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Abstract: Conventional methods such as microscopy have been used to diagnose parasitic diseases
and medical conditions related to arthropods for many years. Some techniques are considered gold
standard methods. However, their limited sensitivity, specificity, and accuracy, and the need for
costly reagents and high-skilled technicians are critical problems. New tools are therefore continually
being developed to reduce pitfalls. Recently, three state-of-the-art techniques have emerged: DNA
barcoding, geometric morphometrics, and artificial intelligence. Here, data related to the three
approaches are reviewed. DNA barcoding involves an analysis of a barcode sequence. It was used
to diagnose medical parasites and arthropods with 95.0% accuracy. However, this technique still
requires costly reagents and equipment. Geometric morphometric analysis is the statistical analysis
of the patterns of shape change of an anatomical structure. Its accuracy is approximately 94.0–100.0%,
and unlike DNA barcoding, costly reagents and equipment are not required. Artificial intelligence
technology involves the analysis of pictures using well-trained algorithms. It showed 98.8–99.0%
precision. All three approaches use computer programs instead of human interpretation. They also
have the potential to be high-throughput technologies since many samples can be analyzed at once.
However, the limitation of using these techniques in real settings is species coverage.

Keywords: arthropod; artificial intelligence; diagnosis; DNA barcoding; geometric morphometrics;
parasite; parasitic disease; parasitology

1. Introduction

A parasitic disease is an infectious disease caused by a parasite, an organism that
lives in or on a host organism. After infection, the parasite induces pathogenesis at the
different organ systems that it invaded by mechanical damage, chemical damage, organ
obstruction, hyperplasia, allergy to toxic wastes, or indirect effects, such as transmission of
other microbes [1]. The parasites causing these pathogeneses in a human host are known as
“medical parasites”. They include Protista (Acanthamoeba spp. (Volkonsky) (Longamoebia:
Acanthamoebidae), Blastocystis spp. (Alexieff) (Opalinata: Blastocystidae), Entamoeba spp.
(Casagrandi and Barbagallo) (Mastigamoebida: Entamoebidae), Giardia lamblia (Lambl)
(Diplomonadida: Hexamitidae), Naegleria fowleri (Carter) (Schizopyrenida: Vahlkamp-
fiidae), and Plasmodium spp. (Marchiafava and Celli) (Haemosporida: Plasmodiidae));
Trematoda (Opisthorchis viverrini (Poirier) (Opisthorchiida: Opisthorchiidae) and Parago-
nimus westermani (Kerbert) (Plagiorchiida: Troglotrematidae)); Cestoda (Hymenolepis nana
(Bilharz) (Cyclophyllidea: Hymenolepididae) and Taenia saginata (Goeze) (Cyclophyllidea:
Taeniidae)); and Nematoda (Ascaris lumbricoides (Linnaeus) (Rhabditida: Ascarididae),
Enterobius vermicularis (Linnaeus) (Rhabditida: Oxyuridae), Strongyloides stercoralis (Bavay)
(Rhabditida: Strongyloididae), Trichinella spiralis (Owen) (Trichinellida: Trichinellidae),
and Wuchereria bancrofti (Cobbold) (Rhabditida: Onchocercidae)) [1]. Nowadays, parasitic
diseases are responsible for significant morbidity and mortality in both tropical and sub-
tropical regions [2]. Globally, there are approximately 3.5 billion cases of intestinal parasitic
infections [3]. In Thailand, the prevalence of parasitic infections has steadily decreased
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due to improved sanitation and personal hygiene. However, sporadic cases of parasitic
infections have been reported in different geographical areas of Thailand [4,5], especially in
crowded settings or among immunocompromised individuals, such as people living with
human immunodeficiency virus (HIV), cancer patients, and immunosuppressed patients.

