
Alongside phosphaturic functions, FGF23 is able to repress 
the transcription of 1α(OH)ase in proximal renal tubular 
epithelial cells to influence vitamin D metabolism.

Vitamin D and skeletal FGF23 synthesis

Skeletal secretion of FGF23 is regulated by local and 
systemic factors, including calcium, phosphate, vitamin 
D, PTH, leptin, iron, acidosis, and inflammatory cytokines 
(Fig. 2) (18, 19, 20). Experimental studies have shown 
that FGF23 can suppress PTH secretion (21), although the 
human relevance of this observation is not yet clear. PTH is 
also claimed to induce FGF23 synthesis (22, 23). When rat 
osteoblastic cells were treated with 1,25(OH)2D3, enhanced 
production of FGF23 was noted (24, 25). However, when 
osteoblastic cells were exposed only to phosphate, such 
enhancement of FGF23 was no longer detected, implying 
that in the in vitro microenvironment, phosphate alone 
is not able to induce FGF23 production (24, 26, 27). 
Moreover, when using co-treatment with commonly 
used transcriptional and translational inhibitors studies, 
the induction of FGF23 by 1,25(OH)2D3 has shown to be 
regulated at the transcriptional level, perhaps involving 
the nuclear VDR (25). In relevance to this, genetically 
inactivating VDR from mice resulted in reduced circulatory 
levels of FGF23 compared to the wild-type (WT) control 
mice (28); 1,25(OH)2D3 challenged VDR null mice did not 
show any response to FGF23 production, implying that 
functionality of VDR is required for the skeletal synthesis 
of FGF23. In a similar observation, 1α(OH)ase knockout 
mice with a functioning VDR system also demonstrated 
low circulatory levels of FGF23, but when treated with 
1,25(OH)2D3, the 1α(OH)ase knockout animals were 
able to enhance FGF23 expression, once again implying 

Figure 1
Simplified diagram illustrating various functions of 
vitamin D. Vitamin D is a multifunctional hormone 
and has been shown to have beneficial effects on 
the musculoskeletal system, the neuronal system, 
the immune system, and inflammatory pathways 
(1, 4, 34, 62, 63, 64, 65, 66).

This work is licensed under a Creative Commons 
Attribution 4.0 International License.https://doi.org/10.1530/EC-22-0239

https://ec.bioscientifica.com © 2022 The author
Published by Bioscientifica Ltd

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1530/EC-22-0239
https://ec.bioscientifica.com


M S Razzaque e22023911:10

the essential role(s) of the VDR system in regulating 
FGF23 synthesis (29). Meta-analysis of randomized, 
placebo-controlled trials (RCTs) found that vitamin D 
administration was significantly associated with increased 
circulating levels of FGF23 in a dose-dependent manner 
(30), although a separate study reported no such association 
between vitamin D supplementation and FGF23 levels 
(31). The nature of vitamin D supplementation, hormonal 
(1,25(OH)2D3) vs nutritional (25(OH)D) forms, might partly 
explain such discrepancies. Of biological significance, 
the human FGF23 gene contains VDREs in its promoter 
region that can mediate 1,25(OH)2D3 and VDR actions 
(32). Furthermore, FGF23 influences the catabolism of 
1,25(OH)2D3 into an inactive metabolite (33) to reduce 
the intestinal absorption of calcium and phosphate (34). 
Vitamin D supplementation has been shown to exert 
positive effects on the induction of αKlotho in chronic 
kidney disease (CKD) patients undergoing hemodialysis 
(35). Similar induction of αKlotho is also reported in 
vitamin D challenged mice (8). The skeletal induction of 
FGF23 and renal induction of αKlotho by vitamin D forms 
a kidney–bone axis.

