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Abstract

Small molecule drugs are the foundation of modern medical practice yet their use is limited by the 

onset of unexpected and severe adverse events (AEs). Regulatory agencies rely on post-marketing 

surveillance to monitor safety once drugs are approved for clinical use. Despite advances in 

pharmacovigilance methods that address issues of confounding bias, clinical data of AEs are 

inherently noisy. Systems pharmacology– the integration of systems biology and chemical 

genomics – can illuminate drug mechanisms of action. We hypothesize that these data can 

improve drug safety surveillance by highlighting drugs with a mechanistic connection to the target 

phenotype (enriching true positives) and filtering those that do not (depleting false positives). We 

present an algorithm, the modular assembly of drug safety subnetworks (MADSS), to combine 

systems pharmacology and pharmacovigilance data and significantly improve drug safety 

monitoring for four clinically relevant adverse drug reactions.
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Introduction

Small molecule drugs are essential in modern medical practice. However, all drugs have the 

potential to cause severe side effects and even the most efficacious drugs can turn out to be 

dangerous (e.g. Vioxx, Avandia).1,2 Indeed, one of the primary reasons drugs fail during 

clinical trials is that they are found to cause adverse events (AEs).3 While clinical trials aim 

to address drug safety issues, their inherent limitations (including number of patients, 

duration of study, and homogeneity of the study population) lead to new AEs often being 

discovered only after a drug has been approved.4,5 The FDA relies on pharmacovigilance 

methods to monitor drug safety in the post-marketing phase. These methods primarily rely 

on spontaneous reporting systems (SRSs), such as the FDA Adverse Event Reporting 

System (FAERS), that collect voluntary submissions from healthcare providers and patients 

as well as mandatory submissions from pharmaceutical companies. However, because these 

data are passive collections of events their use is limited in cases where reporting lags 

behind safety events. Interest has shifted to Medicare claims data (e.g. Observational 

Medical Outcomes Partnership) and the electronic health records (e.g. FDA’s Mini-Sentinel) 

where adverse drug events may potentially be detected in near real time.

Multiple quantitative signal detection algorithms have been developed to mine observational 

health data for adverse drug events.6,7 These methods are primarily based on 

disproportionality analysis, wherein a ratio of the observed occurrence of a drug-AE 

combination to the expected occurrence for other drugs is calculated to quantify the 

combination’s “unexpectedness”.8 In spite of the utility of these methods, they suffer from 

known limitations due to both sampling variance (e.g. under- or over-reporting of events 

depending on how established the drug-event relationship is) and reporting biases (such as 

reporting disease symptoms as adverse events).8,9 Pharmacovigilance methods, such as the 

multi-item gamma Poisson shrinker (MGPS) currently used by the FDA, correct for 

sampling variance by estimating confidence intervals for the disproportionality statistics to 

dampen unsubstantiated drug-event signals.10,11 High-dimensional propensity scoring 

techniques5 and self-controlled case series12 have been developed to address issues of 

reporting biases. Both of these methods work by defining a well-matched set of controls. 

Despite these advances, however, pharmacovigilance methods continue to suffer from both 

high false positive and false negative rates.7,8,10

These persistent limitations suggest that biological data regarding a drug’s targeted proteins 

and pathways may represent a complementary avenue for predicting drug safety. In addition, 

it has become increasingly apparent that the traditional pharmacological paradigm of “one 

drug one target” has broken down,13 with off-target, unknown interactions leading to 

unintended consequences. It is imperative, therefore, to investigate drug effects in a more 

holistic context.14

Systems pharmacology (also referred to as chemical systems biology) is an emerging field 

integrating physiological, biochemical, genomic, and chemical data to analyze drug actions 

and side effects in the context of the molecular interactions in the cell (the “interactome”).15 

