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OBJECTIVE—We have previously shown that lack of thiore-
doxin-interacting protein (TXNIP) protects against diabetes
and glucotoxicity-induced �-cell apoptosis. Because the role of
TXNIP in lipotoxicity is unknown, the goal of the present study
was to determine whether TXNIP expression is regulated by fatty
acids and whether TXNIP deficiency also protects �-cells against
lipoapoptosis.

RESARCH DESIGN AND METHODS—To determine the ef-
fects of fatty acids on �-cell TXNIP expression, INS-1 cells and
isolated islets were incubated with/without palmitate and rats
underwent cyclic infusions of glucose and/or Intralipid prior to
islet isolation and analysis by quantitative real-time RT-PCR and
immunoblotting. Using primary wild-type and TXNIP-deficient
islets, we then assessed the effects of palmitate on apoptosis
(transferase-mediated dUTP nick-end labeling [TUNEL]), mito-
chondrial death pathway (cytochrome c release), and endoplas-
mic reticulum (ER) stress (binding protein [BiP], C/EBP
homologous protein [CHOP]). Effects of TXNIP deficiency were
also tested in the context of staurosporine (mitochondrial dam-
age) or thapsigargin (ER stress).

RESULTS—Glucose elicited a dramatic increase in islet TXNIP
expression both in vitro and in vivo, whereas fatty acids had no
such effect and, when combined with glucose, even abolished the
glucose effect. We also found that TXNIP deficiency does not
effectively protect against palmitate or thapsigargin-induced
�-cell apoptosis, but specifically prevents staurosporine- or glu-
cose-induced toxicity.

CONCLUSIONS—Our results demonstrate that unlike glucose,
fatty acids do not induce �-cell expression of proapoptotic
TXNIP. They further reveal that TXNIP deficiency specifically
inhibits the mitochondrial death pathway underlying �-cell glu-
cotoxicity, whereas it has very few protective effects against ER
stress–mediated lipoapoptosis. Diabetes 59:440–447, 2010

P
ancreatic �-cell loss by apoptosis is a major
factor in the pathogenesis of type 1 and type 2
diabetes (1–5). Two highly interconnected intrin-
sic signaling pathways, the mitochondrial death

pathway and endoplasmic reticulum (ER) stress, can lead
to �-cell apoptosis (6). In addition, although multiple
processes can activate either one or both pathways and
thereby contribute to the phenomenon of �-cell loss,
glucotoxicity and lipotoxicity are key stimuli especially in
type 2 diabetes (7,8). However, the detailed molecular
mechanisms involved have just begun to be unraveled.

Recently, we discovered that thioredoxin-interacting
protein (TXNIP) acts as a critical link between glucotox-
icity and pancreatic �-cell apoptosis (9) and that TXNIP
deficiency protects against streptozotocin- as well as
against obesity-induced diabetes (10). TXNIP (also called
vitamin D3-upregulated gene 1 [VDUP1], or thioredoxin-
binding protein 2 [TBP-2]) is a ubiquitously expressed
50-kDa protein (11,12). As suggested by its name, TXNIP
binds and inhibits thioredoxin, a thiol-oxidoreductase and
major cellular reducing system member, and thereby pro-
motes oxidative stress and regulates the cellular redox
state (13–17).

Originally, we identified TXNIP as the most dramatically
upregulated gene in response to glucose in a human islet
oligonucleotide microarray study (18), found that its ex-
pression was increased in islets of diabetic mice (9), and
further demonstrated that it induces pancreatic �-cell
death (19). More recently, we found that TXNIP is essen-
tial for glucotoxic �-cell death (9) and discovered that
the functional �-cell mass was significantly increased in
TXNIP-deficient HcB-19 mice harboring a nonsense mutation
in their TXNIP gene as well as in �-cell–specific TXNIP

knockout mice (bTKO) (10). Of note, this was the case
despite the fact that HcB-19 mice are hyperlipidemic
(10,20,21). Moreover, generation of a double-mutant con-
genic BTBRlepob/obtxniphcb/hcb mouse lacking leptin as
well as TXNIP revealed that TXNIP deficiency was able to
reduce �-cell apoptosis �50-fold, to increase pancreatic
�-cell mass, and to prevent diabetes in this very severe
model of type 2 diabetes associated with marked obesity,
insulin resistance, and hyperlipidemia (10). Together
these findings raised the possibility that TXNIP defi-
ciency may not only play a role in glucotoxicity, but also
be protective against lipotoxicity. The aim of the
present study was therefore to assess whether fatty
acids regulate �-cell TXNIP expression in vitro and in
vivo and to ascertain whether lack of TXNIP protects
�-cells against lipoapoptosis.
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RESEARCH DESIGN AND METHODS

