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A B S T R A C T

Myelin imaging is a form of quantitative magnetic resonance imaging (MRI) that measures myelin content and
can potentially allow demyelinating diseases such as multiple sclerosis (MS) to be detected earlier. Although
focal lesions are the most visible signs of MS pathology on conventional MRI, it has been shown that even tissues
that appear normal may exhibit decreased myelin content as revealed by myelin-specific images (i.e., myelin
maps). Current methods for analyzing myelin maps typically use global or regional mean myelin measurements
to detect abnormalities, but ignore finer spatial patterns that may be characteristic of MS. In this paper, we
present a machine learning method to automatically learn, from multimodal MR images, latent spatial features
that can potentially improve the detection of MS pathology at early stage. More specifically, 3D image patches
are extracted from myelin maps and the corresponding T1-weighted (T1w) MRIs, and are used to learn a latent
joint myelin-T1w feature representation via unsupervised deep learning. Using a data set of images from MS
patients and healthy controls, a common set of patches are selected via a voxel-wise t-test performed between the
two groups. In each MS image, any patches overlapping with focal lesions are excluded, and a feature imputation
method is used to fill in the missing values. A feature selection process (LASSO) is then utilized to construct a
sparse representation. The resulting normal-appearing features are used to train a random forest classifier. Using
the myelin and T1w images of 55 relapse-remitting MS patients and 44 healthy controls in an 11-fold cross-
validation experiment, the proposed method achieved an average classification accuracy of 87.9% (SD = 8.4%),
which is higher and more consistent across folds than those attained by regional mean myelin (73.7%,
SD = 13.7%) and T1w measurements (66.7%, SD = 10.6%), or deep-learned features in either the myelin
(83.8%, SD = 11.0%) or T1w (70.1%, SD = 13.6%) images alone, suggesting that the proposed method has
strong potential for identifying image features that are more sensitive and specific to MS pathology in normal-
appearing brain tissues.

1. Introduction

Multiple sclerosis (MS) is an autoimmune disorder characterized by
inflammation, demyelination, and degeneration in the central nervous
system. Magnetic resonance imaging (MRI) is invaluable for monitoring
and understanding the pathology of MS in vivo from the earliest stages

of the disease. One promising MR imaging modality is myelin water
imaging (MWI) (MacKay et al., 1994), which is a quantitative MRI
technique that specifically measures myelin content (Fig. 1) in the form
of the myelin water fraction (MWF), which is defined as the ratio of
water trapped within myelin over the total amount of water. Although
white matter lesions have been traditionally considered the hallmark of
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MS pathology, histological studies and the MWI technique have shown
that MS alterations also occur in tissues that appear normal in con-
ventional MRIs. For example, a study using MWI found that a cohort of
MS patients had 16% lower mean global MWF in normal-appearing
white matter (NAWM) than healthy controls (Laule et al., 2004). In
addition, normal-appearing gray matter (NAGM) has also been shown
to have reduced MWF in MS patients (Steenwijk et al., 2014). Although
myelin imaging has been indispensable in enhancing our understanding
of MS, most analyses to date (e.g., MacKay et al., 1994; Laule et al.,
2004; Yoo and Tam, 2013) only use mean myelin measurements, either
over the whole brain or in predefined regions, and disregard the fine-
scale spatial patterns of myelin content that may potentially be useful
for MS diagnosis.

Deep learning (LeCun et al., 2015) is a machine learning approach
that uses layered hierarchical, graphical networks to extract features
from data at progressively higher levels of abstraction. In recent years,
methods based on deep learning have attracted much attention due to
their breakthrough performance for classification in many application
domains, including image recognition and natural language processing
(LeCun et al., 2015). Unsupervised deep learning can be particularly
useful in neuroimaging, a domain in which the number of labeled
training images is typically limited. For example, unsupervised deep
learning of neuroimaging data has been used to perform various tasks
such as classification between mild cognitive impairment (MCI) and
Alzheimer's disease (AD) (Suk et al., 2014), and to model morphological
and lesion variability in MS (Brosch et al., 2014).