For example, chemical data (e.g. a drug’s chemical structure) and biological data (e.g. a 

drug’s protein targets) were recently integrated to explore common mechanisms of adverse 
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events.16 To do so the authors looked for common chemical substructures or protein features 

across drugs or their targets for a subset of drugs known to cause a given side effect. A 

typical approach in systems pharmacology is to convert these data to a “network” consisting 

of nodes and edges. Nodes represent biological entities, such as proteins or small molecules, 

and edges represent relationships between these entities, such as protein-protein interactions 

or drug-target binding affinities. This representation enables the application of graph theory 

– a mature sub-domain of mathematics – to systems pharmacology data.14 Graph theoretic 

approaches were used to discover that proteins commonly form highly intra-connected sub-

networks called modules according to shared biological function.14 These modules have 

been used to identify pathways that mediate the therapeutic and adverse effects of drugs17,18 

and to predict previously unknown AEs.19 While systems pharmacology data has been used 

in specific cases to predict drug side effects, it has not yet been established that integrating 

these approaches would improve pharmacovigilance.

We hypothesized that incorporating systems pharmacology data into drug safety 

surveillance would improve pharmacovigilance by reducing the rate of false positives while 

simultaneously enriching for true positives. Here we present a method called the Modular 

Assembly of Drug Safety Subnetworks (MADSS). For a given adverse event, MADSS 

integrates multiple chemical and biological data sources into a common network and 

identifies a module, which we refer to as an “AE neighborhood,” representing a putative AE 

mechanistic pathway. The AE-module and the network are then used to evaluate each drug 

for its potential relationship to the AE. Our hypothesis is that drugs targeting proteins in this 

“AE neighborhood” are more likely to cause the AE. A recent “medication-wide association 

study” (MWAS) performed a multivariate analysis to generate pharmacovigilance statistics 

for four clinically important adverse events - upper gastrointestinal bleeding, acute liver 

failure, acute myocardial infarction, and acute kidney failure - but was unable to eliminate 

many false positives and false negatives.20 We validate MADSS by showing that the 

combination of systems pharmacology models and MWAS statistics leads to significant 

improvements in safety predictions for all four AEs individually and combined compared to 

MWAS alone. We evaluate multiple network analysis parameters to demonstrate the 

flexibility of the method in evaluating either an individual or combination of AEs. Finally, 

using the chemical and biological data integrated in MADSS we investigate the potential 

mechanisms of drug AEs and show that multiple drug classes can act through shared 

functional clusters to elicit AEs.

Results

We used the Modular Assembly of Drug Safety Subnetworks (MADSS) algorithm (Figure 

1) to integrate human protein-protein interaction (PPI) data from the Search Tool for the 

Retrieval of Interacting Genes/Proteins (STRING)21 with genetic data for four adverse 

events: gastrointestinal bleeding (GI), acute liver failure (LF), acute myocardial infarction 

(MI), and acute kidney failure (KF). The PPI network from STRING contains 13,926 

proteins (nodes) and 217,823 interactions (edges) derived from physical interaction 

experiments, co-expression data, literature co-mentions, and molecular pathway databases. 

We curated a set of proteins with primary data linking them to each of the four conditions 

irrespective of drug involvement (8, 58, 320, and 41 genes for GI, LF, MI, and KF, 
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respectively; see Materials and Methods). We pared down these protein sets to ensure high 

interconnectivity (Materials and Methods), resulting in 8, 15, 10, and 35 proteins in our “AE 

seed sets” for GI, LF, MI, and KF, respectively (Supplementary Table S1).

Our hypothesis is that drugs targeting proteins with high connectivity to the seed sets will be 

more likely to cause the adverse event. We scored all 13,926 proteins for their connectivity 

to each AE seed set using four functions (Supplementary Figure S1; see Materials and 

Methods). We then used a reference standard containing a total of 149 positive and negative 

control drugs for each of the four adverse events (GI, LF, MI, and KF) created by combining 

literature review and natural language processing of product labels.20 Of 149 total drugs, 

there were 77, 95, 79, and 53 controls for GI, LF, MI, and KF, respectively.