Animal studies. All animal studies were approved by the respective Institu-
tional Animal Care and Use Committees and the National Institutes of Health
principles of laboratory animal care were followed. The C3H congenic
TXNIP-deficient HcB-19 (HcB) mice harboring a naturally occurring nonsense
mutation in the TXNIP gene and the control C3H/DiSnA (C3H) strain have
been described previously (12,21,22). bTKO and lox/lox control littermates
were generated by the Cre-LoxP system and are described in detail
elsewhere (10).

Male Wistar rats (Charles River, Saint-Constant, Quebec, Canada) were
housed under standard conditions. In vivo infusion studies were performed as
described previously (23). In brief, indwelling catheters were placed in the left
carotid artery and the right jugular vein under general anesthesia and animals
were allowed to recover for 5 days. They were then randomized into four
groups receiving either 0.9% saline, 50% glucose, 20% Intralipid (with 20
units/ml of heparin), or glucose plus Intralipid through Harvard infusion
pumps (Harvard Apparatus, Holliston, MA). These were administered in
alternating 4-h cycles of glucose or saline followed by Intralipid or saline for
4 h and the infusion profile was repeated for a total of 72 h until sacrifice. All
animals received the same volume of fluid and had free access to food and
water during the infusions.
Islet isolation. Mouse pancreatic islets were isolated by collagenase diges-
tion as described previously (24,25). In brief, immediately after sacrifice
pancreata were inflated with 5 ml collagenase solution (0.40 mg/ml type XI
collagenase [Sigma, St. Louis, MO] in Hanks balanced salt solution [HBSS;
Invitrogen, Carlsbad, CA] with 0.02% radioimmunoassay-grade BSA [Sigma])
and placed in 25 ml of the same solution, gassed with 95% O2/5% CO2 for 5 min,
and vigorously shaken at 37°C for 14 min. After a quick spin, the tissue pellet
was washed twice with 10 ml cold HBSS, passed through a 925-micron Spectra
mesh filter (Fisher, St. Louis, MO) to remove large debris, and resuspended in
5 ml of 25% Ficoll (type 400-DL; Sigma) prepared with HBSS in a 50-ml conical
tube. Then, 2.5 ml of 23%, 20.5%, and 11% Ficoll were layered carefully on top
of each other, and the gradient was centrifuged for 15 min at 800g. Layers
above the 25% Ficoll containing the isolated islets were collected and washed
with HBSS, and the islets were pelleted by a 5-min centrifugation at 800g. To
further exclude contamination by exocrine tissue, islets were handpicked
under stereomicroscopic observation and incubated at low or high glucose
with or without palmitate.

Rat pancreatic islets were isolated by collagenase digestion and gradient
centrifugation as described previously (23).
Tissue culture. Mouse islets (C3H, HcB-19, lox/lox, and bTKO) were
incubated in RPMI 1640 (Invitrogen) supplemented with 1% BSA and 1%
penicillin-streptomycin and 2.8 mmol/l or 16.7 mmol/l glucose for 24 h at 37°C
in the presence or absence of 1 mmol/l palmitate. Rat islets were cultured for
24 h in the presence of 2.8 or 16.7 mmol/l glucose with or without 0.5 mmol/l
palmitate as described previously (26).

INS-1 cells were grown in RPMI 1640 (Invitrogen) containing 11.1
mmol/l glucose and supplemented with 10% FBS, 1% penicillin-streptomy-
cin, 1 mmol/l sodium pyruvate, 2 mmol/l L-glutamine, 10 mmol/l HEPES,
and 0.05 mmol/l 2-mercaptoethanol.