In view of this, we employ deep learning to extract latent spatial
features in myelin maps, both on their own and combined with struc-
tural MRIs, to determine whether the deep-learned features can im-
prove the detection of MS pathology. In doing so, we employ multi-
modal deep learning (Ngiam et al., 2011) to discover and model
correlations between hidden patterns in the normal-appearing brain
tissues of coregistered pairs of myelin maps and T1-weighted (T1w)
MRIs. Myelin and T1w scans are used to provide complementary in-
formation in that the former contain myelin-specific features while the
latter contain more general morphological features. Both types of fea-
tures are known to be impacted by MS, but the benefits of deep learning
for extracting myelin or myelin-T1w features are unknown. We hy-
pothesize that deep learning can uncover spatial features in myelin
maps that are more sensitive and specific to MS pathology than mean
myelin measurements, and that multimodal deep learning can extract
more sensitive and specific features than those extracted from either
myelin or T1w modality alone.

Our method uses a four-layer deep belief network (DBN) (Hinton
et al., 2006) that is applied to 3D image patches of NAWM and NAGM
to learn a latent feature representation. The image patches are selected
via a voxel-wise t-test that is performed between the MS and healthy
control groups. To target only normal-appearing image patches, any
patches overlapping with focal MS lesions are excluded, and a feature

imputation technique is used to account for missing features originating
from regions with focal lesions. We then apply the least absolute
shrinkage and selection operator (LASSO) (Tibshirani, 1996) as a fea-
ture selection method to construct a sparse feature representation for
reducing the risk of overfitting to the training data. The final features
are then used to train a random forest (Breiman, 2001) that would
discriminate images of MS subjects from those of normal subjects.

2. Material and methods

2.1. Subjects

A cohort of 55 relapsing-remitting MS (RRMS) patients and a cohort
of 44 age- and gender-matched normal control (NC) subjects were in-
cluded in this study. The median age and range for both groups were 45
and 30–60. For the RRMS patients, 63.6% (35/55) were female, and
63.5% (28/44) of the NC subjects were female. The McDonald 2010
criteria (Polman et al., 2011) were used to diagnose the patients for MS.
All patients underwent a neurological assessment and were scored on
the Expanded Disability Status Scale (EDSS) (Kurtzke, 1983). The
median EDSS and range were 4 and 0–5. Informed consent from each
participant and ethical approval by the local ethics committee were
obtained prior to the study.

2.2. MRI acquisition and pre-processing

The T1w images were acquired with a gradient echo sequence
(TR = 28 ms, TE = 4 ms, flip angle = 27°, voxel si-
ze = 0.977×0.977×3.000 mm3 and image dimensions = 256
×256×60). The myelin images were acquired with a 3D GRASE se-
quence (Prasloski et al., 2012b) (32 echoes, TE = 10, 20, 30,…,
320 ms, TR = 1200 ms, voxel size = 0.958×0.958×2.500 mm3 and
image dimensions = 256×256×40), and processed with the non-
negative least squares fitting algorithm with non-local spatial regular-
ization (Yoo and Tam, 2013) and stimulated echo correction (Prasloski
et al., 2012a). All images were acquired on a Philips Achieva 3T scanner
with an 8-channel SENSE head coil. Lesion masks were produced for the
MS images using a semi-automatic segmentation method (McAusland
et al., 2010) applied to T2-weighted and proton density-weighted MRI
pairs. The T1w images were preprocessed by applying the N3 in-
homogeneity correction method (Sled et al., 1998) iteratively over
multiple scales (Jones and Wong, 2002), then followed by denoising
and skull-stripping. The multi-scale N3 method works similarly to the
N4 algorithm (Tustison et al., 2010), but was optimized to work with
the magnetic field of our scanner.

The non-zero T1w intensities were normalized to have a range from
0 to 1, and then standardized to have zero mean and unit standard
deviation (SD) to enable the use of Gaussian visible units (explained in
Appendix B). In addition, normalization of the T1w intensities made the
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MWF Fig. 1. An example of a myelin map of a healthy control

subject at several different slices in the dataset described in
Section 2.1. The intensity reflects the relative amount of
myelin present, except for the extraparenchymal areas.
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appearance of high-contrast edge features between the normal-ap-
pearing tissue and cerebrospinal fluid more consistent across in-
dividuals. In general, this allows the distribution of these edge features
to be modeled more accurately during deep learning, which makes
training of the networks faster and more stable. The brain masks
computed from the T1w images and intensity standardization were also
applied to the myelin images. The myelin images were registered to the
T1w images using linear registration. Non-linear registration with FSL
FNIRT (Jenkinson et al., 2012) was performed on the T1w images to
align them to the MNI152 template (Mazziotta et al., 2001), and the
computed transforms were also applied to the myelin images.