We assigned each drug the score of its most highly connected target protein that was itself 

not a seed protein (Supplementary Figure S2). This results in a dataset with each drug being 

represented by four scores of connectivity functions. We used these connectivity scores to 

train two machine learning algorithms, logistic regression and random forests. This results in 

four drug safety subnetwork (SubNet) models (one for each AE). In addition, we also 

grouped all AEs together to build a global model of adverse effects (Materials and 

Methods). We found that the random forest algorithm significantly outperformed logistic 

regression at linking drugs to their known side effects for each of the four events 

(Supplementary Figure S3).

Improving drug safety predictions using systems pharmacology

We investigated the additive contribution of systems pharmacology models (SubNet) to 

pharmacovigilance statistics (MWAS) in predicting drug safety. We found that, individually, 

both MWAS (β=0.79 ±0.18, P = 1.05e−5) and SubNet (β=4.34 ±0.58, P = 7.42e−14) were 

significant predictors of adverse events. In addition, we found the combined model 

outperformed the univariate models (χ2= 75.9, P< 1 ×10−15). The Area Under the Receiver 

Operating Characteristic Curve (AUROC) is the probability of successfully differentiating 

two randomly chosen drugs, one that causes the AE and one that does not. For the combined 

model we found an AUROC of 0.85 compared to 0.81 and 0.69 for SubNet-alone and 

MWAS-alone, respectively (Figure 2A). In addition to outperforming overall, the combined 

model also outperformed for each adverse event individually (Figure 2B) with 

improvements in AUROC of 6.2% (P = 0.10), 33.9% (P = 0.047), 15.3% (P = 0.01), and 

27.3% (P = 0.007) for GI, LF, MI, and KF, respectively. We found these results are reliable 

across different performance measures (Figure 2C). Finally, we observed improvements in 

both sensitivity and specificity in MWAS+SubNet compared to MWAS and SubNet alone 

for each AE (Table 1, Supplementary Table S4). At a false positive rate of 20%, sensitivity 

(i.e. recall) improves from 42%, for MWAS alone, to 70% when drug safety statistics are 

combined with systems pharmacology data.

Evaluating choice of model parameters

MADSS has many parameters (network connectivity function, validated versus predicted 

drug targets, PPI confidence, PPI relationship, PPI data source, and drug target type) (Figure 

1). We evaluated the effects of each of these parameters on model performance for each AE 
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while holding all other parameters constant (Supplementary Material, Supplementary Figure 

S4). We found the best performance when using all PPIs of “medium” confidence and above 

and all known drug targets (see Supplementary Material).

Exploring mechanisms of adverse events

To interrogate potential mechanisms of adverse events, we investigated the interactions 

between high-scoring drug targets and seed proteins. While some drug targets were direct 

neighbors of seeds, others were linked to seed proteins through intermediates. We calculated 

the shortest paths from high-scoring drug targets to all seeds and mapped the AE 

neighborhood by clustering drugs, drug targets, and intermediate proteins into functional 

groups (Figure 3, Supplementary Figures S5, S6, S7). The AE neighborhood for MI is 

enriched for drug targets involved in G-protein signaling coupled to cyclic nucleotide 

second messengers (P = 3.4E−7) (HTR1A, HTR1B, ADRB2, CHRM2, and DRD2; see Figure 

3). Intermediate proteins connecting targets to MI seeds are involved in cAMP biosynthesis 

(P = 1.9E−17) and inflammatory responses (P = 7.2E−17). Seeds integrating the greatest 

number of shortest paths were the beta-1 adrenergic receptor (ADRB1) and interleukin 6 

(IL6) (61 and 52 shortest paths (sp), respectively).

We found enrichment for cytochrome P450 enzymes for both GI and LF high-scoring 

targets (P = 2.4E−7 and P = 5.5E−4, respectively) (Supplementary Figures S5 and S6). 

Intermediates in the AE neighborhood for GI were enriched for proteins involved in 

arachidonic acid metabolism (P = 4.3E−37), and the seeds integrating the majority of 

shortest paths were COX-1 and COX-2 (PTGS1 (97 sp) and PTGS2 (108 sp), respectively). 