Culture media containing palmitate were prepared as described previously
(27), with minor modifications. The stock solution was prepared by dissolving
sodium palmitate (Sigma) in ethanol/water (1:1, vol/vol) at 65°C for 15 min at
a final concentration of 150 mmol/l. Aliquots of stock solution were com-
plexed with fatty-acid–free BSA (10% in water; Sigma) by incubation for 1 h at
37°C and then diluted in culture media. The final molar ratio of fatty acid/BSA
was 5:1 for all experiments. The final ethanol concentration was �0.33%
(vol/vol). The control condition included a solution of vehicle (ethanol/water)
mixed with fatty acid–free BSA at the same concentration as the palmitate
solution. Staurosporine and thapsigargin were from Invitrogen and were
dissolved in DMSO.
TUNEL. For transferase-mediated dUTP nick-end labeling (TUNEL), �100
isolated mouse islets were mixed with 15 �l of Affi-Gel Blue Gel (Biorad,
Hercules, CA), fixed in 4% formaldehyde, and washed in PBS, and the pellet
was resuspended in 0.5 ml of warm 2% Difco-Agar in an Eppendorf tube and
centrifuged for 10 s at 10,000 rpm. After solidification, the agar containing the
islet pellet was removed from the tube, trimmed, refixed, and processed in an
automated Shandon Citadel 100 machine before paraffin embedding and
preparation of 5-�m sections.

The DeadEnd Fluorometric TUNEL System Kit (Promega, Madison, WI)
was used according to the manufacturer’s instructions, but including a
permeabilization step (5 min in a 1% Triton X-100 PBS solution). �-Cells were
visualized by insulin staining using guinea pig anti-insulin antibody (ZYMED,
San Francisco, CA) and cyanin 3–conjugated anti–guinea pig IgG (1:500;
Jackson ImmunoResearch, Westgrove, PA). The Vectashield with DAPI

mounting solution (VECTOR, Burlingame, CA) was used for visualization
of nuclei.
Quantitative real-time RT-PCR. RNA was extracted using the RNeasy Mini
kit (Qiagen), converted to cDNA with the SuperScript III First-Strand Synthe-
sis Super Mix (Invitrogen), and analyzed on a Prism 7000 Sequence Detection
System (Applied Biosystems). TXNIP was measured using primers recogniz-
ing rat TXNIP, forward: 5�-CGAGTCAAAGCCGTCAGGAT-3�, reverse: 5�-
TTCATAGCGCAAGTAGTCCAAGGT-3�. Binding protein (BiP) was amplified
using the forward primer 5�-ACGTCCAACCCGGAGAACA-3� and the reverse
primer 5�-TTCCAAGTGCGTCCGATGA-3� and C/EBP homologous protein
(CHOP), with 5�-TGGCACAGCTTGCTGAAGAG-3� and 5�-TCAGGCGCTC-
GATTTCCT-3�, respectively. All samples were corrected for the 18S ribosomal
subunit (Applied Biosystems) run as an internal standard.
Immunoblotting. Protein extraction and immunoblotting were performed as
described previously (9) using the following antibodies: TXNIP (JY2; MBL
International, Woburn, MA) (1:400), monoclonal cleaved caspase-3 (Cell
Signaling, Boston, MA) (1:200), �-actin (Abcam, Cambridge, MA) (1:200),
anti-mouse IgG (1:5,000) (Santa Cruz Biotechnology, Santa Cruz, CA), and
anti-rabbit IgG (Biorad).
Cytochrome c release. INS-1 cells were incubated at 5 mmol/l or 25 mmol/l
glucose with or without 1 mmol/l palmitate for 24 h prior to cell fractionation.

Cytosolic and mitochondrial cell fractions were obtained and analyzed for
cytochrome c by immunoblotting as described previously (9) using a rabbit
cytochrome c antibody (Cell Signaling) and anti-rabbit IgG (Santa Cruz
Biotechnology).
Statistical analysis. To calculate the significance of a difference between
two means, we used two-sided Student t tests and a P value of � 0.05 was
considered statistically significant. To compare data sets of more than two
groups, one-way ANOVA was used followed by Holm-Sidak tests for all
pairwise multiple comparisons.