Many arthropods also play a critical role in human health, such as Insecta (Anophe-
les spp. (Meigen) (Diptera: Culicidae), Cimex spp. (Linnaeus) (Rhynchota: Cimicidae),
Paederus fuscipes (Fabricius) (Coleoptera: Staphylinidae), Pediculus humanus (Linnaeus)
(Phthiraptera: Pediculidae), and Phthirus pubis (Linnaeus) (Phthiraptera: Pthiridae)) and
Arachnida (Sarcoptes scabiei (De Geer) (Sarcoptiformes: Sarcoptidae) and Dermatophagoides
spp. (Bogdanov) (Sarcoptiformes: Pyroglyphidae)). These are generally known as “medi-
cal arthropods”, and they cause both direct and indirect effects in humans globally. For
example, P. humanus, P. pubis, and S. scabiei exert direct effects on humans by causing
ectoparasitosis (pediculosis, phthiriasis, and scabies). Chrysomya megacephala (Fabricius)
(Diptera: Calliphoridae), Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae), and
Wohlfahrtia magnifica (Schiner) (Diptera: Sarcophagidae) cause cutaneous myiasis (wound
myiasis), while Cordylobia anthropophaga (Blanchard) (Diptera: Calliphoridae) and Der-
matobia hominis (Linnaeus) (Diptera: Oestridae) cause furuncular myiasis in humans [6].
Moreover, many groups of arthropods are causative agents of envenomization, allergic
reaction, annoyance, and delusory parasitosis. They also serve as vectors and intermediate
hosts of human pathogens, such as fleas, hematophagous flies, mosquitoes, and ticks [6].
Some arthropods display the potential to cause outbreaks in overcrowded areas, such as
scabies and pediculosis outbreaks in military camps and schools, respectively [7,8].

Laboratory investigations to identify the causative organisms of parasitic and arthro-
pod diseases play a crucial role in differential diagnosis, definitive diagnosis, medical
treatment, and outbreak control. The investigations also serve as a surveillance tool to
improve human health status. There are various kinds of laboratory techniques to detect
medical parasites and arthropods. However, the diagnosis of parasitic and arthropod
diseases is still largely based on traditional methods, such as gross and microscopic ex-
aminations, particularly in resource-poor clinical settings. There is wide concern about
the limitations of these conventional methods, such as that they are time consuming and
labor intensive, have low sensitivity and accuracy, and need skilled technicians. New
technologies are therefore gaining more research and development attention in order to
overcome those limitations, especially to avoid interpretation bias from physicians, by
using computer programs instead. Recently, advanced diagnostic approaches for parasite
and arthropod identifications have emerged to avoid the pitfalls, such as DNA barcod-
ing techniques, geometric morphometric analysis, and artificial intelligence technology.
These techniques utilize computer programs instead of humans for data analysis and
interpretation. Details of these emerging technologies are extensively described in this
review article.

2. Conventional Diagnostic Methods for Medical Parasite and Arthropod

Before getting into the details of the new advanced technologies for diagnosing
medical parasites and arthropods, the conventional diagnostic methods are firstly briefly
reviewed. Their sensitivity, specificity, accuracy, advantages, and disadvantages are also
discussed to understand the purpose of the development of the novel techniques.

2.1. Gross Examination

Generally, gross examination of feces and parasites is performed in routine laboratory
diagnoses of parasitic diseases (Table 1). Fecal specimens are grossly examined for color,
odor, and consistency and the presence of blood and mucus [9]. These characteristics can be
used to diagnose the types of the suspected organisms. Whole, portions of, and segments
of parasites or larvae are also examined by gross parasite examination to diagnose parasitic
diseases like taeniasis and paragonimiasis [10]. The adult and larval stages of arthropods
that caused myiasis are also diagnosed by this method using taxonomic keys (Table 1) [11].
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2.2. Microscopic Examination

Microscopic examination is a basic and gold standard method for the diagnosis of
parasitic infections. It has been used for parasitological diagnosis for several hundred
years (Figure 1) [12]. Direct wet smear, concentration, staining, and scotch tape techniques
are used to detect ova and parasite (Table 1) [13–17]. For malaria diagnoses, microscopic
examination of Giemsa-stained thick and thin blood films is a standard practice, even
though several approaches have emerged, such as dipstick antigen detection and poly-
merase chain reaction (PCR). This is due to the very low cost of microscopic examination
compared to PCR and antigen detection, meeting the high demand for tests in endemic ar-
eas with low resources. In the case of arthropod identification, the skin-scraping technique
is used for scabies diagnosis, while microscopy is used for pediculosis and phthiriasis
diagnoses [18,19]. However, these methods are labor-intensive and time-consuming [12].
Furthermore, the sensitivity and specificity are still low [20].
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Figure 1. Timeline of technologies for medical parasite and arthropod diagnoses. Microscopy has
been applied for pathogen and insect identifications for several centuries. To improve detection
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Table 1. Conventional methods for diagnosis of medical parasites and arthropods.