In the AE neighborhood for LF, we observed enrichment of intermediates involved in 

cellular calcium ion homeostasis (P = 2.8E−27), with the seeds liver activation regulated 

chemokine (CCL20, 115 sp) and corticotropin (POMC, 124 sp) integrating most of the 

shortest paths. Lastly, high-scoring drug targets within the AE neighborhood for KF were 

enriched for proteins involved in blood pressure regulation (P = 1.3E−5) (Supplementary 

Figure S7). Intermediates consisted mainly of organic ion transporters (P = 1.4E−3), with 

renin (REN, 6 sp), albumin (ALB, 4 sp), kinogen-1 (KNG1, 4 sp), and hepatocyte growth 

factor (HGF, 4 sp) acting as the most highly integrative seeds.

Discussion

Drug safety surveillance resources (e.g. spontaneous adverse event reports and electronic 

health records) suffer from issues of confounding bias, noise, and missing data. These 

challenges limit the usefulness of pharmacovigilance algorithms because they lead to 

inadvertently flagging false signals and hiding true ones. We reasoned that incorporation of 

an approach never exposed to these biases –systems pharmacology models of the molecular 

connections between drugs and AEs – could help alleviate these shortcomings. Furthermore, 

with ever-growing resources of interaction data on the horizon,22 a mechanistically driven 

method that scales to large and diverse data sets has the potential to shape the drug safety 

landscape. We demonstrate this potential by successfully combining our systems 

pharmacology approach (MADSS) with traditional pharmacovigilance statistics to 

significantly improve the prediction of four serious adverse drug events.
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High-scoring targets are biologically relevant mediators of adverse events

Many of the high-scoring drug targets in our AE neighborhoods received support in the 

literature for their involvement in mediating adverse events. For example, decreases in 

prostacyclin synthesis due to COX-2 (PTGS2) inhibition is well-known to increase risk of 

myocardial infarction.23 Serotonin has also been implicated in coronary artery disease,24 a 

major cause of myocardial infarction,25 and serotonin 5-HT1B receptors (HTR1B) mediate 

coronary vasoconstriction.26 HTR1A and HTR1B ranked 245 and 269 (top 2%), respectively 

in the AE neighborhood for MI constructed using mean first passage time (MFPT); 

activation of another serotonin receptor (HTR2A, rank 379) is known to increase synthesis of 

interleukin-6 (IL6, one of the MI seeds) in vascular smooth muscle, contributing to pro-

inflammatory pathways.27

Other high-scoring targets such as RXRA suggest less-characterized potential mechanisms of 

adverse events. Etodolac, a non-steroidal anti-inflammatory drug (NSAID), binds to the 

retinoid X receptor-α (RXRα), leading to its degradation.28 Complexes of peroxisome 

proliferator-activated receptors (PPARs) and RXRα are thought to play anti-inflammatory 

and anti-atherogenic roles in coronary artery disease.29 Additionally, decreased expression 

of RXRαhas been associated with more pronounced carotid atherosclerotic disease 

progression;30 carotid atherosclerosis has been shown to be predictive of future MI.31

AE neighborhood intermediates are important transducers of drug action

Pathways enriched in our AE neighborhoods are also supported in the literature. For MI, 

inflammatory pathways are a key element of coronary artery disease progression.32 The role 

of cAMP biosynthesis by adenylyl cyclase downstream of beta adrenergic receptor 

activation during heart failure is also well-established.33 In the AE neighborhood for GI, 

genes related to arachidonic acid metabolism have long been recognized to be involved in 

NSAID-induced gastric bleeding.34 Additionally, perturbations to calcium ion homeostasis 

have been implicated as a mechanism of drug-induced liver injury.35

Limitations of method

There are several existing limitations to the method described. First, the method is 

dependent on the existence of a seed set of proteins that are, ideally, causally linked to the 

adverse event. Except for a few instances, such genes are largely unavailable for adverse 

events. To address this issue in this study we used genes linked to the 4 conditions (i.e., 

gastrointestinal bleeding, acute liver failure, acute myocardial infarction, and acute kidney 

failure) irrespective of drug association. In addition, we currently assume a single 

mechanism of action for each AE. Off-target screening and quantitative structure-activity 

relationship (QSAR) models would complement our approach in cases when drug target 

information is lacking or absent.

The results of our model evaluation showed that optimization across multiple AEs 

occasionally involved making sacrifices to the quality of an individual AE’s predictions. For 

example, we observed better performance for MI alone when only protein-protein 

interactions related to expression were used. Additionally, the performance for GI was lower 

than for the other three AEs; allowing the use of seeds for drug scoring led to an increase in 
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performance for GI with no comparable improvement for the other AEs, suggesting that 

more drugs in the GI reference standard (such as non-steroidal anti-inflammatory agents) act 

mechanistically through the seeds than through alternative targets (Supplementary Figure 

S2). Future applications of MADSS can benefit from the flexibility of optimizing across 

multiple or individual AEs.

We were unable to completely eliminate incidence of false positives using MADSS, 

although we observed improvements in both sensitivity and specificity compared to MWAS 

for each AE (Table 1, Supplementary Table S4). In addition, the performance of our 

approach may suffer when there is little known about a drug, as is the case when a drug is 

“first-in-class.” We evaluated the performance under this situation (Supplementary Material) 

and found that MADSS was still able to eliminate many of the false positives found using 

traditional drug safety statistics (Supplementary Table S5).

In addition to predicting single drug adverse events, systems pharmacology is also poised to 

help identify drug-drug interactions (DDIs).36–38 Future iterations of MADSS could 

combine network-based predictions of DDIs with statistical predictions.5

In conclusion, we present a new method leveraging protein-protein interaction network 

analysis to improve pharmacovigilance. The method is by design modular, allowing for the 

incorporation of diverse data sets and optimization for the desired adverse event(s). While 

we elected to use the self-controlled case series statistics used in the MWAS study in 

combination with SubNet, an individual or regulatory agency using MADSS can easily 

substitute any desired pharmacovigilance statistic. In addition, seed sets for new adverse 

events can be generated with minimal input, and new drugs can quickly be evaluated using 

predicted targets. Regulatory agencies can flag signals enriched using our method for 

follow-up study. We demonstrate that combining systems pharmacology models with 

pharmacovigilance leads to significant and meaningful improvements in predicting drug 

safety.

Materials and Methods

Modular Assembly of Drug Safety Subnetworks (MADSS)

An outline of MADSS (Modular Assembly of Drug Safety Subnetworks) can be found in 

Figure 1. We applied MADSS to four pathological conditions, which may be drug-induced 

adverse events (AEs) –upper gastrointestinal bleeding (GI), acute liver failure (LF), acute 

myocardial infarction (MI), and acute kidney failure (KF).

Pruning network

We first pruned an initial protein-protein interaction (PPI) network representative of a 

composite human cell to eliminate low-confidence interactions. We used STRING 9.1 

(Search Tool for the Retrieval of Interacting Genes/Proteins), a meta-database of PPIs 

including data from BioGRID, MINT, KEGG, HPRD, and Reactome, as well as co-

occurrence and natural language processing text mining.21 Beginning with all PPIs in 

humans, we pruned the network to only utilize PPIs with a confidence score ≥700 (out of a 
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maximum score of 1000; see Supplementary Material). We refer to this pruned network as 

the interactome.

Assigning adverse event (AE) seeds

We identified a small set of proteins with established relationships to each of these four 

conditions and annotated these proteins as AE seeds. In general, the molecular etiology of 

adverse events is not well understood. Therefore, we curated initial lists of seed proteins by 

manually mining GeneCards39 and PubMed for gene or protein names and aliases co-

occurring with these four conditions irrespective of drug involvement (Supplementary Table 

S2). We then refined these lists to a core set of interconnected proteins which we call the 

“AE seed set” (see Supplementary Material).