RESULTS

Fatty acids do not induce TXNIP expression in vitro
or in vivo. We previously showed that glucose acts as a
potent stimulus of �-cell TXNIP expression (9,18,19).
However, the effects of fatty acids on TXNIP expression
have not been studied. To first examine whether fatty
acids modulate TXNIP expression in vitro, isolated rat or
mouse islets were incubated in the presence or absence of
palmitate at low or high glucose concentrations and
TXNIP expression was assessed by quantitative real-time
RT-PCR and immunoblotting (Fig. 1A–C). Fatty acids did
not alter TXNIP expression in these experiments and,
interestingly, the concomitant presence of palmitate com-
pletely abolished the stimulatory effect of glucose on
TXNIP expression. This was also confirmed in vivo in
islets isolated from rats after cyclic 20% Intralipid infu-
sions with and without additional glucose infusions as
described in Research Design and Methods. Whereas
cyclic glucose infusions led to a significant increase in
TXNIP expression compared with saline, Intralipid infu-
sions alone had no effect and, when combined with
glucose, suppressed the glucose-stimulated TXNIP induc-
tion (Fig. 1D). This suggests that unlike glucose, fatty acids
do not increase TXNIP expression in islets and, further,
block the effect of glucose on TXNIP expression.
TXNIP deficiency does not protect against �-cell
lipoapoptosis. TXNIP deficiency effectively protects pan-
creatic �-cells against glucotoxic cell death (9). To test
whether it may also protect against lipotoxic �-cell
apoptosis, we incubated isolated islets of TXNIP-defi-
cient HcB-19 and control C3H mice in the presence or
absence of 1 mmol/l palmitate. Palmitate led to a signifi-
cant fivefold increase in TUNEL-positive �-cells in islets
from both C3H- and TXNIP-deficient HcB-19 islets (Fig. 2).
We also performed a palmitate dose-response curve and
assessed �-cell apoptosis by cleaved caspase-3 measure-
ments as well as by TUNEL. With both methods, a very
similar dose-dependent increase in apoptosis was seen
(supplementary Fig. 1, available in an online appendix at
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http://diabetes.diabetesjournals.org/content/full/db09-0949/
DC1), confirming that our TUNEL experiments were pro-
viding adequate quantification of �-cell apoptosis. In
addition, we analyzed the effects of palmitate at 24 h (Fig.
2A–D) as well as at 48 h (Fig. 2E–G). In both C3H and
HcB-19 islets, we observed that the percentage of apopto-
tic �-cells almost doubled at 48 h, demonstrating that we
were still in the dynamic range with our 24 h our findings
and suggesting that lack of TXNIP is not able to protect
against lipoapoptosis.

To further substantiate this observation, we performed
analogous experiments using isolated islets from bTKO
and control lox/lox mice. As observed using HcB-19 islets,
�-cell–specific deletion of TXNIP in bTKO islets was not
able to prevent the more than fivefold increase in �-cell
apoptosis induced by palmitate (Fig. 3A), although it
completely prevented glucotoxicity-induced �-cell apopto-
sis (Fig. 3B), consistent with our earlier findings (9). These
results suggest that the protective effect of TXNIP defi-
ciency might be pathway specific and that glucose and
fatty acids might affect different features of �-cell apopto-
sis. The two major intrinsic pathways implicated in pan-
creatic �-cell death are mitochondrial damage and ER

stress (6). Because we previously showed that TXNIP is
involved in mitochondria-mediated apoptosis (9), we
first compared the effects of glucotoxicity and lipotox-
icity on this pathway. Indeed we found that although
incubation at high glucose induced the mitochondrial
death pathway as shown by the pronounced release of
cytochrome c from the mitochondria into the cytosol,
palmitate had no such effect and, when added to high
glucose, even normalized the cytochrome c distribution
(Fig. 3C), suggesting that mitochondria-mediated apo-
ptosis does not play a major role in lipoapoptosis. In
contrast, we found that palmitate increased the expres-
sion of the ER stress markers BiP and CHOP in INS-1
cells and rat islets (supplementary Fig. 2). Although
these findings are consistent with previous studies and
suggest that �-cell lipoapoptosis is associated primarily
with ER stress (28 –36), there is also a significant body
of work implicating mitochondria in lipotoxicity (37–
41), a discrepancy that is most likely due to the intricate
cross talk between mitochondria and the ER (42,43).
Lack of TXNIP protects from staurosporine-induced
but not thapsigargin-induced �-cell apoptosis. Com-
bined with the finding that TXNIP deficiency protected
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FIG. 1. In vitro and in vivo effects of fatty acids (FA) on islet TXNIP expression. A: Isolated rat islets were incubated at 2.8 mmol/l glucose (LG)
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24 h and TXNIP expression was analyzed by real-time RT-PCR, n � 4. B and C: Isolated wild-type mouse islets were incubated at LG or HG with
our without palmitate (1 mmol/l) for 24 h and analyzed for changes in TXNIP protein levels by immunoblotting. Bars represent mean fold
change � SEM in TXNIP protein corrected for �-actin; three independent experiments were performed; one representative immunoblot is shown.
D: Male Wistar rats received cyclic infusions of saline 0.9%, glucose 50%, Intralipid 20%, or glucose and Intralipid for a total of 72 h as described
in RESEARCH DESIGN AND METHODS prior to sacrifice. Their islets were isolated and analyzed for TXNIP mRNA expression using quantitative real-time
RT-PCR. Bars represent mean fold change � SEM compared with saline. Four independent experiments were performed.
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against only glucotoxic but not lipotoxic cell death, our
results suggest that lack of TXNIP may specifically inhibit
mitochondria- but not ER stress–mediated �-cell apopto-
sis. To directly test this hypothesis, we treated isolated
islet of bTKO and lox/lox mice with staurosporine, a
well-known stimulus of the mitochondrial death pathway.
Although staurosporine led to a significant �10-fold in-
crease in �-cell apoptosis in lox/lox islets compared with
islets incubated with DMSO vehicle only, TXNIP-deficient
bTKO islets were completely protected against staurospo-
rine-induced apoptosis (Fig. 4A and B). (Of note, stauro-
sporine did not increase TXNIP expression [1.0 vs. 1.0-fold
�0.02], demonstrating that the protection conferred by
TXNIP deficiency is not limited to stimuli that increase
TXNIP expression, but rather to those that induce mito-
chondrial apoptosis.)