Types of Examination Method Names
Diagnostic Tool of

References
Parasite 1 Arthropod 2

Gross Gross examination Yes Yes [10,11]

Microscopic

Direct wet smear Yes No [14]
Concentration technique Yes No [15]

Staining technique Yes No [16]
Scotch tape technique Yes No [17]

Skin scraping technique No Yes [18]

Culture

Harada–Mori technique Yes No [21]
Baermann technique Yes No [22]

Charcoal culture technique Yes No [23]
Agar plate culture technique Yes No [24]

Immunological
Enzyme-linked immunosorbent

assay (ELISA) Yes No [25]

Immunoblot assay Yes No [25]

Molecular biology

Polymerase chain reaction (PCR) Yes Yes [12,26,27]
Loop-mediated isothermal

amplification (LAMP) Yes Yes [20,26,28]

xMAP assay (Luminex) Yes No [26,29]
Restriction fragment length

polymorphism (RFLP) Yes Yes [26,30]

Next-generation sequencing
(NGS) Yes Yes [20,31]

Mass spectrometry (MS) Yes Yes [12,32]
Biosensors Yes No [20,33]

1 Diagnostic tool that has been reported to be used to identify parasites. 2 Diagnostic tool that has been reported
to be used to identify arthropods.
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2.3. Culture Technique

Fecal culture methods are utilized for the larval-stage detection of nematodes, such as
S. stercoralis and hookworms [13]. The methods include Harada–Mori, Baermann, charcoal,
and agar plate culture techniques (Table 1) [21–24]. Most are used as diagnostic tools for
S. stercoralis [21–24]. In addition, culture techniques are used for the diagnosis of many
medical protozoa, such as Acanthamoeba spp., E. histolytica, Leishmania spp. (Borovsky)
(Trypanosomatida: Trypanosomatidae), N. fowleri, and Trichomonas vaginalis (Donné) (Tri-
chomonadida: Trichomonadidae) [34]. The cultivation of these parasites requires special
media, such as Peptone-Yeast Extract-Glucose (PYG) and Nelson’s media for Acanthamoeba
spp. and N. fowleri, respectively. Therefore, their use tends to be restricted to certain
laboratories, particularly clinical research centers.

2.4. Immunological Examination

To increase the sensitivity and specificity of parasite detection, immunologically based
methods were developed. They are tools for diagnosing medical parasites based on antigen
or antibody detections. Enzyme-linked immunosorbent assay (ELISA) is a well-known
immunological method that can be used as a gold standard diagnostic (Table 1) [25]. It
was used to detect Angiostrongylus cantonensis (Chen) (Strongylida: Angiostrongylidae),
E. histolytica, and Taenia spp. infections. Immunoblot assay is another technique that was
used to diagnose gnathostomiasis, schistosomiasis, strongylodiasis, and hydatidosis [25].
Nonetheless, these techniques have limitations: they have high cross-reactivity, and they
are time consuming, labor intensive, and unable to detect low-level antibodies in patients
with clinical onset. Importantly, costly reagents are required.

2.5. Molecular Biology Examination

One of the most promising molecular techniques for the diagnosis of medical para-
sites and arthropods is the polymerase chain reaction (PCR) [12]. It was used to detect
non-intestinal protozoa, such as Plasmodium spp. and Leishmania spp. [26]. Moreover, it has
been utilized to detect S. scabiei from the skin scrapings of suspected scabies patients [27].
Compared with microscopic and immunological examinations, PCR displays more ad-
vantages in terms of sensitivity and specificity, and multiplexed PCR can detect several
parasite-specific sequences in the same reaction. However, inhibitors from stool samples
and cross-contamination problems still have the most impact on the sensitivity and speci-
ficity of this method. Moreover, other techniques can be applied for parasite and arthropod
identifications, such as loop-mediated isothermal amplification (LAMP), xMAP assay, re-
striction fragment length polymorphism (RFLP), next-generation sequencing (NGS), mass
spectrometry (MS), and biosensors (Table 1) [12,20,26,28–33].

As shown in Table 1, several molecular techniques are promising tools for the diagnosis
of medical parasites and arthropods. This is because of their high sensitivities, high
specificities, short processing times, relatively low human-resource requirements, and
ability to be used for mass screening and point-of-care testing. However, most require
costly reagents and equipment as well as skilled technicians to interpret their results [12].
To conquer these limitations, advanced diagnostic tools have recently been developed
for parasite and arthropod identifications. These include the DNA barcoding technique,
geometric morphometric analysis, and artificial intelligence technology. To avoid the risk
of misdiagnosis, all utilize computer programs for data analysis and interpretation instead
of human diagnosticians. Moreover, most do not require expensive reagents or equipment
other than computers.

