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The field of stem cell biology, cell therapy, and regenerative medicine has expanded almost 
exponentially, in the last decade. Clinical trials are evaluating the potential therapeutic use 
of stem cells in many adult and pediatric lung diseases with vascular component, such 
as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), 
idiopathic pulmonary fibrosis (IPF), or pulmonary arterial hypertension (PAH). Extensive 
research activity is exploring the lung resident and circulating progenitor cells and their 
contribution to vascular complications of chronic lung diseases, and researchers hope to 
use resident or circulating stem/progenitor cells to treat chronic lung diseases and their 
vascular complications. It is becoming more and more clear that progress in mechano-
biology will help to understand the various influences of physical forces and extracellular 
matrix composition on the phenotype and features of the progenitor cells and stem cells. 
The current review provides an overview of current concepts in the field.

Keywords: stem cells, lung diseases, pulmonary circulation/physiology, bioengineering, mechanotransduction, 
cellular

iNTRODUCTiON

Chronic lung diseases are among the most vicious killers in children and adults. With a growing 
body of evidence based on ongoing research efforts, we are beginning more and more to understand 
the true importance of stem and progenitor cells: that these cells are suitable for use in cell therapies 
and in regenerative medicine, but even more that lung resident and even circulating or bone marrow 
(BM)-derived stem progenitor cells may be important culprits in many disease processes itself (1, 2).

There are a limited number of stem and progenitor cell populations that are currently of interest 
in vascular remodeling and cell therapy in the lung. These cells and their putative net effect on 
pulmonary vascular remodeling (promoting vs. inhibitory) are given in Figure 1. Here, we provide 
a short introduction on the most important features of these cells that are pertinent to lung diseases 
with vascular complications. References to more detailed articles on these cells are provided in the 
bibliography of this article.

Mesenchymal Stem Cells
Mesenchymal stem cells (MSCs) are among the best investigated stem cell populations (3). 
BM-derived MSCs are the most frequently studied MSCs. The international society for cell thera-
pies has set minimum requirements for the definition of MSC: positive for surface markers CD73, 
CD90, and CD105 and negative for CD14, CD34, and CD45 (4). In addition, MSCs also need to 
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FiGURe 1 | Promoting or inhibitory effect of progenitor cell and stem 
cell populations on pulmonary vascular remodeling.
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be able to generate adipocytes, osteoblasts, and chondroblasts in 
lineage differentiation assays, in  vitro (4). This criterion shows 
the multipotency of these cells, meaning that MSCs are able to 
give rise to several cell types within the mesenchymal lineage. 
MSCs have a typical fibroblast-like morphology when cultured 
in  vitro and grow in colony-forming units-fibroblast-like  
(CFU-F) when seeded in limiting dilution (5). Because of their 
lack of human leukocyte antigen (HLA) expression, the immune 
system is largely blind toward MSC, leading to what has been 
called the “immune-privileged status” of MSC (6). This immune-
privileged status has made the MSC an ideal candidate cell for 
transplantation approaches, as HLA incompatibility is not an 
issue with MSC. BM-MSCs have shown great promise for cell 
therapy in various animal models of lung disease and undergone 
testing for safety and efficacy in several patient groups of lung 
diseases as will be outlined in the following paragraphs.

In addition to BM-MSCs, lung resident MSCs or mesenchymal 
stromal progenitors have raised attention due to their potential 
contribution to several disease processes (7–12). These cells are 
less clearly defined in their phenotype, although authors use 
many of the criteria that define BM-MSC.