2.3. Cross-validation procedure

To maximize use of the available data, we performed a cross-vali-
dation procedure in which a rotating subset of the subjects acted as the
test data, while the rest were used for training. We used an 11-fold
cross-validation procedure in which each fold consisted of 9 test sub-
jects (5 MS and 4 NC) and 90 training subjects (50 MS and 40 NC). This
partitioning allowed all 99 subjects to be tested once.

2.4. Overview of the feature learning and classification pipeline

Fig. 2 shows a schematic diagram of our proposed method. The
main steps are as follows. First, a common set of class-discriminative
patches are extracted from both modalities in the MNI152 template
space. Next, for each subject we exclude those patches that overlap with
focal lesions. The resulting normal-appearing patches are then used to
learn a latent joint myelin-T1w feature representation via unsupervised
deep learning. To account for missing features from focal lesions, an
imputation method (Marlin, 2008) is performed on the learned feature
vectors. To reduce the risk of overfitting by increasing sparsity, we
apply LASSO to the feature vectors. We then train a random forest
classifier with the joint myelin-T1w features and class labels.

2.5. Normal-appearing patch extraction

Instead of using all voxels in an image, patch extraction is com-
monly used for medical image classification to improve discriminative
task accuracy and to reduce computational burden (Wu et al., 2015).
We extract discriminative candidate patches on normal-appearing brain
tissue from the myelin and T1w images in the MNI152 template space
using a voxel-wise t-test to determine the statistical significance of the
group difference between MS and NC images, as similarly done in
previous studies (Suk et al., 2014; Tong et al., 2014) for AD/MCI di-
agnosis. Details on normal-appearing patch extraction are provided in
Appendix A.

2.6. Unsupervised deep learning of joint myelin-T1w features

The network architecture (Fig. 3) for unsupervised deep learning
consists of two modality-specific DBNs, one for myelin features and the

other for T1w features, which are fed into a joint network that learns
multimodal features. The number of network layers and number of
hidden units were determined from previous literature (Suk et al.,
2014; Yoo et al., 2014) and a widely used guide (Hinton, 2012) for
training restricted Boltzmann machines (RBMs). Fig. 4 shows visuali-
zations of spatial features learned by this network from both myelin and
T1w images. Technical details on modeling a joint myelin-T1w feature
representation by unsupervised deep learning are described in
Appendix B.

2.7. Image-level feature vector construction and random forest training

For input into a supervised image-level classifier, single-modality or
multi-modality features can be used. Single-modality feature vectors
can be constructed by concatenating the second-layer activations from
the individual myelin and T1w DBNs for all normal-appearing patches.
Joint multimodal feature vectors can be constructed by concatenating
the top-level hidden unit activations of the multimodal DBN. For the
patches excluded due to lesions, we model each missing feature element
using a normal distribution μ σ( , )i iN whose parameters μi and σi are
estimated as the mean and SD of all feature values from the training
dataset, where i=1,…,m and m=P×K4, and P is the number of pat-
ches and K4 is the number of hidden units in the top layer. We then
impute each missing feature element with a value sampled from the
normal distribution, as previously described (Marlin, 2008).

Since the feature dimension is very high (P×K4, depending on the
number of patches P) relative to the number of training samples (90),
we construct a sparse representation using a linear regression model to
reduce the risk of overfitting during supervised training. In previous
work by Kim et al. (2013), it has been shown that applying LASSO
(Tibshirani, 1996) as a feature selection method to reduce the di-
mensionality of the latent features learned by DBNs is beneficial to
classification performance. Accordingly, we also explore the impact of
using LASSO in our framework. More specifically, LASSO employs the
following objective function:

− + λXq y qmin ‖ ‖ ,
q

2
2

1

1 (1)

where X ∈ℝT×m and y ∈ℝT×1 denote the data matrix and the label
vector respectively, and T is the number of subjects used for training.
The vector q ∈ℝm×1 holds the regression coefficients and λ1 is a reg-
ularization parameter that controls the sparsity of the model. After
LASSO, the non-zero elements in the regression coefficient vector q are
used to select the covariates to form a sparse feature representation for
each image.