3. Advanced Approaches for Medical Parasite and Arthropod Diagnoses

In this review, the principles, steps, and applications to both the parasite and arthro-
pod diagnoses of the DNA barcoding technique, geometric morphometric analysis, and
artificial intelligence technology are detailed. Their sensitivities, specificities, accuracies,
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advantages, and disadvantages are also discussed and compared with those of the conven-
tional methods.

3.1. DNA Barcoding Technique

It is widely recognized that skilled technicians are needed for the interpretation of
the most traditional parasitological methods, including molecular techniques [12]. The
identification of parasites and arthropods is fairly complicated since they show high
diversity in terms of the quantity and variety of their stage-specific morphologies [35,36].
Hence, unpredictable wrong diagnoses normally occur during laboratory investigations.
This issue affects the therapeutic intervention efficacy of parasitic diseases. Therefore,
new approaches, such as the DNA barcoding technique, were developed and utilized for
parasite and arthropod identifications during the last decade [37].

The concept of DNA barcoding was first proposed by Hebert and colleagues in 2003
(Figure 1) [37]. The principle of this technique is the analysis of the nucleotide sequence
of a short DNA fragment (400–800 bases) called “DNA barcode”. A partial fragment of
mitochondrial cytochrome c oxidase subunit I (COI) or internal transcriber spacer (ITS)
is universally used as the standardized barcode region [38,39]. The reason for choosing
the mitochondrial element as a target of sequence analysis instead of the nuclear gene is
its lack of introns and its limited exposure to recombination [40]. The steps of parasite
and arthropod diagnoses using the DNA barcoding technique are illustrated in Figure 2.
DNA is extracted from clinical specimens of feces, urine, blood, sputum, aspirate, corneal
swab, biopsy, or a gross sample. The DNA barcode is amplified by PCR using the universal
primers specific to the conserved flanking regions of the barcode sequence. These primers
are specific to the COI gene of most organisms; therefore, almost all groups of parasites
and arthropods can be diagnosed [41]. The PCR amplicon is then submitted for nucleotide
sequencing and subsequently analyzed for homology to other sequences recorded in the
internationally reference databases, such as Barcode of Life Data (BOLD) system and
GenBank. Based on this technique, the unknown samples of parasites and arthropods can
be automatically identified at both the genus and species levels by efficient algorithms
without any bias from humans.
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Figure 2. Steps of DNA barcoding technique for medical parasite and arthropod diagnoses. DNA is
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(2,3). The PCR product is purified and submitted for nucleotide sequencing (4). This sequence is
subsequently analyzed for species identification based on the nucleotide sequence similarity to the
referenced sequences in the BOLD database (5,6).
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The DNA barcoding technique showed high accuracy in parasite and arthropod
diagnoses (Table 2). Ondrejicka et al. (2014) reported that the technique had a 95% ac-
curacy in parasitological diagnosis. This is due to the high specificity of the nucleotide
sequence of each organism. Nowadays, the DNA barcode database encompasses more than
1400 parasite and arthropod species. They include A. lumbricoides, Ancylostoma duodenale
(Dubini) (Strongylida: Ancylostomatidae), Clonorchis sinensis (Cobbold) (Opisthorchiida:
Opisthorchiidae), Fasciola hepatica (Linnaeus) (Plagiorchiida: Fasciolidae), Necator amer-
icanus (Stiles) (Strongylida: Ancylostomatidae), Onchocerca spp. (Bickel) (Rhabditida:
Onchocercidae), Paragonimus spp., Schistosoma spp. (Weinland) (Strigeidida: Schistoso-
matidae), and Trichuris trichiura (Linnaeus) (Trichinellida: Trichuridae) [38]. However,
this technique cannot be utilized to detect intestinal protozoa lacking mitochondria, such
as Blastocystis spp., Cryptosporidium spp. (Tyzzer) (Eucoccidiorida: Cryptosporidiidae),
Entamoeba spp., and Giardia spp. [42]. The DNA barcoding approach is also used to identify
arthropod species instead of using morphological identification for which a skilled ento-
mologist is essential. As the complexity and plasticity of arthropods caused the problem of
misidentification in morphological identification, DNA barcoding is an alternative or sup-
portive method for species identification. Discriminations using DNA barcoding technique
of Culicidae mosquitoes, Psychodidae sandflies, Simuliidae black flies, and organisms in
the class Arachnida, such as Buthidae scorpions, Ixodidae ticks, and Trombiculidae mites,
have been reported [38,43–45].