In marked contrast, incubation with the ER stress-
inducer thapsigargin led to an �10-fold increase in �-cell
apoptosis in both lox/lox and bTKO islets and although
the percentage of apoptotic �-cells was slightly lower in
the bTKO islets, TXNIP deficiency had no significant
protective effect (P � 0.119) (Fig. 4C and D), indicating
that the protective effects of TXNIP deficiency are largely
restricted to mitochondria-mediated apoptosis. To com-
pare the effects of staurosporine and thapsigargin, we had
to achieve similar levels of �-cell apoptosis and therefore

used this higher dose of 25 �mol/l of thapsigargin. How-
ever, dose-response experiments at significantly lower
thapsigargin concentrations confirmed that lack of TXNIP
was not effective in protecting against thapsigargin-in-
duced �-cell death even at apoptosis rates as low as 2%
(Fig. 5).

DISCUSSION

The results of this study uniquely identify TXNIP as a
specific mediator of the mitochondrial death pathway in
�-cells under glucotoxic conditions, while revealing that
TXNIP does not play a significant role in ER stress–
mediated lipoapoptosis.

Recently, we discovered that TXNIP represents a
critical link between glucotoxicity and �-cell apoptosis
(9) and that lack of TXNIP protects against streptozo-
tocin- and obesity-induced diabetes, raising the possi-
bility that TXNIP deficiency might also be protective
against lipotoxicity. However, using islets of TXNIP-
deficient HcB-19 and bTKO mice, the results of the
present study indicate that lack of TXNIP is unable
to prevent or inhibit �-cell apoptosis induced by fatty
acids, although it effectively protects against glucose-
induced �-cell death (Figs. 2 and 3).

Even though both glucotoxicity and lipotoxicity play
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important roles in the pathogenesis of diabetes and dia-
betic �-cell loss (8) and culminate in �-cell apoptosis,
different signaling pathways are involved, and the relative
contribution from mitochondrial and ER stress remains
under discussion (28–33,37–41,44). This controversy is
most likely due to the intricate cross talk between these
two organelles and the apoptosis pathways that ultimately
lead to �-cell death (42,43) (Fig. 6). In fact, mitochondria
represent the major source of ATP and reactive oxygen
species, which in turn can stimulate ER stress and activate
apoptosis signal-regulating kinase 1 (ASK1) (45). On the
other hand, the ER supplies the mitochondria with cal-
cium, a process that is now believed to require physical
interaction between the organelles mediated by mitofusin
2 (46). In addition, CHOP has been reported to promote
reactive oxygen species formation, whereas CHOP dele-
tion reduced oxidative stress and enhanced �-cell survival
(47). Moreover, ER stress also activates ASK1 through
formation of an IRE1 (serine-threonine protein kinase)–
TRAF2 (tumor necrosis factor receptor-associated factor
2)–ASK1 complex, and ASK1 leads to mitochondria-depen-

dent caspase activation and apoptosis (48). Interestingly,
thioredoxin (Trx) directly binds to and inactivates ASK1,
and TXNIP deficiency increases the availability of Trx for
this interaction (49), suggesting that it may thereby de-
crease ASK1 activity and apoptosis. Finally, Trx in con-
junction with glutaredoxin and NADPH has also been
shown to control exocytosis, insulin secretion, and �-cell
signaling (50).

Given this extensive signaling network, a clear separation
between the pathways involved is, in general, impossible.
However, our results demonstrate that the protective ef-
fects of TXNIP deficiency are predominantly limited to the
prevention of mitochondria-mediated �-cell apoptosis,
whereas ER stress–induced apoptosis remained largely
unaffected (Fig. 4–5). Consistent with this observation,
TXNIP deficiency was ineffective in preventing �-cell
lipotoxicity, although it had significant beneficial effects in
the context of �-cell glucotoxicity, which is in alignment
with our previous findings (9). Nevertheless, and despite
the fact that at lower thapsigargin concentrations TXNIP
deficiency had absolutely no protective effects (Fig. 5),
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there was a trend to slightly lower levels of apoptosis in
bTKO islets at the higher thapsigargin dose (Fig. 4D),
suggesting that lack of TXNIP might be able to partially
reduce cell death associated with severe ER stress, poten-
tially by inhibiting mitochondrial pathways activated by
ER stress and/or those involved in the ER-mitochondrial
cross talk (Fig. 6).

Although we have previously shown that incubation of
�-cells and primary islets at high glucose induces TXNIP

expression and that diabetic mice have elevated islet
TXNIP levels (9,18,19), this is the first demonstration that
repeated infusions of glucose can lead to a significant
increase in �-cell TXNIP expression (Fig. 1D). These in
vivo infusion experiments were not designed to induce
or assess �-cell apoptosis (26), and previous work has
suggested that glucose infusion does not cause �-cell
apoptosis (51). However, it is tempting to speculate that
postprandial glucose excursions in diabetic or pre-diabetic
patients may result in a similar increase in �-cell TXNIP
expression, and given the strong proapoptotic properties
of TXNIP this may, over time, contribute to the gradual
�-cell loss observed (52) as well as to the overall detri-
mental effects of postprandial hyperglycemia appreciated
clinically (53).

Surprisingly, fatty acids not only failed to induce TXNIP
expression, but essentially blocked glucose-induced TXNIP
expression both in vitro and in vivo (Fig. 1). This is
consistent with a recent observation in INS-1E cells,
where, fatty acid–induced insulin secretion also led to
inhibition of TXNIP expression (54). In addition, palmitate
has been shown to lead to exclusion of carbohydrate
responsive element-binding protein (ChREBP) out of the
nucleus and thereby to cause a fatty acid “sparing” effect
on glucose-induced transcription (55). Because we have
shown that glucose-induced �-cell TXNIP expression
is mediated by ChREBP (56), these processes may also
contribute to the observed reduction in glucose-induced
TXNIP expression in response to palmitate. The inhibition
of glucose-induced TXNIP expression and cytochrome c
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(C and D), and �-cell apoptosis was assessed by TUNEL. More than 12 islets and more than 700 �-cell nuclei were analyzed per group.
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release by the concomitant presence of fatty acids also
suggests that when both fuels are elevated under glu-
colipotoxic conditions, the TXNIP-independent, fatty
acid–mediated ER stress apoptotic pathway may take
precedence over TXNIP-mediated mitochondrial cell death.

In summary, we have found that lack of TXNIP protects
primarily against �-cell apoptosis mediated by the mito-
chondrial death pathway under glucotoxic conditions,
whereas lipoapoptosis mediated by ER stress could not be
prevented by TXNIP deficiency. Nevertheless, it is likely
that TXNIP deficiency also affects components of the
ER-mitochondrial cross talk. Moreover, our results indi-
cate that, unlike glucose, fatty acids do not induce TXNIP
expression, revealing the specificity of both the upstream
control of TXNIP expression as well as the downstream
TXNIP effects on apoptotic signaling. Together, these
findings provide new insight into the specific regulation
and function of TXNIP that further helps in establishing
the role of TXNIP as a target for diabetes therapy. In
addition, this work enhances our understanding of the
molecular pathways controlling the life and death of the
pancreatic �-cell.
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