Bronchopulmonary Dysplasia
Preterm infants who are treated for postnatal respiratory distress 
are at risk to develop bronchopulmonary dysplasia (BPD) as a 
consequence of mechanical ventilation and oxygen therapy (13). 
BPD pathology shows elements of inflammation, abnormal 
alveolarization, fibrosis, and pathological vascular remodeling 
(14). The histopathological correlates of the vascular remodeling 
are dysmorphic capillaries in the interior of thickened alveolar 
septa, as well as periarteriolar thickening, degeneration of elastic 
laminae, and increased thickness of the vascular smooth muscle 
layer (15, 16). There is a mixed bag kind of literature found for the 
role of MSC in BPD, and it is not clear whether MSCs are friend 
or foe in BPD (17). In one study, the presence of MSCs in tracheal 
aspirate predicted the development of BPD and was associated 

with increased mortality (18). In animal models, BM-MSCs 
successfully improved neonatal lung injury and arrested alveolar 
growth (19, 20). It is even more interesting that MSCs rely on 
their secretome for their beneficial effect, which supports the 
concept that MSCs protect cells not by direct replacement of cells 
but rather by paracrine effects (21).

Chronic Obstructive Pulmonary Disease
Patients with chronic obstructive pulmonary disease (COPD) 
present with a diverse variety of possible phenotype ranging from 
emphysema to chronic obstructive bronchitis, all characterized 
by irreversible airflow limitation. The lung vasculature is also 
affected by a chronic inflammatory response in the lung: This 
notion is supported by the findings that, for example, the pulmo-
nary arteries show adventitial infiltrates with CD8+ T lympho-
cytes and cigarette smoke promotes accumulation of neutrophil 
granulocytes in the lung capillaries (22, 23). Pathological findings 
in the lung vessels of patients with COPD include increased wall 
thickness, changes in the composition of the extracellular matrix 
(ECM) causing stiffening of the blood vessel wall, and increased 
vascularization of the bronchial wall (23–25). Because COPD 
belongs to the top killers, efforts are underway to evaluate the 
role of MSC in the natural course of the disease and as a means 
for regenerative medicine to revert the severe tissue destruction 
found in the lungs of COPD patients. Some concepts suggest 
that aging of BM-MSCs could contribute to the development of 
COPD, e.g., through stem cell depletion (26). Transplantation of 
BM-MSCs is being considered for therapy of patients with COPD: 
a recent study has demonstrated the safety of giving BM-MSCs to 
patients with COPD (27).

Pulmonary Arterial Hypertension
The changes in the pulmonary arteries in pulmonary arterial 
hypertension (PAH) range from thickening of the smooth muscle 
layer and distal extension of a smooth muscle layer to non-muscu-
larized precapillary arterioles to complex multicellular concentric 
and plexiform lesions (28–31). The literature regarding MSC in 
pulmonary vascular disease are ambivalent: multipotent MSCs 
are found in vascular lesions of patients with thromboembolic 
pulmonary hypertension (PH) (12) and pericytes, mesenchymal 
vascular cells that are a source of MSCs in the lung, contribute to 
pulmonary artery remodeling in PAH (11). On the other hand, 
several studies have demonstrated that MSC transplantation 
reduces PAH in experimental animal models (32–37). There is 
a potential difference between BM-derived MSCs that are used 
for cell transplantation and therapy and lung resident MSCs that 
may be part of the remodeling process in the vasculature. Future 
investigations are not only important to answer this question but 
may also yield a better understanding of the interaction between 
lung resident and circulating BM-derived cell populations in 
PAH pathobiology.

Idiopathic Pulmonary Fibrosis
The understanding of the disease pathobiology has come a 
long way in idiopathic pulmonary fibrosis (IPF). In its humble 
beginnings, IPF was understood as a disease of dysregulated 
fibroblast proliferation and activity (38, 39). Pathobiological 
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concepts circled around the so-called “fibroblastic foci,” areas 
of active fibroblast growth and deposition of ECM with typical 
sub-epithelial localization. With the onset of finer methods and a 
better understanding for cell plasticity, the concept that IPF likely 
starts from repetitive microinjuries to the alveolar epithelium, 
causing epithelial apoptosis and activation of myofibroblasts 
arose (40). We have shown that endothelial cell (EC) apoptosis 
also occurs in areas of active fibrosis both in IPF and in experi-
mental PF (41, 42). Other studies have also found heterogeneous 
remodeling of the lung vasculature in IPF, with reduced vascular 
density and aberrant capillaries in regions of active fibrosis and 
elevated vascular density in border areas adjacent to fibrotic 
areas (43–45). Based on data showing that PH in IPF reduces 
survival, it is likely that lung vascular remodeling is more than 
just a bystander in this devastating disease (41). Various sources 
of the myofibroblasts, which are the cornerstones of fibrogenesis, 
have been discussed over time, including resident fibroblasts, 
epithelial cells via epithelial-to-mesenchymal transition (EMT), 
circulating mesenchymal progenitors (“fibrocytes”), endothelial 
cells via endothelial-to-mesenchymal (EndMT) transition, and 
pericytes (9, 10, 46–56). Recent work has demonstrated that 
resident mesenchymal cells, particularly pericytes, give rise to the 
vast majority of myofibroblasts (9, 10, 56). This is quite interesting 
because at least a fraction of the pericytes likely originates from 
multipotent mesenchymal progenitor/stem cells (57, 58). Hence, 
these results suggest that lung-resident MSCs contribute to the 
disease process. It is interesting that current therapeutic trials 
evaluate BM-derived MSCs as potential therapeutic target and 
that the results so far are promising. These studies show, so far, 
that it is safe to treat IPF patients with BM-MSCs, an outcome 
that may be counterintuitive at first (59–61). But the results make 
sense if MSCs are seen as anti-inflammatory cells that support 
repair processes mainly via paracrine secretion, as suggested by 
preclinical studies, yielding exciting results by transferring only 
exosomes of MSCs (62, 63).

Fibrocytes
Fibrocytes have been discovered as a population of hematopoietic 
cells with ability to produce collagen and to differentiate to myofi-
broblasts (64). Although shown to accumulate in multiple organ 
systems during injury repair and fibrosis, fibrocytes have received 
particular attention in the field of chronic lung diseases, because of 
a possible contribution of fibrocytes to disease development and 
progression: such diseases include ILD of the adult, such as IPF, 
where high levels of circulating fibrocytes have been demonstrated 
to indicate a poor prognosis (48). In addition, histological evidence 
for fibrocytes is present in lung tissue from IPF patients (46). 
Homing of fibrocytes to fibrotic lung tissue depends upon CXC 
chemokine ligand 12 (CXCL12), a finding that provides an interest-
ing option to block tissue accumulation of fibrocytes as a potential 
therapeutic avenue (65). Fibrocytes may also represent a target of 
therapy in PAH, as evidenced by reduced fibrocyte accumulation as 
a response to treprostinil therapy in an animal model (66).

endothelial Progenitor Cells
Different cell entities have been summarized under the term 
“EPC”: EPC have been recently shown as resident cells in the lung 

circulation and initially as circulating cells (67–71). There are two 
main ways to identify circulating EPC: first, EPC can be detected 
within blood mononuclear cells by flow cytometry with specific 
surface markers (72). The most frequently used marker combi-
nation is CD34+ CD133+ VEGFR2+. The identity of these cells 
as “true” EPC has been controversial for quite a while (68, 73). 
Second, EPC can be detected by growth: depending on culture 
principles, early outgrowth CFU-Hills have been distinguished 
from late outgrowth endothelial colony-forming cells (ECFC) 
(71, 74, 75). Today, the consensus is that CFU-Hills are rather 
mononuclear cells with endothelial markers that exert protective 
effects on endothelial cells largely in a paracrine fashion (76), 
whereas ECFC are “true” EPC with the ability to replace damaged 
EC by engraftment (74). Different results have been obtained in 
preclinical studies for PAH, largely depending on the type of cell 
that the investigators used: Whereas endogenous EPC seem to be 
functionally impaired with higher than control proliferation rate 
but lacking ability for angiogenesis (72), therapy with genetically 
modified EPC has been successful for treatment in animal models 
of PAH (77). A clinical trial to determine whether genetically 
modified EPC have the same therapeutic benefit on PAH patients 
failed to provide the expected results (78).

In addition to circulating EPC, there is evidence for several 
EPC populations in the adult lung: Alphonse et al. have shown 
that ECFC can be isolated from the lung periphery and that these 
ECFC are functionally impaired in hyperoxia lung injury (79, 80). 
There is also evidence for EPC with high ability for self-renewal 
in the adult murine lung (81). These cells have been named “vas-
cular endothelial stem cells” and represent EPC that are on the 
very top of the lung EC hierarchy. The finding of these endothelial 
stem cells in the blood vessels of the lung is consistent with 
previous reports of systemic blood vessels harboring a complete 
hierarchy of EPC (82). EPC at various levels of self-renewal and 
differentiation could indeed provide a basis for extensive vascular 
regeneration. On the other hand, because of the high ability to 
grow, some of these EPC or endothelial stem cells may also 
contribute to generate the apoptosis-resistant EC that are found 
in the complex vascular lesions of PAH patients (83). Evidence 
for mono- and polyclonal EC proliferation in complex lesions of 
pulmonary arteries in PAH indeed suggests a contribution of EPC 
or endothelial stem cells to the development of plexiform lesions 
in PAH (84). Much work needs to be done to characterize the EC/
EPC/endothelial stem cell hierarchy in the lung and to identify 
the potential of EPC/EC stem cells for regenerative medicine or 
disease pathobiology.

induced Pluripotent Stem Cells
Adult stem cells are mostly understood as multipotent cells, mean-
ing that adult stem cells can give rise to multiple cell types within 
a given lineage (85). The classical example for a multipotent stem 
cell is the MSC with the ability to produce cells of multiple skeletal 
cell types, such as osteoblasts, chrondroblasts, adipocytes, and 
muscle cells (3, 86). In contrast, during embryonic development, 
there is an early population of stem cells that have the ability to 
make cell lineages from all three germinal layers (87). This ability 
is called pluripotency, and the cells are described as embryonic 
stem cells. No single marker or transcription factor can define 
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pluripotency, but instead a panel of functional assays in combi-
nation with activity of several transcription factors, e.g., Oct-4, 
Nanog, Klf4, and others, can help to identify pluripotent cells 
(87–90). In recent years, a variety of strategies have been shown 
to use a mature cell, such as fibroblasts, and induce pluripotency 
in such a cell. The strategies range from simultaneous overex-
pression of several transcription factors to chemical stimulation 
methods (88–94). So why is it an advantage to generate such 
iPSC? First, pluripotent cells are very powerful cells that can give 
rise to almost any cell lineage in the body and, therefore, their 
value for regenerative medicine may be skyrocketing. But human 
embryonic stem cells, which are the “natural” pluripotent stem 
cells, are highly restricted and difficult to obtain. Hence, iPSC 
would provide a much easier accessible and less regulated source 
of pluripotent stem cells. Second, iPSC allow generating pluripo-
tent stem cells from tissues such as skin of patients and, therefore, 
providing a patient-specific and genetically identical source of 
cells. Such approaches will likely be very useful in the dawning 
age of “personalized medicine.” Recent work in the vascular field 
has demonstrated that iPSC can give rise to different vascular 
lineages, including EC (95, 96). The ability to generate genetically 
identical EC from, e.g., skin fibroblasts will provide a unique tool 
for regenerative medicine, including seeding of decellularized 
lung matrices with genetically engineered but patient-specific 
lung cells as prerequisite for using these recellularized lungs as 
transplant organs (97). Despite all the enthusiasm and hopes that 
flare up with such exciting and groundbreaking progress, these so 
powerful iPSC also need to be careful evaluated for adverse effects 
when transplanted to patients and seeded in organ matrices to 
generate future transplant organs: because iPSC can give rise to 
so many different lineages and have a high self-renewal potential, 
iPSC harbor the danger of giving rise to produce genetic and 
epigenetic changes, immunogenicity, and tumor cells (98). Even 
the possibility of such adverse effect of iPSC therapy needs to be 
carefully considered, and the risks have to be carefully weighted 
against the clear and exciting potential to benefit the patient by 
using iPSC.

Role of Biomechanics and Stem Cell 
Mechanobiology in vascular Remodeling
As science progresses with a better understanding of the role of the 
various stem or progenitor cell types in contribution to lung dis-
ease, repair, or regeneration, the mechanical microenvironment 
has emerged as a major player. Mechanical signal transduction 
through focal adhesions, the glycocalyx, mechanically activated 
ion channels, primary cilia, and force across cell–cell junctions 
may all play a role in the contribution of stem cells to pulmonary 
vascular remodeling (99). The dynamic mechanical environment 
of the lung lends itself to study the effects of mechanobiology in 
normal physiology and pathology of the lung microvasculature. 
The mechanical environment is essential to stem cell behavior 
during lung development and during pathological vascular 
remodeling events, which occur in BPD, IPF, COPD, and PAH.

During development of the pulmonary microvasculature, the 
fetal lung undergoes hydrostatic pressure between 1–2 mmHg, 
which maintains the lung in a distended state (100). Fetal breath-
ing movements cause cyclic mechanical loading to the developing 

alveoli and microvasculature causing shear stress (101). Following 
the development of the primitive circulatory system, blood veloc-
ity and shear stress is critical for embryonic vascular patterning, 
remodeling, and proper development (102). Lack of proper 
mechanotransduction at any stage in the developmental process 
can lead to structural abnormalities and an underdeveloped lung.

Bronchopulmonary dysplasia is characterized by impaired 
alveolarization and vascularization and often occurs follow-
ing mechanical ventilation. The impaired structure of the lung 
microvasculature leads to abnormal fluid flow and reduced gas 
exchange. High air flow from mechanical ventilation can increase 
lung injury, leading to the development of BPD (103).

Idiopathic pulmonary fibrosis is associated with progressive 
fibrotic scarring and stiffening of the lung ECM (104). This 
scarring is also associated with loss of compliance. The overall 
stiffness of the alveolar septa is increased by two- to threefold as 
measured by atomic force microscopy (105). IPF is also associ-
ated with increased vascular remodeling and may be associated 
with increased PH.

In PAH, pulmonary vascular remodeling is influenced by both 
hemodynamic and ECM changes. By its very nature, the remod-
eling in PAH causes increases in the pulmonary vasculature 
pressure as shown by animal models of severe PAH (106). But 
increased pulmonary artery pressure, e.g., by vasoconstriction, 
may also contribute to remodeling of pulmonary arteries and 
even foster the development of complex lesions in pulmonary 
arteries (107, 108). Furthermore, the ECM changes that occur 
in remodeling lend themselves to increased substrate stiffness 
(109, 110).

Chronic obstructive pulmonary disease also causes changes in 
lung mechanics and vascular remodeling. A reduction of vas-
cularity in the alveolar septa occurs in emphysema (111). Loss 
of alveoli causes lung hyperinflation and overdistension of the 
remaining alveoli and capillaries. Furthermore, pulmonary arte-
rial stiffness and blood pressure are increased in COPD patients 
and are not reduced with pulmonary rehabilitation (112).

These altered mechanical environments and their effects on 
stem cell contribution to pulmonary vascular remodeling war-
rants further study. The general physiological response of stem 
cells to mechanical signaling has been studied greatly in  vitro, 
with in vivo studies largely lacking. Furthermore, specific studies 
of the mechanical environment on stem cells residing in the lung 
vasculature are especially absent. Information may be gleaned 
by understanding stem and progenitor cell response to general 
mechanical conditions. We will briefly review the state of the 
science of stem cell response to each of three mechanical condi-
tions: shear stress, cyclic strain, and substrate stiffness as they may 
pertain to pulmonary vascular remodeling and stem cell-based 
therapies. These mechanical loading conditions and their effect 
on cell signaling and phenotype are summarized in Table 1.

Shear Stress
Whether in  vitro or in  vivo, cells generate force and are often 
exposed to force, and both can influence stem cell fates (126). 
Exposed forces can be axial or shear in nature, as one would find 
in fluid flow (115). Embryonic stem cells and BM-derived EPC 
have been shown to differentiate into endothelial cells (113). 
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TABLe 1 | Mechanical loading conditions and their effect on cell signaling and phenotype.

Cell type Loading condition increased Reference

EPC/VESC Shear stress VEGF-R (81, 113–115)
E-CAD
Tyrosine-kinase-1
Ephrin B2
Notch 1/3
Hey 1/2
Activin-RLK

Stiffness Tube morphogenesis (required VEGF), and increased cell adhesion on stiffer substrates (116, 117)

Bone marrow-derived 
progenitor cells

Cyclic strain α-SMA (118)
h1-calponin

Epithelial Stiffness EMT on harder surfaces; apoptosis on softer substrates (119, 120)

Endothelial Stiffness Increased proliferation with increased stiffness; inhibited EndMT with decreased stiffness (121–123)
Cyclic strain Damage and inflammation (124, 125)
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In fact, under flow conditions, EPC can form functional blood 
vessels from single c-kit+ cells (81). Human EPC demonstrate 
increased proliferation and VEGF-receptors, endothelial cad-
herin, and tyrosine-kinase-1 under laminar flow conditions up to 
2.5 dyn/cm2 (115). Furthermore, under laminar flow conditions, 
artery phenotypes of Ephrin B2, Notch 1/3, Hey 1/2, and activin 
receptor-like kinase increased in EPCs (114). The altered signal-
ing found in these studies under fluid shear stress emphasize 
the importance to examine stem cell response under dynamic 
mechanical conditions, such as those found in the diseased lung.

Cyclic Mechanical Strain
A body of work has been examined wherein microvascular 
endothelial cells exposed to cyclic mechanical loading have been 
shown to contribute to damage and inflammation (124, 125). 
However, there has been little work, to date, examining the role 
of stem cells in this process. Under cyclic strain, EPC may dif-
ferentiate into smooth muscle cells, since it has been shown that 
platelet-derived growth factor-BB can induce EPC differentiation 
into smooth muscle cells (127). BM-derived progenitor cells 
exposed to cyclic stretch increased α-smooth muscle actin and 
h1-calponin (118).

Altered Substrate Stiffness
Vascular remodeling alters ECM composition and stiffness. It is 
well known that naive MSCs can be induced to specific lineages 
using soluble induction factors in conjunction with tissue-specific 
substrate stiffness (128). Mechanical stiffness has been shown to 
increase differentiation of BM-derived mononuclear cells into 
endothelial progenitor cells (129). Tube morphogenesis from 
EPC required the combined effects of stiffness and VEGF (116). 
Differentiation of EPC based on stiffness alone has not been well 
established. One group looking at ECFC found different cell 

adhesion attributes based on stiffness but found no phenotypic 
changes associated with stiffness (117). However, this experi-
ment utilized media that may have prevented differentiation. 
Transdifferentiation, or lineage deprogramming, can also occur 
through alterations of the substrate stiffness. In epithelial cells, 
spontaneous EMT can occur on stiffer substrates (119). In 
murine breast cancer, stiff substrates can induce EMT while softer 
substrates induce apoptosis (120). For endothelial cells, TGF-β1 
and TGF-β2 play the most important role to induce EndMT, but 
stiffness can significantly impact EndMT, with softer substrates 
almost inhibiting the effects of TGF-β (122, 123). Substrate stiff-
ness does play a major role in cellular adhesion, proliferation, 
morphology, and migration (130). While forces may induce or 
prohibit differentiation, the effects are much more significant with 
growth factor support. Further studies are necessary to relate these 
in vitro studies to the in vivo effects of vascular remodeling in vivo.

In conclusion, stem cell contribution to vascular remodeling 
in lung pathologies will be dependent on the mechanical environ-
ment. These changes will play a role in cellular differentiation and 
matrix deposition, all contributing to the pathological process. 
In stem cell therapy approaches, these effects will need to be har-
nessed to promote positive tissue remodeling and regeneration.
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