Table 2. Recent advanced tools for diagnosis of medical parasites and arthropods.

Methods Principle References

DNA barcoding technique Analysis of barcode sequence [38,39,43–45]

Geometric morphometric analysis Statistical analysis of shape pattern
variation of an anatomical structure [46–54]

Artificial intelligence technology Analysis of picture using the
trained algorithms [55–59]

Apart from its high accuracy, the DNA barcoding technique also showed high sensi-
tivity in parasite and arthropod identifications. Due to the concept of barcode sequence
amplification, less specimen volume or an incomplete specimen can be processed by this
method. This is because only a small amount of DNA is used as a template for the PCR. As
the DNA barcoding technique is based on PCR amplification and DNA sequencing, the
diagnoses of many samples can be performed simultaneously, indicating its potential as
a high-throughput technology. Moreover, wrong diagnoses by technicians do not occur
because the analyses and interpretations are processed via a computer program, except
that the wrong nucleotide-sequence data is submitted or the reference sequences in the
database are incomplete or missing. Nevertheless, since this technique still requires costly
reagents and equipment, it is difficult to use it in resource-constrained clinical settings. An-
other pitfall of the DNA barcoding technique is the unintentional amplification of nuclear
mitochondrial pseudogenes, leading to wrong diagnoses of unknown samples [39,60].

3.2. Geometric Morphometric Analysis

Geometric morphometric analysis is a novel approach to parasitological diagnosis.
Since it was proposed by Rohlf and Marcus in 1993, this technique has been usually applied
to arthropod identification (Figure 1) [61]. Highly skilled parasitologists are not required
since interpretations are performed by computer software. Costly reagents and equipment
are also not required. The principle of this approach is the statistical analysis of the patterns
of shape variation of an anatomical structure among or within groups of samples [62]. A
sample is digitized for landmarks on the defined anatomical structure and analyzed for the
coordinates of landmarks. This technique was developed from traditional morphometric
analysis in which multivariate statistical analysis is applied to sets of morphological
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variables such as linear length, height, and width [62]. The steps of parasite and arthropod
identifications using geometric morphometric analysis are presented in Figure 3. An
image of a defined anatomical structure of an unknown sample is recorded using a camera
connected to a light or stereo microscope. Landmark digitization is performed on an image
of a defined structure using computer software, such as XYOM (https://xyom.io, accessed
on 14 August 2021) [63]. The shape-pattern variation is analyzed using statistics, such
as principal component analysis, Mahalanobis distance, maximum likelihood, artificial
neural network, canonical variates analysis, discriminant function analysis, and related
methods. Species identification of an unknown specimen is subsequently processed by
comparing the sample coordinates with reference data sets (reference pictures and reference
coordinates) or a digital bank of known individuals.
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Figure 3. Steps of medical parasite and arthropod diagnoses using geometric morphometric analysis.
An unknown sample is prepared on a glass slide or any solid support. A defined structure of an
unknown sample is photographed and submitted to XYOM software (https://xyom.io, accessed
on 14 August 2021) [63] or related tools. The image file input is scaled, landmark digitized, and
statistically analyzed.

Geometric morphometric analysis is divided into two methods: landmark based and
outline based. With the landmark-based method, the differences in the coordinates of the
landmarks are analyzed after mathematical removal of non-shape variations. In contrast,
the bounding edge (an ordered set of discrete point coordinates) of a defined anatomi-
cal structure is compared between specimens in the outline-based method. Nowadays,
geometric morphometric analysis is increasingly applied to medical parasite diagnoses.
Sumruayphol et al. (2020) utilized geometric morphometric analysis for the morphological
identification of the causative agents of fascioliasis, including F. gigantica, F. hepatica, and
Fasciola intermediate forms [46]. Adult worms of parasites isolated from the infected cattle’s
livers were fixed on the glass slides, soaked in 70% ethanol, and stained with Semichon’s
acid-carmine. Pictures of all samples were taken under a stereo microscope and scaled.
Five anatomical landmarks were digitized on the right and left sides of the cephalic cone,
the right and left sides of the oral sucker, and the end position of the testis by using the
CLIC package (www.xyom-clic.eu, accessed on 14 August 2021) [64]. The shape-pattern
variation was statistically analyzed using Mahalanobis distance, maximum likelihood,
and artificial neural network via XYOM software. The results showed an accuracy of
identification of 69%. However, the accuracy increased to 94% when outline-based geo-
metric morphometric analysis was applied, whereas microscopic examination caused an
accuracy of identification of 70% [46]. This study highlighted the advantage of geometric
morphometric analysis as a new and highly accurate tool for Fasciola identification.