Finally, given the feature vectors and labels, we train a random
forest (Breiman, 2001) using the information gain to measure the
quality of a split for each node. We also compute the relative im-
portance of each patch for classification between MS and NC by per-
muting the features for each patch among the training data and com-
puting the generalization error as measured by the out-of-bag error

Fig. 2. A schematic illustration of the proposed algorithm for detecting multiple sclerosis pathology on normal-appearing brain tissues using a latent hierarchical myelin-T1w feature
representation.
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(Breiman, 2001). Then, we relate the feature importance to anatomical
regions by using the Harvard-Oxford sub-cortical structural atlas
(Desikan et al., 2006), which was derived from the MNI152 template
(Mazziotta et al., 2001), and the central voxel of each patch, to enhance
the interpretability of the results. The feature importance for each
anatomical region is determined by averaging feature importance va-
lues from all patches belonging to each anatomical region. The proce-
dure of determining random forest and LASSO parameters is described
in Appendix C.

3. Results

3.1. Performance evaluation

Let TP, TN, FP and FN denote True Positive, True Negative, False
Positive and False Negative, respectively. The ability of our proposed
method to extract discriminative features was evaluated by using the
deep-learned features of normal-appearing brain tissues to classify each
subject as MS or NC, and measuring several different aspects of clas-
sification performance:

• Accuracy = (TP + TN) / (TP + TN + FP + FN)

N = 729 v1 v2 v3 v4 vN-1 vN v1 v2 v3 v4 vN-1 vN

h1 h2 h3 hK1

h1 h2 h3 hK2

h1 h2 h3 hK1

h1 h2 h3 hK2

h1 h2 h3 h4 h5 h6 h7 hK3

h1 h2 hK4

K1 = 500 

K2 = 500 

K3 = 1000 

K4 = 100 

T1w Myelin 

Multimodal layer

Fig. 3. The multimodal deep learning network architecture used to extract a joint myelin-T1w feature representation.

Fig. 4. Features at two RBM layers learned from myelin images
(top) and T1w images (bottom). The deep network is able to
learn a large variety of spatial features from both myelin and
T1w images, which supports the hypothesis that myelin maps
contain potentially useful structural information for detecting
MS pathology.
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• Sensitivity = TP / (TP + FN)

• Specificity = TN / (TN + FP)

• Area under the curve (AUC) of the receiver operating characteristic
curve

We performed an 11-fold cross-validation procedure as described in
Section 2.3. We performed the patch selection, unsupervised deep
learning and random forest training using only the training data for
each fold.

We used three regional features as baseline comparators: the re-
gional mean T1w intensity, the regional mean myelin content, and the
regional mean myelin-T1w features, which were formed by con-
catenation of the myelin content and T1w intensity feature vectors for
each image. All regional means were computed on the same class-dis-
criminative patches as used for unsupervised deep learning. We in-
dependently trained the random forest classifier for each mean-based
feature. To determine the LASSO regularization parameter λ1, we per-
formed the same nested cross-validation procedure described in
Appendix C. The top three rows of Table 1 show the classification
performance for each mean-based feature type. To analyze the effect of
LASSO, the supervised training was initially done without this reg-
ularization. Rows 4 to 6 of Table 1 show the classification performance
of the three mean-based features when including the LASSO regular-
ization.

To determine the effectiveness of feature extraction by deep
learning, we compared three deep-learned feature types, which are
deep-learned T1w features, deep-learned myelin features, and the
output of the multimodal DBN, which combines the deep-learned
myelin and T1w features. These features were also tested with and
without LASSO regularization, with the results shown in Table 1.
Overall, deep learning improved the classification results over the re-
gional mean-based features across all four evaluation metrics. In addi-
tion, LASSO had a positive effect, but more so for the mean-based
features than the deep-learned features. The accuracy rate attained by
the deep-learned myelin-T1w feature with LASSO was statistically
better than the ones attained by all of the regional features and the
deep-learned T1w feature with LASSO (p<0.01, two-sided Wilcoxon
test), but it was not statistically better than the one attained by the
deep-learned myelin features with LASSO.