FGF23 and renal vitamin D synthesis

A counter-regulation exists between FGF23 and vitamin D 
activities (26). When in vivo FGF23 functions were blunted, 

1α(OH)ase expression level was high in the kidneys of 
both Fgf23 knockout mice and αklotho knockout mice, 
resulting in increased serum levels of 1,25(OH)2D3 (15, 
16, 36). Similarly, increased expression of 1α(OH)ase and 
elevated serum levels of 1,25(OH)2D3 were detected in 
Fgf23 and αklotho double knockout mice (14), suggesting 
that disrupting the FGF23 signaling cascade can enhance 
vitamin D activities. Moreover, genetically restoring the 
systemic effects of bio-active FGF23 in Fgf23 knockout 
mice reversed the hypervitaminosis D (from high serum 
1,25(OH)2D3 levels to low serum levels) that was consistently 
noted in fgf23 knockout mice (37), again providing an in 
vivo evidence of FGF23 and vitamin D interactions. An 
increased serum 1,25(OH)2D3 level with hypercalcemia, 
hyperphosphatemia, and ectopic calcification are also 
noted in human diseases with inactivating mutations 
in FGF23 (38) and/or αKLOTHO (39) genes. Contrary 
to the loss of function of FGF23, genetically modified 
mice overexpressing fgf23 showed markedly reduced 
serum 1,25(OH)2D3 levels (37, 40). However, when FGF23 
signaling was disrupted by selectively inactivating 
FGFR1 from proximal tubular epithelial cells, FGF23 lost 
its ability to suppress 1,25(OH)2D3 production in mice 
(41). Injecting exogenous bioactive FGF23 into normal 
WT mice has been shown to decrease renal 1α(OH)ase 
expression and enhance the expression of 24‐hydroxylase 
in the proximal tubular epithelial cells (42). When 
recombinant FGF23 was injected into the VDR‐knockout 
mice, it could suppress 1α(OH)ase similar to the WT mice 
but could not increase the expression of 24‐hydroxylase, 
suggesting the involvement of VDR in FGF23-mediated 
regulation of 24‐hydroxylase (43).

The Hyp mouse is the murine model of human 
X-linked hypophosphatemia (XLH), with a loss-of-
function mutation in the PHEX gene. Hyp mice develop 
severe hypophosphatemia due to high circulating levels of 
bioactive FGF23 and activation of Erk1/2 signaling (44). It 
is believed that FGF23 and FGFR interactions activate the 
downstream MAP kinase signaling pathway to exert its 
bioactivities. Blunting the FGF23 activities by inhibiting 
Erk1/2 actions in Hyp mice resulted in an increase of 
1,25(OH)2D3 levels (45), suggesting an in vivo interaction 
of FGF23-vitamin D. Similarly, when FGF23 bioactivities 
were blunted in Hyp mice by genetically ablating αklotho 
functions, increased serum levels of 1,25(OH)2D3 were 
detected (44). Although further studies are required to 
dissect exact molecular interactions, existing human 
and animal studies suggest that FGF23 is an endogenous 
regulator of vitamin D that can fine-tune the synthesis and 
functions of vitamin D (46, 47).

Figure 2
Simplified diagram illustrating various factors that can directly or indirectly 
influence FGF23 activities. Feedback control of FGF23 exists with phosphate 
and vitamin D. PO4, phosphate; Ca2+, calcium (19, 67, 68, 69, 70, 71).
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Translational implications

Understanding the physiologic regulation and interaction 
of FGF23 and vitamin D helped in determining the 
pathomechanisms of renal phosphate-wasting diseases, 
including XLH, autosomal dominant hypophosphatemic 
rickets, or tumor-induced osteomalacia (TIO); all three 
of these diseases are characterized by extremely high 
circulating levels of bioactive (intact) FGF23 (48, 49). 
Furthermore, higher bioactive FGF23 in these diseases 
reduces the generation of 1,25(OH)2D3 to lower intestinal 
phosphate absorption. The cumulative effect of increased 
renal phosphate wasting and reduced intestinal phosphate 
uptake diminishes skeletal mineralization due to persistent 
hypophosphatemia (50). Therefore, therapeutically, 
decreasing the activities of FGF23 in patients with XLH 
improved phosphate balance and reduced skeletal defects 
(51). Burosumab, a human MAB, binds and blocks the action 
of FGF23. A double-blind, placebo-controlled, phase 3 trial 
with burosumab on symptomatic adults with XLH showed 
improvements in the mineralization process of preexisting 
unmineralized bone matrix (52). The safety profile of FDA-
approved burosumab is claimed to be similar to placebo 
(53). Beneficial effects of reducing FGF23 activities by 
administering burosumab are also reported in a patient 
with TIO; burosumab normalized serum phosphate levels 
without phosphate supplementation within 2 months of 
treatment (54). Moreover, neutralizing the effects of FGF23 
by burosumab normalized bone biomarkers and improved 
pseudofractures of the patient (54). In patients with 
cutaneous skeletal hypophosphatemia syndrome, where 
conventional treatment failed to achieve desired benefits, 
burosumab treatment can improve the clinical symptoms 
of hypophosphatemic rickets (55, 56). Of relevance, 
cutaneous skeletal hypophosphatemia syndrome is a rare 
illness caused by the gain-of-function mutations of RAS 
family gene, causing epidermal nevi, dysplastic cortical 
bony lesions, and FGF23-induced hypophosphatemic 
rickets (57). Ongoing clinical studies are suggesting 
therapeutic potentials of manipulating FGF23-vitamin 
D axis in patients with mineral ion dysregulation and 
skeletal deformities.

Conclusion

I briefly highlighted the underlying mechanisms of FGF23 
and vitamin D interactions. A counter-regulation between 
FGF23 and vitamin D synthesis appears to fine-tune the 
functions of both FGF23 and vitamin D. Bone and kidney 
cross-talk is actively regulating the FGF23-vitamin D axis. 

Kidney-derived active 1,25(OH)2D3 acts on the bone cells to 
produce FGF23, which in turn decreases renal 1,25(OH)2D3 
synthesis (Fig. 3). Such reduction of 1,25(OH)2D3 is 
achieved by FGF23-induced downregulation of 1α(OH)ase  
expression in the kidney. In the reduced FGF23 
microenvironment, the intrinsic regulation of 1,25(OH)2D3 
is impaired, causing high circulating 1,25(OH)2D3 levels. 
In elderly individuals, serum FGF23 levels were relatively 
higher (58). Whether such elevation is related to generally 
low vitamin D levels in this group of people will require 
further study. Higher FGF23 level in patients with CKD 
is associated with reduced production of 1,25(OH)2D3, 
though part of it might be related to the reduced functional 
renal mass. Whether the conventional approach of using 
vitamin D analogs to treat patients with CKD could further 
enhance the levels of FGF23 to exacerbate non-renal 
adverse effects would need careful clinical consideration 
(59). Human studies have shown that cardiovascular and 
all-cause mortality risk rises gradually and progressively 
as the level of FGF23 increases (60, 61). Of biological 
importance, PTH‐mediated induction of 1α(OH)ase in the 
kidney is unable to compensate for the FGF23-mediated 
renal suppression of 1α(OH)ase, once more emphasizing 
the crucial involvement of FGF23 in vitamin D metabolism 

Figure 3
Simplified diagram illustrating vitamin D interactions with PTH, FGF23, 
calcium, and phosphate. PTH increases the synthesis of 1α(OH)ase and 
thereby increases 1,25(OH)2D3, which in turn exerts suppressive effects 
on PTH production. 1,25(OH)2D3 also enhances intestinal absorption of 
calcium and phosphate. 1,25(OH)2D3 can induce skeletal synthesis of 
FGF23, which exerts inhibitory effects on 1α(OH)ase to reduce 1,25(OH)2D3 
levels. In addition, FGF23 increases urinary phosphate excretion and is 
likely to exert inhibitory effects on PTH. Moreover, 1,25(OH)2D3 can 
control its own balance by inhibiting the bioactivities of 1α(OH)ase.  
Ca, calcium; Pi, phosphorus.
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(Fig. 3). Finally, how subcellular signaling events regulate 
skeletal FGF23 synthesis and renal regulation of vitamin D 
activation and catabolism will need further study.
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