García-Sánchez and colleagues (2020) also applied geometric morphometric analysis
to the detection of Trichuris species eggs. Primate stool samples were collected, smeared
onto glass slides, covered with coverslips, and recorded using photographs taken under
a light microscope. The pictures were uploaded into a computer program, scaled, and
digitized, and the shape patterns were statistically analyzed using principal component
analysis, canonical variate analysis, and Mahalanobis distance [65]. In addition, Hugot
and Baylac (2007) identified pinworms (Enterobiinae) using a landmark analysis [47]. The

https://xyom.io
https://xyom.io
www.xyom-clic.eu
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shape patterns were analyzed based on 15 landmarks digitized on the caudal bursa of
adult pinworms.

In the case of medical arthropod identification, geometric morphometric analysis was
broadly applied to many groups of arthropods. For example, classification of the Aedes
spp. (Meigen) (Diptera: Culicidae) was performed based on an analysis of shape-pattern
variation of 20 landmarks digitized on the wing veins [48]. The left wings were detached
from the thorax, placed on glass slides, covered with coverslips, and photographed under
a stereo microscope. Twenty landmarks were digitized on the wing veins using tps-Dig
1.40 software and analyzed for coordinate variation using principal component analysis.
Chiggers (the larval stage of Trombiculidae mites), which is a vector of scrub typhus, was
also identified by geometric morphometric analysis. Because of its very small size and
as several characteristics are needed for species identification, traditional morphological
identification is difficult. Therefore, geometric morphometric analysis was applied to
differentiate chiggers using six landmarks on the scutum. This approach showed 100%
accuracy for the species identification of the chiggers [49]. Moreover, this technique was
used to analyze species of Apidae bees, Formicidae ants, Ixodidae ticks, Psychodidae
sandflies, and Reduviidae bugs [50–54].

Compared with conventional parasitological techniques, geometric morphometric
analysis is much more accurate, more user friendly, less time consuming, and less labor
intensive. Unlike DNA barcoding analysis, it is also a low-cost technique. Neither expen-
sive reagents nor sophisticated technology is needed. Only specific software is required to
digitize the landmarks and statistically analyze the coordinate variations. Apart from its
usefulness for parasite and arthropod identifications, this advanced technique also draws
upon studies of phenotypic variations, such as heritable consequences, genetic assimila-
tion, epigenetics, and hybridism caused by environmental impact within a species [66].
Furthermore, it can be applied as an entomological surveillance tool for vector control [66].
However, unlike the DNA barcoding technique, an incomplete specimen cannot be diag-
nosed by this method since the analysis is based on a comparison of anatomical structures.
Since many picture samples can be analyzed simultaneously, geometric morphometric
analysis is an advanced technique that can be utilized as a high-throughput technology for
parasite and arthropod identifications as well as a tool to study variations within a species.

3.3. Artificial Intelligence Technology

Artificial intelligence (AI) is an advanced computer science technology that emerged
in 1956 (Figure 1) [67]. Since its conception, this technology has been applied to multiple
sectors. However, its application to the field of parasitological diagnosis only occurred
recently. It is an innovation that aims to simulate human intelligence, such as recognition
and problem-solving skills, in machines and computer programs. It is governed by a
working of a set of rules called an “algorithm”, which is trained via a machine-learning
process [68]. Currently, AI algorithms are highly developed, and deep-learning algorithms
have emerged. These include convolutional neural networks (CNNs) that have been
extensively applied to medicine, especially for medical image processing. The main steps
of AI comprise data preparation, data entry, data processing, data learning, modeling, and
testing. Because the accuracy of AI processing depends on machine learning, the quality,
quantity, and variations of the training materials are critical factors.

AI is presently utilized in several broad fields. For instance, AI has been applied as a
diagnostic tool for infectious diseases in pathological, microbiological, and parasitological
laboratories. As to microbiological laboratories, Egli et al. (2020) reported the use of AI
in pre- to post-analytical processes [69]. In the pre-analytical processes, AI was applied to
the chatbot to guide specimen collection, transportation, diagnostic approach, unit cost,
and evaluation of turnaround time. Automated weighting was also utilized as a tool to
assess specimen volume and provide feedback. In the case of the analytical processes,
automated microscopy was used to capture blood smears and classify bacteria based on
Gram staining [70]. An automated plate-reading system was utilized to detect bacterial
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growth on an agar plate of a urine culture with 97.1% sensitivity and 93.6% specificity
and to identify bacterial species based on colony morphology on chromogenic agar with
99.7% accuracy [71]. Moreover, an advanced expert system was applied to interpret drug-
resistance profiles [72]. Finally, dashboards were used in the post-analytical process to
summarize analytical results to facilitate the determination of patient intervention strategies
by physicians.

For parasitological diagnoses, AI has recently been applied to malaria diagnoses.
Blood samples were smeared onto glass slides, stained with Giemsa, and observed and
recorded by microscopy. All images were transferred into and preprocessed by computer
programs, including noise removal, contrast improvement, illumination, and staining
correction. Red blood cells and other objects were segmented based on shape, size, texture,
and color by different algorithms, such as edge detection, watershed, and neural network
algorithms. All features presented on an image were then extracted and selected. The
mathematical feature extraction was based on the characteristics of the features (color,
texture, and typical appearance), and the selection involved principal component analysis,
F-statistic, one-way analysis of variance, and the like. For example, infected red blood
cells were extracted from uninfected red blood cells for parasitemia calculation. Finally,
identification of Plasmodium species was processed based on special characteristics, such as
ring- or band-form trophozoites, using deep neural network or support vector machine
algorithms (Figure 4) [55]. Torres et al. (2018) reported that automated microscopy can
be used as a routine diagnostic tool for malaria instead of human technicians with a
72.0% sensitivity and an 85.0% specificity [56]. Compared with microscopic examination
by technicians, autoscoping with a convolutional neural network algorithm can detect
Plasmodium spp. from 700 samples of Giemsa-stained blood smears with the same accuracy.
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Figure 4. Malaria diagnosis by artificial intelligence technology. After performing a blood smear and
staining, image acquisition, preprocessing, cell segmentation, feature extraction and selection, and
parasite identification were performed. Several mathematic models and algorithms were applied to
identify the Plasmodium species.

Furthermore, AI was applied to detect the ova of soil-transmitted helminths and trema-
todes. Holmström et al. (2017) used a mobile digital microscope with a deep-learning-based,
computer-vision algorithm to detect the ova of A. lumbricoides, T. trichiura, hookworms, and
S. haematobium from stool and urine samples, achieving an 83.3–100.0% sensitivity [57]. The
stool specimens were subsequently concentrated with a formalin ethyl acetate concentra-
tion and fixed with acrylamide solution. Twenty microliters of the mixtures were dropped
onto glass slides, covered with coverslips, and coated with mounting media. Pictures were
then scanned using a small, lightweight, inexpensive, and cloud-connected digital micro-
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scope. The images were processed, and ova were identified using deep-learning-based,
machine-learning algorithms. Mathison et al. (2020) applied AI to the diagnosis of medical
protozoa, such as Blastocystis spp., Chilomastix mesnili (Wenyon) (Retortamonadida: Retor-
tamonadidae), Dientamoeba fragilis (Jeeps et Dobell) (Tritrichomonadida: Dientamoebidae),
Endolimax nana (Wenyon and O’Connor) (Mastigamoebida: Entamoebidae), Entamoeba spp.,
and G. duodenalis [58]. Stool samples smeared onto glass slides were stained with trichrome;
pictures were scanned using digital slide scanning; and protozoa were detected with a
computer program using a deep convolutional neural network. The intestinal protozoa
were detected with a 98.8% positive agreement with the findings of manual microscopy
by trained personnel. Altogether, these studies highlight that medical parasites can be
diagnosed with AI technology, inexpensive equipment, and non-specialists. Moreover, AI
technology can be used as a high-throughput diagnostic tool for mass screening and for
point-of-care testing, making it suitable for low-resource healthcare settings.

As to medical arthropods, deep-learning approaches were also utilized for species
identification of mosquito vectors. The deep-learning models were based on the “you-
only-look-once” (YOLO) algorithm. They were used to identify Aedes species, such as A.
aegypti and A. albopictus; Culex species (Linnaeus) (Diptera: Culicidae), like C. gelidus, C.
quinquefasciatus, and C. vishnui; and Mansonia species (Blanchard) (Diptera: Culicidae), for
example, M. annulifera, M. indiana, and M. uniformis. Moreover, Armigeres spp. (Coquillett)
(Diptera: Culicidae), Anopheles spp., Musca domestica (Linnaeus) (Diptera: Muscidae),
Trigona apicalis (Jurine) (Hymenoptera: Apidae), and Oryzaephilus surinamensis (Ganglbauer)
(Coleoptera: Silvanidae) were also identified by this method with a 99.0% precision and
92.4% sensitivity [59].

These data indicate that AI has gradually been transformed for use in practical appli-
cations for parasite and arthropod identifications. The benefits of this advanced technology
are not only its high accuracy, sensitivity, and specificity but also its short processing time
and relatively low need for human resources. Significantly, this technology does not require
the use of technical staff who are highly skilled in parasitology, and it shows great potential
for use as a high-throughput diagnostic tool.

4. Future Perspectives and Challenges of Parasite and Arthropod Diagnostics

In the near future, both digitalization and automated machines and processes are
expected to have a critical impact on the way that parasitological laboratories work. In
the case of digitalization, in which all information is converted into a digital form that can
be processed by a computer, advanced technologies, such as DNA barcoding, geometric
morphometrics, and AI, are very appealing. All laboratory results are converted into a
digital form, analyzed, and interpreted by computer programs. Only sample preparation,
machine operation, and computer processing are controlled by human technicians with
minimal training. Therefore, interpretation bias is limited. Nowadays, mobile-phone-
based microscopes are receiving increasing attention since they are lightweight and easily
carried. These tools can digitize, save, and transfer images to cloud systems for further
analysis. They have been used to detect Schistosoma spp. and intestinal protozoa [73].
Recently, smartphone-based optofluidic lab-on-a-chip was developed to detect malaria
from blood [74]. Moreover, metagenomic analysis is a new promising tool to identify genus
and species of parasites, such as Cryptosporidium spp., Plasmodium spp., and Toxoplasma spp.
(Nicolle and Manceaux) (Eucoccidiorida: Sarcocystidae) [75–77]. This technique increases
specificity and accuracy of organism detection because it increases the number of markers
for characterization in a species level. Nowadays, this approach is low cost and shows
suitability for in-field and clinical uses due to application of Oxford Nanopore Technologies
(ONT) [78]. For automatic pre- and post-analytical processes, they are preferred by many
clinical laboratories because they can decrease wrong diagnoses, processing times, and
labor requirements. Such tools are anticipated to have an enormous impact on the daily
routines of laboratory staff. All parasitological staff will need to be prepared to adapt to the
emerging technological advances in parasitology. However, there are several challenges
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in terms of technology and resources in the present day. In addition, the interpretation
processes of all of above approaches require reference data sets for comparison purposes.
Therefore, challenges lie ahead in ensuring that there is coverage of all medical parasites
and arthropods in the databases that are deposited in computer software. Nowadays,
despite several new approaches having emerged, detection capabilities are still limited to a
narrow range of species. Furthermore, there is a pressing need to develop user-friendly
and point-of-care parasite and arthropod testing that is suitable for use in both high- and
low-resource healthcare settings [79,80].

5. Conclusions

Although traditional methods, like microscopic and immunological examination, are
still considered the gold standard for the diagnosis of parasitic and arthropod diseases,
limitations in terms of their sensitivity, specificity, and wrong diagnoses by human techni-
cians are recognized as major problems. Even though various molecular techniques have
been developed to overcome these pitfalls, wrong diagnoses remain the main problem
because interpretations are still made by human diagnosticians. The high cost of reagents
and equipment is also a limiting factor for the use of molecular techniques. Therefore,
alternative diagnostic tools for parasite and arthropod identifications are being developed;
they employ computer program-based methods without the need for costly reagents and
equipment. Geometric morphometric analysis and AI technology are novel approaches that
appear to be ideal diagnostic tools. They have demonstrated high sensitivities, specificities,
and accuracies, and they have the potential to be used as high-throughput technologies
for the diagnosis of parasitic and arthropod diseases. Moreover, they do not require the
use of costly reagents and equipment; nor are highly skilled technicians needed. Since it
is recognized that these more sensitive and accurate methods could control the mortality
of parasitic diseases, it can be stated that these novel approaches are very promising tools
for parasite and arthropod diagnoses. However, the limitations of using these computer-
assisted techniques in real clinical settings still occur, such as species coverage and internet
access. Hence, combining conventional and advanced methods may decrease limitations
and improved diagnosis precision using the advantages of each technique.
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