Building AE neighborhoods

Multiple metrics exist for characterizing the connectivity between two nodes in a given 

network. These include mean first passage time (which measures the proximity of two 

nodes); betweenness centrality (the fraction of shortest paths containing a node of interest); 

shared neighbors (the fraction of shared adjacent nodes between two nodes of interest); and 

inverse shortest path (the smallest number of edges connecting two nodes). We adapted each 

of these functions to score proteins in the interactome on the basis of their connectivity to 

the seed proteins. Proteins receiving high connectivity scores are on average more connected 

to the seeds than to the rest of the network and thus constitute a subnetwork of the global 

interactome which we call an AE neighborhood. See Supplementary Material for equations 

and descriptions of each of the four connectivity functions.

Connecting drugs to their targets

We downloaded DrugBank 3.0, a manually annotated database connecting 1691 approved 

drugs to 2074 protein targets.40 Only those drugs in the reference standard which could be 

mapped to DrugBank IDs (143 of 149) were used in this analysis. For a given adverse event 

and reference standard drug, we compared the connectivity scores of each protein target and 

assigned the drug to its highest scoring non-seed target. The result of this is a data matrix for 

each adverse event where each row represents a drug and each column represents one of the 

four connectivity functions. The value at a given row and column is the connectivity score 

for the given drug’s highest scoring target (Supplementary Table S3).

Fitting subnetwork model (SubNet) and predicting drug safety

For each adverse event, we trained a random forest (RF) classifier using the drug scores for 

the four network functions as input parameters (or “features”). The classifier uses patterns 

within these features to predict whether a given drug will or will not cause an AE. We 

utilized out-of-bag (OOB) scores to get an unbiased estimate of classifier performance (for a 

primer on machine learning approaches, see Supplementary Material). To account for the 

stochastic nature of random forests we used the mean and standard deviation of 20 replicates 

to characterize performance. We refer to these systems pharmacology subnetwork models as 

SubNet. SubNet defines a network link between a drug, target proteins, AE neighborhood 

proteins, and AE.
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To determine the combined performance of SubNet models and pharmacovigilance statistics 

(MWAS), we trained a logistic regression classifier on the predictions (OOB estimates) from 

the final SubNet models and the MWAS drug scores as features. We characterized the 

generalization error using mean and standard deviation 10-fold cross-validation (MWAS

+SubNet). We used an analysis of variance (ANOVA) to determine the additive contribution 

of the systems pharmacology models (SubNet) with the statistical pharmacovigilance 

methods (MWAS).

Evaluating the subnetwork (SubNet) models

We performed two sets of evaluations: (i) evaluating the overall performance combining all 

four adverse events and (ii) evaluating the performance for each of the four adverse events 

independently. In either case we generated receiver operating characteristic (ROC) curves 

for MWAS alone, SubNet alone, and then for MWAS and SubNet combined. In addition we 

also calculated the mean and 95% confidence intervals for area under ROC curve 

(AUROC), F1 score (a measure combining both precision and recall), and accuracy. We 

evaluated “first-in-class” performance using drugs in the reference standard which were 

alone in their Anatomical Therapeutic Chemical (ATC) level 2 classification category 

(Supplementary Table S5). All evaluations were conducted using estimates derived from 

OOB predictions or cross-validation.

Identifying shared mechanisms of adverse events

For each adverse event, we calculated shortest paths through our derived systems 

pharmacology AE neighborhoods to each of the seeds from the drug targets receiving high 

mean first passage time connectivity scores. We manually grouped intermediate proteins 

(those between drug targets and AE seed proteins) by their connectivity profiles in this 

network and performed enrichment analysis to assign functional labels. We consolidated 

edges from multiple targets to the same intermediate or seed. We weighted edges between a 

seed and the adverse event by the number of shortest paths that were integrated by that 

particular seed. All intermediate proteins involved in shortest paths from targets to seeds 

were used to generate the representation in Figure 3.

Implementation

All scripts were written in Python 2.7.5. Network analysis was performed using custom 

scripts and NetworkX.41 Machine learning was performed using Scikit-learn.42 Logistic 

regression and ANOVA were performed using glm in R 3.0.3. AUROC comparison 

(DeLong’s test) was performed using pROC in R 3.0.3.43 Enrichment analysis was 

performed using DAVID Functional Annotation.44 Network representations were created 

using Cytoscape 3.0.2 and 3.1.0.45

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Study Highlights

• What is the current knowledge on the topic?

State-of-the-art pharmacovigilance algorithms suffer from high false positive and false 

negative rates. Systems pharmacology and network analysis offer complementary 

approaches for integrating biological data towards mechanistic insight of drug action.

• What question did this study address?

Will the combination of systems pharmacology models and pharmacovigilance statistics 

improve drug safety surveillance?

• What this study adds to our knowledge?

Through the modular assembly of drug safety subnetworks, we demonstrate that systems 

pharmacology models can be successfully combined with current pharmacovigilance 

statistics across a range of etiologically diverse adverse events to improve predictive 

power.

• How this might change clinical pharmacology and therapeutics?

Post-marketing surveillance strategies should incorporate systems pharmacology models 

to enrich for potentially dangerous candidate drugs for follow-up study, ultimately 

reducing the health and economic impact of adverse events.
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Figure 1. 
Overview of Modular Assembly of Drug Safety Subnetworks (MADSS). Orange boxes 

indicate data sources used in this analysis. Gray boxes indicate additional data sources not 

used in this study but supported by the method. Beginning with a human protein-protein 

interaction network (interactome) built from such data as experimental evidence, metabolic 

pathway databases, text mining, and interactions predicted from co-expression data, we 

isolate all medium-confidence interactions and above. Seed proteins with demonstrated 

genetic links to the adverse event (AE) are subsequently annotated. We next apply four 

adapted network analysis functions to score all proteins in the interactome on their 

connectivity to the seed set. Proteins with high scores embody an AE neighborhood (gray 

dotted circle); drugs targeting proteins in this subnetwork are predicted to elicit AEs. We 

assign positive and negative control drugs to their highest-scoring target. We then combine 

the four AE neighborhoods (one for each pairwise network function) by training a random 

forest classifier to generate a subnetwork (SubNet) model (red dotted circle). We integrate 

MWAS and systems pharmacology (SubNet) models using a logistic regression classifier to 

predict drug safety.
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Figure 2. 
Systems pharmacology data significantly improve drug safety predictions. (A) Receiver 

operating characteristic (ROC) curve showing performance of pharmacovigilance statistics 

(MWAS) alone, systems pharmacology (SubNet) alone, and MWAS+SubNet for four 

adverse events (AEs) combined. The true positive rate, or sensitivity, is plotted against the 

false positive rate, or 1-specificity. Area under the ROC curve (AUROC) is indicated in 

parentheses; an AUROC of 0.50 is equivalent to random classification and 1 represents 

perfect classification. MWAS+SubNet performs significantly better than MWAS alone. (B) 

ROC curves demonstrating performance for individual AEs: gastrointestinal bleeding 

(Gastro), acute liver failure (Liver), acute myocardial infarction (MI), and acute kidney 

failure (Kidney). AUROCs for MWAS alone (black), SubNet alone (red), and MWAS

+SubNet (green) are indicated. (C) Quantification of classifier performance using the 

commonly applied metrics of F1 score (measuring classifier precision and recall), AUROC, 

and accuracy.
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Figure 3. 
Network flow representation of acute myocardial infarction AE neighborhood. Red triangles 

represent drug classes. Blue nodes with red borders are high-scoring drug targets; red nodes 

are seed proteins. Blue nodes in the center represent intermediates linking drug targets to 

seeds. Intermediate node size and edge thickness are representative of the number of shortest 

paths traveling through them. The AE neighborhood for MI constructed using MADSS is 

enriched for genes involved in cAMP biosynthesis and inflammatory response.
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