3.2. Separate analysis in NAWM and NAGM

To determine the relative contributions of white and gray matter to
classification performance, we evaluated each deep-learned feature
type on predominantly NAWM and NAGM separately. Since LASSO
proved to be beneficial for the previous experiments, we applied it to all
of the regional NAWM and NAGM analyses. Using the WM and GM
masks computed from the T1w MNI152 template, we excluded all
patches that did not overlap with WM or GM. For the normal-appearing
patches that overlapped with both the WM and GM masks, we labeled
each patch as a NAWM patch if the WM voxel count is larger than the
GM voxel count, and vice versa.

The separate analysis results computed with each deep-learned
feature type are summarized in Table 2. For both NAWM and NAGM,
the deep-learned myelin features alone provided the best overall clas-
sification performance. Using NAWM patches gave higher performance
than that attained by using NAGM patches for the myelin images, while
for the T1w images, using NAGM patches gave better performance. This
is consistent with the observations that the most discriminative patches
in the myelin images came from subcortical WM, while the most dis-
criminative patches in the T1w images came from the cortical and
periventricular regions. Overall, the maximum classification perfor-
mance of using NAWM and NAGM patches separately did not approach
that of using all normal-appearing patches together.

4. Discussion

The regional mean myelin content features were more dis-
criminative than the regional mean T1w intensity features, which is not
surprising given that the T1w sequence is a structural MR sequence
designed to show tissue contrast and not for direct quantification. The
mean myelin features achieved mean classification performance rates of
73.7% (accuracy, SD 13.7%) and 73.4% (AUC, SD 12.6%) with LASSO,
which are approximately 7% (accuracy) and 8% (AUC) higher than
those of the regional mean T1w intensity features. However, the re-
gional combined mean myelin-T1w features produced mean classifi-
cation performance rates of 70.7% for both accuracy and AUC, showing
that direct concatenation of the regional mean myelin content and T1w
intensity features resulted in reduced classification performance when
compared to mean myelin content alone, largely due to reduced spe-
cificity, but were still better than the performance achieved using T1w
intensity features alone.

Applying LASSO as a feature selection method improved the clas-
sification performance for the regional mean features. When including
LASSO regularization in the supervised classifier for the regional mean
features, the feature dimensionality reduction rate by LASSO was about
60–80%. For the regional mean T1w intensities, LASSO improved
classification performance rates by approximately 3% for both mean
accuracy and AUC. The impact of LASSO was smaller for the regional
mean myelin features, resulting in about a 1% improvement in classi-
fication accuracy. LASSO also improved the classification performance

Table 1
Performance comparison (%) between 6 different feature types with and without LASSO
for MS/NC classification on normal-appearing brain tissues. We performed an 11-fold
cross-validation on 55 RRMS and 44 NC images and computed the average performance
(and standard deviation) for each feature type. The highest value for each measure is in
bold. Overall, deep learning improved the classification results over the regional mean-
based features across all four measures. In addition, LASSO had a positive effect, but more
so for the regional mean-based features than the deep-learned features.

Feature type Accuracy Sensitivity Specificity AUC

Regional mean without LASSO
T1w intensity 63.6 (16.5) 74.5 (18.7) 50.0 (28.2) 62.3 (16.9)
Myelin content 72.7 (13.7) 74.6 (18.7) 68.2 (17.9) 72.3 (13.8)
Myelin-T1w 67.7 (8.8) 72.7 (22.5) 61.4 (14.7) 67.1 (9.2)
Regional mean with LASSO
T1w intensity 66.7 (10.6) 76.4 (17.2) 54.5 (24.1) 65.5 (11.5)
Myelin content 73.7 (13.7) 76.4 (18.7) 70.5 (17.9) 73.4 (12.6)
Myelin-T1w 70.7 (12.8) 70.9 (21.4) 70.5 (20.8) 70.7 (12.0)
Deep-learned without LASSO
T1w 70.1 (13.6) 81.8 (20.9) 56.8 (22.3) 69.3 (13.7)
Myelin 83.8 (11.0) 85.5 (18.0) 81.8 (14.4) 83.6 (10.5)
Myelin-T1w 86.9 (9.3) 85.5 (15.0) 88.6 (12.5) 87.0 (9.0)
Deep-learned with LASSO
T1w 70.1 (13.6) 81.8 (20.9) 56.8 (22.3) 69.3 (13.7)
Myelin 83.8 (11.0) 85.5 (18.0) 81.8 (14.4) 83.6 (10.5)
Myelin-T1w 87.9 (8.4) 87.3 (12.9) 88.6 (12.5) 88.0 (8.5)

Table 2
Separate analysis results in NAWM and NAGM. The table shows a performance com-
parison (%) between deep-learned features for MS/NC classification. We performed an
11-fold cross-validation on 55 RRMS and 44 NC images and computed the average per-
formance (and standard deviation).

Feature type Accuracy Sensitivity Specificity AUC

Deep-learned on NAWM
T1w 66.7 (7.0) 78.2 (19.2) 56.8 (24.1) 67.3 (10.3)
Myelin 82.8 (11.5) 81.8 (19.9) 84.1 (11.8) 83.2 (10.4)
Myelin-T1w 74.7 (13.5) 74.5 (17.6) 75.0 (16.3) 74.8 (13.7)
Deep-learned on NAGM
T1w 68.7 (6.7) 78.2 (19.1) 59.1 (22.0) 68.9 (9.9)
Myelin 80.8 (12.6) 85.5 (15.0) 75.0 (21.3) 80.2 (13.0)
Myelin-T1w 73.7 (14.4) 74.5 (22.5) 72.7 (14.7) 73.6 (14.7)
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of the regional combined mean myelin-T1w features, but did not be-
yond than that attained by the regional mean myelin features, again
suggesting that direct concatenation of heterogeneous modalities is not
an effective strategy for improving the classification performance.
Overall, the regional mean myelin content feature type was the most
accurate, sensitive, and specific regional mean MRI biomarker for dis-
tinguishing between MS and NC on normal-appearing brain tissues.

Unsupervised deep learning of the regional myelin contents and T1w
intensities yielded superior classification performance over using the re-
gional mean myelin contents and T1w intensities. Without LASSO, the
deep-learned T1w features improved the classification performance by
about 6% in both mean accuracy and mean AUC over the regional mean
T1w intensity features. In addition, the SDs for accuracy and AUC de-
creased by approximately 3%, showing a more consistent performance
across folds. Similarly, the deep-learned myelin features improved the
classification performance over the regional mean myelin content features
by about 11% in both mean accuracy and mean AUC, demonstrating that
spatial feature learning of myelin maps by unsupervised deep learning can
produce radiologically useful information associated with MS pathology.
Similarly to the deep-learned T1w features, the SDs for accuracy and AUC
also decreased by about 3%.

The joint deep-learned regional myelin-T1w features were more
discriminative than either of the modality-specific deep-learned feature
types, and improved accuracy and AUC by about 4% over the deep-
learned myelin features, showing that, in contrast to the case of simple
concatenation of regional mean T1w and myelin features, deep-learned
joint features improved the classification performance, and decreased
the SDs by about 2%. Compared to the regional mean myelin-T1w
features, the deep-learned multimodal features improved the classifi-
cation performance by approximately 17% in mean accuracy and AUC.

We observed a relatively small impact when including the LASSO
regularization in the supervised classifier for the deep-learned features.
The feature dimensionality reduction rate by LASSO was about
30–50%, which is smaller than the case of regional mean features,
suggesting that the deep-learned features had less redundancy. For both
the deep-learned T1w features and the deep-learned myelin features,
LASSO did not change the classification performance. For the deep-
learned joint myelin-T1w features, LASSO improved the classification
performance by about 1% in both mean accuracy and AUC. The impact
of LASSO was smaller than for the regional mean features. This could be
due to the fact that unsupervised deep learning is already capable of
extracting less redundant and more independent feature sets which
reduced the impact of dimensionality reduction by LASSO.

Overall, the proposed deep-learned joint myelin-T1w features provided

the best performance, surpassing all other feature types substantially in
accuracy, sensitivity, specificity, and AUC. In addition, they significantly
reduced the SDs of both accuracy and AUC compared to the regional mean
features, showing a more consistent classification performance across
folds. When used independently, the deep-learned myelin features also
performed well, surpassing all other regional mean features on all four
evaluation measures. All deep-learned features outperformed their re-
gional mean counterparts, with or without LASSO, which indicates that
both myelin and T1w modalities contain discriminative latent spatial
patterns. Our main conclusion is that the deep-learned myelin features
provide valuable pathological information that is more sensitive and
specific than the use of regional mean myelin and/or T1w measurements
for MS diagnosis on normal-appearing brain tissues, especially when
combined jointly with deep-learned T1w features.

We analyzed the effect of separately using predominantly NAWM
and NAGM patches on the various deep learning models we built. The
deep-learned myelin features extracted from NAWM patches achieved
mean classification performance rates of 82.8% in accuracy (SD 11.5%)
and 83.2% in AUC (SD 10.4%), which are approximately 2–3% higher
in accuracy and AUC than those of the deep-learned myelin features
with NAGM patches, suggesting that the deep-learned myelin features
are more pathologically relevant to NAWM than NAGM, which is ex-
pected due to the greater myelin content in WM. When using NAWM
and NAGM patches separately, the variety of feature patterns learned
by the T1w-specific network was reduced compared to those learned by
the T1w-specific network with all normal-appearing patches as shown
in Fig. 5. The more limited feature set led to classification accuracy
rates of 66.7% with NAWM patches and 68.7% with NAGM patches,
which are lower than those of the deep-learned T1w features with all
normal-appearing patches (70.1%). Since this limited feature set was
used as an input to the multimodal myelin-T1w layer, the deep-learned
myelin-T1w features did not improve the classification performance in
NAWM nor NAGM patches as shown in Table 2.

To enhance interpretability of the results and examine their re-
lationship to published MS literature, we determined the relative con-
tribution of the deep-learned joint myelin-T1w features in each patch
location, and used the Harvard-Oxford sub-cortical atlas to compute the
mean importance values in particular sub-cortical regions and struc-
tures. As shown in Fig. 6, the six most discriminative sub-cortical brain
regions and structures were found to be the cerebral white matter,
lateral ventricles, putamen, thalamus, hippocampus, and amygdala.
The most discriminative sub-cortical brain regions were the cerebral
white matter and lateral ventricles. The high importance of the cerebral
white matter and lateral ventricles are likely due to demyelination in

Fig. 5. Deep-learned features separately extracted from pre-
dominantly NAWM, NAGM and all normal-appearing patches by
the T1w modality-specific network. The variety of feature pat-
terns learned by the T1w-specific network with NAWM and
NAGM patches is reduced compared to that learned by the T1w-
specific network with all normal-appearing patches.
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the periventricular region, combined with morphological changes
caused by brain atrophy, both of which are strongly associated with MS
pathology. The observed importance of the sub-cortical gray matter
structures is consistent with previous MS studies (e.g., Hulst and Geurts,
2011), which showed that these specific structures undergo substantial
structural and/or chemical changes.

It is important to acknowledge limitations of our study. Due to the
relatively small training sample size, this study can only provide pre-
liminary results and does not ensure that the proposed model will gen-
eralize to produce the exact same results in other cohorts. Secondly, our
study only included RRMS patients and did not include progressive MS
patients. The proposed model may extract different features for progressive
MS cohorts because patients with progressive MS can have different pat-
terns of demyelination and morphological changes throughout the brain.
To evaluate this approach for detecting very early MS pathology, our future
work should include patients with clinically isolated syndrome, a pro-
dromal stage of MS, with the clinical goal of enabling earlier diagnosis.

As we stated above, the T1w sequence is a structural imaging se-
quence for displaying tissue contrast and not for direct quantification,
and this limitation cannot be corrected by intensity normalization,
which is likely a main reason why the regional mean T1w intensity
features produced relatively low classification accuracy as shown in
Table 1. It could be argued that for complementing the myelin scans, a
quantitative T1 relaxometry may be appropriate. However, a primary
goal of this study was to determine whether myelin scans contained
spatial features finer than regional means that would be useful for
distinguishing MS, so a comparison to regional mean intensity features
seems appropriate. We believe the primary reason that deep learning on
T1w images produced useful features for classification is that the model
captured spatial variabilities in the high-contrast boundaries between
normal-appearing tissue and cerebrospinal fluid as induced by atrophy
and other morphological changes. This is visually verifiable by Figs. 4
and 5, which show that the features extracted by deep learning from the
T1w images are mostly high-contrast edges in various shapes and or-
ientations. For deep learning, the intensity normalization procedure is
meant to enable the use of Gaussian visible units and to allow the
distribution of these edge features to be modeled more accurately
which generally makes training of the networks faster and more stable
as also stated in Section 2.2. In contrast, deep learning appeared to
capture more intensity variations in the myelin images, indicative of
changes in myelin content, as shown in Fig. 4, especially in RBM layer
1.

In summary, our experimental results have demonstrated the following
for the task of detecting MS pathology on normal-appearing brain tissues:

• The regional mean myelin content features were more dis-
criminative than the regional mean T1w intensity features.

• Direct concatenation of the regional mean myelin content features

and the regional mean T1w intensity features did not improve the
classification accuracy over using each feature type alone.

• Unsupervised deep learning of the regional myelin contents and
T1w intensities yielded superior classification performance over
using the regional mean myelin contents and T1w intensities.

• The joint deep-learned regional myelin-T1w features were more
discriminative than either of the modality-specific deep-learned
feature types.

• Applying LASSO to produce sparser feature representations im-
proved the classification performance for the regional mean fea-
tures, but the impact of LASSO was marginal for the deep-learned
regional features.

• The maximum classification performance of using predominantly
NAWM and NAGM patches separately was achieved by the deep-
learned regional myelin features. However, it did not approach that
of using all normal-appearing patches together.

5. Conclusions

We have demonstrated that unsupervised deep learning of normal-
appearing brain tissues on myelin and T1w images can extract in-
formation that could be useful for early MS detection and provides
superior classification performance to the traditional regional mean
MRI measurements when using the same supervised classifier. In ad-
dition, we have shown that unsupervised deep learning of joint myelin
and T1w features improves the classification performance over deep
learning of either modality alone. Using a four-layer multimodal deep
learning network to learn latent features, unbiased feature imputation
to exclude lesion voxels, a feature selection method (LASSO) to con-
struct sparse feature representations, and a random forest for a su-
pervised classifier, we achieved a mean classification accuracy of 87.9%
between RRMS and healthy controls on normal-appearing brain tissues,
using an 11-fold cross-validation procedure. The local brain structures
that were found to be important for MS classification by our method
were consistent with known MS pathology and previous MS literature.
In future work, we plan to extend the proposed framework to include
other MRI modalities used for studying MS pathology such as multi-
echo susceptibility-weighted imaging (Denk and Rauscher, 2010). We
also plan to apply our framework to other subgroups of MS patients and
longitudinal data for applications in MS prognostication.
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Appendix A. Additional details on normal-appearing patch extraction

The voxel-wise t-test results for each modality (myelin and T1w) are shown in Fig. A.7. Based on the voxel-wise t-test, the voxels with individual
p-values lower than 0.05 are selected as the centers of candidate patches. The mean p-value for each candidate patch is then computed. Starting with
the patches with the lowest mean p-values, patches are selected in a greedy manner (Suk et al., 2014) while enforcing an overlap of less than 50%
with any previously selected patches. These patches are then further selected by including only those with mean p-values smaller than the average p-
value of all candidate patches of both modalities. Finally, the patches overlapping with focal lesions are excluded for each patient in order to retain
only the normal-appearing patches. Patch sizes from 7×7×7 to 11×11×11 have been suggested to be a good range for capturing local structural
information in related work (Liu et al., 2014; Suk et al., 2014; Tong et al., 2014). From this perspective, we chose a patch size of 9×9×9 for our
experiments. From the data in this study, the number of selected patches ranged from 8000 to 10000 depending on the images used for training in
each cross-validation fold, and on the amount of lesion present. Examples of the selected patches in the MNI152 template are displayed in Fig. A.8.

Appendix B. