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Iron is an essential ion for life, playing a central role in many metabolic processes. The most important property of free iron is
its capacity to be reversibly oxidized and reduced, but at same time this make it highly pro-oxidant molecule. In this regard, iron
is able to generate powerful reactive oxygen species (ROS). For this reason, careful control on iron availability is central to the
maintenance of normal cell function in the retina. In the diabetic eye there is an impairment of iron homeostasis, thus leading
to iron overload. The mechanisms involved in this process include: (1) Destruction of heme molecules induced by hyperglycemia
(2) Intraretinal and vitreal hemorrhages (3) Overexpression of the renin-angiotensin system. The main consequences of iron
overload are the following: (1) Retinal neurodegeneration due to the increase of oxidative stress (2) Increase of AGE-RAGE
binding (3) Defective phagocytosis of retinal pigment epithelium, which generates the accumulation of autoantigens and the
synthesis of proinflammatory cytokines. Further studies addressed to explore not only the role of iron in the pathogenesis of
diabetic retinopathy, but also to design novel therapeutic strategies based on the regulation of iron homeostasis are needed.

1. Introduction

Diabetic retinopathy (DR) is the leading cause of blindness
in working-age individuals in developed countries [1].
DR classically has been considered as a microcirculatory
disease of the retina due to the deletereous metabolic
effects of hyperglycemia per se and the metabolic pathways
triggered by hyperglycemia on retinal capillaries [2]. In
recent years, evidence has emerged showing that retinal
neurodegeneration is an early event in DR and is already
present before any microcirculatory abnormalities can be
detected in ophthalmoscopic examination [3–7]. However,
this subject is still controversial, since not all of the
studies evidence retinal neurodegeneration in the diabetic
retina [8]. Alterations contributing to oxidative stress and
downregulation of antioxidative enzymes play an important
role in the pathogenesis of DR [9, 10]. Oxidative stress
is considered to be one of the crucial contributors to
the pathogenesis of DR and it is highly interrelated with
other biochemical imbalances (i.e., increase in the polyol,

PKC, hexosamine, and advanced glycation end-products
[AGEs] pathways), that lead to structural and functional
changes such as accelerated loss of capillary cells in the
retinal microvasculature, increased vascular permeability,
and increased VEGF formation [9–13].

Iron is an essential ion for life, playing a central role
in many metabolic processes. Many enzymes on important
metabolic pathways are iron dependent, thus making iron
necessary for essential processes such as DNA synthesis,
myelin production, and synthesis of the ATP (adenosine
triphosphate), as well as several neurotransmitters (i.e.,
serotonin, dopamine) [14–16]. The most important property
of free iron is its capacity to be reversibly oxidized and
reduced, but at the same time this makes it a highly pro-
oxidant molecule. In this regard, iron is able to generate
powerful reactive oxygen species (ROS) [17, 18]. Therefore,
the maintenance of iron homeostasis in the organism is
crucial, and high levels of free iron could be harmful.

In the human retina, iron levels increase with age in both
men and women. However, women have significantly more
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retinal iron than men at all ages, in spite of having a higher
incidence of anemia, which suggests tissue-specific mecha-
nisms of iron regulation [19]. Abnormalities in local iron
homeostasis have been implicated in several degenerative
diseases, including Parkinson’s, Alzheimer’s, and age-related
macular degeneration, where it has been hypothesized
that oxidative stress contributes to cell death [20–22]. In
addition, iron participates in other ocular diseases such as
glaucoma and cataract [23, 24]. However, the potential role
of dysregulation of iron metabolism in the pathogenesis of
DR remains to be elucidated. Here we present an overview
of the intricate network of proteins involved in retinal iron
handling, and we discuss evidence which suggests that iron
may contribute to retinal degeneration observed in DR.

2. Iron Homeostasis in the Retina

Since iron is highly toxic due to its ability to generate free
radicals, homeostatic mechanisms maintain iron levels by
regulation of the proteins involved in iron import (trans-
ferrin, transferrin receptor, divalent metal transporter-1),
storage (ferritin), and export (ceruloplasmin, hephaestin,
ferroportin, and hepcidin) [16, 25–34]. The opposing
requirements and toxicities of iron are managed by an
iron-responsive mechanism of posttranscriptional regula-
tion of key iron-handling proteins [35]. This regulation
allows individual cells to regulate iron uptake, sequestration,
and export according to their iron status. Iron-regulatory
proteins (IRPs) register intracellular iron status and, in
cases of intracellular iron deficiency, bind to iron-responsive
elements (IREs) on the mRNA of the regulated protein [36–
39].

Iron circulates in the blood stream by being incorporated
in the heme molecule of hemoglobin and mioglobin, and
most nonheme iron is bound to transferrin, a protein capable
of binding two molecules of ferric iron. Iron uptake by cells
involves the transferrin binding to its receptor (Tf-R) and
subsequent endocytosis. After acidication of the endosome,
transferrin releases its iron and is recycled to the membrane
where it is released to the extracellular space. Iron in the
endosome is then transported out through ferroportin or by
divalent metal transporter-1 (DMT1).

Transferrin is present in the vitreous fluid of rabbits at
a higher relative concentration found in the plasma or in
the aqueous humor [40]. In fact, transferrin makes up about
25% of the total protein in the rabbit’s vitreous humor [41].
In animal models and the human retina, the main site of
transferrin synthesis is the retinal pigment epithelium (RPE)
[33, 40, 42, 43].

Transferrin may protect the retina from the potentially
toxic effects of unbound iron, because iron bound to
transferrin does not cause oxidative stress [44]. Transfer-
rin probably helps to transport iron to photoreceptors
through their Tf-R [33]. Finally, transferrin may also have
neurotrophic effects that are essential for normal retinal
functioning [45]. In the rat, retina Tf-R has been detected
in the RPE, the inner segments of photoreceptors, the outer
plexiform layer, inner nuclear layer, inner plexiform layer,

and in the ganglion cell layer [33]. Tf-Rs are located on both
the basolateral and apical surfaces of RPE cells, suggesting
that there is a bidirectional iron stream in the blood-retinal
barrier depending on the iron status in the epithelial cells
[16, 33].

Once into the cell, the iron is rapidly uptaken by
cytosolic ferritin, a protein capable of incorporating 4.500
iron molecules. Ferritin is composed of 24 subunits of two
chains: H-ferritin (heavy chain, or “heart ferritin”) which
possesses a ferroxidase function which reduces the ferric
form to the ferrous one, mainly localized in the heart,
and L-ferritin (“light” or “liver” ferritin) which does not
have ferroxidase activity [31]. The ability of cells to store
and retrieve iron from ferritin is dependent on the ratio
of H : L ferritin chains, but the mechanisms that regulate
this ratio are not fully understood. H-ferritin is not only
responsible for iron oxidation and uptake, but also has other
functions such as reducing the cell proliferation rate and
apoptosis [46, 47]. Another form of ferritin, mitochondrial
ferritin, has been identified. Mitochondrial ferritin is 80%
homologous to H-ferritin found in the cytoplasm and stores
iron more efficiently than cytoplasmic ferritin [48, 49]. In the
murine retina, mitochondrial ferritin has been found in the
photoreceptor inner segments and diffusely throughout the
inner retina [50].

By reducing the intracellular level of free iron, ferritin is
capable of reducing oxidative stress. There are some factors
such as ascorbic acid (Vitamin C), alpha-lipoic acid, or UVB
irradiation that can affect iron metabolism [51]. Ascorbic
acid is present in the retina at a high concentration compared
with its presence in other human organs, and it is able to
protect the retina against oxidative damage [52–54]. In this
regard, we have recently found ∼20-fold higher levels of
ascorbic acid in the vitreous fluid than in serum. In addition,
the vitreous fluid from PDR patients contained a significant
lower amount of ascorbic acid in comparison with vitreous
samples from nondiabetic subjects [55]. Moreover, it has
been demonstrated that ascorbic acid causes large increases
in ferritin synthesis and increased loading of iron into ferritin
in cultured epithelial cells of the lens [56, 57]. Therefore,
the effect of ascorbic acid in iron metabolism contributes to
its antioxidant properties, and the reduced levels detected
in the eyes of diabetic patients could be involved in the
pathogenesis of DR.

The iron which is not used by the cell needs to
be returned to the blood stream. Only ferrous iron can
pass through the plasma membrane into the blood, and
only ferric iron can be incorporated into transferrin [58].
Therefore, the iron is transported out of the cell bound
to ferroportin (a cell membrane protein), and it is then
oxidized by the ferroxidases ceruloplasmin and hephaestin,
thus making it available to be bound to transferrin.

3. Iron-Dependent Regulation of
Retinal Functions

The RPE constitutes the outer blood-retinal barrier and
regulates the flow of iron between the choroidal vasculature
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and the outer retina. Of all the retinal cell types, RPE cells
are theoretically the most susceptible to oxidative damage
because of their proximity to the choriocapillaries. In fact,
in the human retina, the highest levels of iron are found
in the choroid, RPE, and photoreceptor segments [50].
However, other cell types such as pericytes, endothelial cells,
retinal Muller cells, ganglion cells, and astrocytes can be,
affected even earlier than the photoreceptors and RPE cells
by oxidative damage [12]. Iron in the eye is important for
the phototransduction cascade. Indeed, iron is an essential
cofactor for the enzyme guanylate cyclase, which synthesizes
cGMP, the second messenger in the phototransduction
cascade [59]. In addition, isomerization of the all transretinal
within the retinal pigment epithelium (RPE) in the visual
cycle requires iron for the activation of RPE65, an enzyme
involved in the visual cycle pathway [60].

The citosolic aconitase system, a dual-function protein
involved in the metabolic regulation of iron that is found
in all mammalian cell types studied, is located in the
RPE of the retina [51]. When iron is scarce, c-aconitase
functions as an iron regulatory protein (IRP) controlling
the translation of numerous proteins. However, when iron is
abundant, the IRP triggers aconitase activity and regulates L-
glutamate production, a neurotransmitter involved in retinal
neurodegeneration [61]. Thus, cultured lens epithelial cells
(LECs), retinal pigment epithelial (RPE) cells, and retinal
neurons synthesize and secrete L-glutamate, and this process
is regulated by iron by way of its effect on c-aconitase
[61]. Elevated levels of glutamate in the retina have been
found in experimental models of diabetes, as well as in the
vitreous fluid of diabetic patients with PDR [62–65]. The
heme oxygenase (HO) system acts as an antioxidant. There
are 2 main isoforms of HO: HO-1, a “heat shock protein”,
which is very sensitive to oxidative stress [66], and HO-2,
which is expressed constitutionally in the endothelial, neural,
retinal and testicular cells [67]. HO-1 is an inducible enzyme
whose activity increases in response to iron as well as heme,
light, oxidative stress, and inflammation. It degrades heme
to iron, carbon monoxide (CO), and biliverdin. The release
of iron upregulates the synthesis of ferritin as a cytopro-
tective mechanism (see below). CO has important roles in
vasodilatation, and biliverdin is subsequently converted to
the antioxidant bilirrubin. It has been demonstrated that
increasing HO-1 promoter activity in RPE cells could trigger
a protective response [68]. In the retina, overexpression of
HO-1 in photoreceptor cells provided protection from light
damage [69]. In murine models, HO-1 and HO-2 were
localized in the outer segment of the photoreceptor layer,
inner plexiform layer, ganglion cell layer, glial fibres, and
capillary endothelium [70].

However, during hemorrhage, the excesive generation
of iron and bilirrubin, that is neurotoxic, has deleterious
consequences.

Severe hypoxia due to capillary occlusion is the main
condition for the initiation of neovascularization in PDR.
Hypoxia upregulates the expression of angiogenic factors
directly or through the hypoxia-inducible factor (HIF-1).
HIF-1 activates several genes related to iron metabolism such
as HO-1, transferrin, transferrin receptor, and ceruloplasmin

[71–73]. In addition, it has been recently demonstrated that
ischemic preconditioning of the retina is highly effective
in preventing subsequent injury caused by iron-dependent
free radical burst after prolonged ischemia. This protection
appears to be provided by increased ferritin levels [74].

4. Disruption of Iron Homeostasis and
Oxidative Damage in DR

It has been demonstrated that intravitreal levels of iron in
PDR are 2.5 times the normal levels [75]. In addition, trasfer-
rin concentrations have been found elevated in the vitreous
fluid and retinal membranes from patients with proliferative
vitreoretinopathy diseases including PDR [76, 77].

There are several mechanisms that could explain iron
overload in diabetic eyes (Figure 1). First, it has been
demonstrated in vitro that hyperglycaemia causes a com-
plete destruction of heme molecules from hemoglobin and
myoglobin, releasing free iron into the interstitial space
[78, 79]. Second, intraretinal and vitreal hemorrages could
contribute to iron overload in PDR. Finally, angiotensin II
stimulates the local gene expression of proteins related to
iron metabolism (TfR, DMT1, ferroportin, and hepcidin)
in the rat kidney, thus contributing to the production of
high levels of iron transporters and facilitating iron uptake
by the cells [80, 81]. In this regard, it is worth mentioning
that the major components of the renin-angiotensin system,
including angiotensin II, have been identified in glial cells,
neurons, and blood vessels from murine retinas [82–84]
and are overexpressed in diabetic rats [85, 86]. In human
beings, vitreal concentrations of prorenin, renin, and Ang
II are elevated in patients with DR [87, 88]. In addition,
proteomic analysis of vitreal samples taken from patients
with diabetes revealed that angiotensinogen was found in
greater concentration in samples taken from those with PDR,
compared with those with no DR or non-diabetic control
subjects [89].

The consequences of iron overload in the diabetic eye
are complicated to evaluate because, as mentioned above,
there are multiple forms of iron with different reactivity
and several proteins that modulate their levels and actions.
However, among the potential mechanisms of iron-induced
damage, it seems that oxidative damage is the most impor-
tant (Figure 1).

Increased intraocular levels of iron cause oxidative
damage to photoreceptors with greater damage to cones than
rods [90]. In addition, it has been shown that iron chelation
protects the RPE cells against cell death induced by oxidative
stress [91, 92]. In the retina of human donors with DR high
levels of peroxidized lipids in Bruch’s membrane promoted
by the local ferric iron involved have been demonstrated
[93]. This happens also in the eyes of patients suffering from
vitreal bleeding in the course of PDR, after which there is
an important reactivation of superoxide generation catalyzed
by the locally released free iron [94]. In addition, it should
be noted that iron ion catalyses the binding of the AGEs
(advanced glycation end products) to the specific receptor,
that is, a crucial step in the pathogenesis of the DR [95].
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Figure 1: Scheme illustrating how diabetes influences iron metabolism in the retina and the pathogenic consequences.

It has been demonstrated that impaired retinal iron
homeostasis is associated with defective phagocytosis in both
murine models [96] and in ARPE-19 cell cultures [97]. An
impairment of phagocytosis has been described in long-term
diabetes [98] and, therefore, it is possible that this could also
happen to RPE cells. Thus, iron overload could contribute
to the phagocytosis defect associated with diabetes. This
defect implies a delayed and impaired phagocytosis of both
the apoptotic cells and the local detritus, which generates
the accumulation of autoantigens and the synthesis of
proinflammatory cytokines.

As mentioned above, HO may respond to oxidative
stress and upregulation of the HO system (HO-1 and HO-
2) in rats with streptozotocin- induced diabetes has been
demonstrated [70]. In diabetic rats, increased retinal HO-1
mRNA expression has been shown to be preventable with
antioxidant therapy [99], and HO-1 overexpressing neurons
have shown reduced levels of apoptosis [100]. However, in
human eyes with long-term diabetes, reduced HO-1 mRNA
expression in RPE cells has been demonstrated [101], thus
suggesting that increased HO activity induced by diabetes is
dependent on diabetes duration.

Although the HO system has been generally accepted as
having an antioxidant role in several tissues, HO also could
exhibit pro-oxidant activity in the vascular endothelial cells.
For example, it has been demonstrated that in the endothelial

cells, HO increases the expression of nitric oxide (NO),
endothelin-1, and VEGF [102–104], all of which are relevant
factors in the pathogenesis of PDR [2].

In cellular cultures, free iron stimulates the expression
of adhesion molecules and monocyte endothelial adhesion,
[105–107] key steps in the development of DR. Finally,
in murine models, iron overload is associated with RPE
hypertrophy and hyperplasia due to the stimulation of
citosolic-aconitase system, which acts as an enzyme initiating
the proliferation cascade [108].

In summary, careful control of iron availability is central
to the maintenance of normal cell functions. Iron overload
seems to be caused by several processes involved in the
pathogenesis of DR. However, at the same time iron causes
retinal damage mainly by increasing oxidative stress. Further
studies addressed to exploring the role of iron in the
pathogenesis of DR are necessary not only to improve our
knowledge on this issue, but also to design novel therapeutic
strategies based on the regulation of iron proteins.
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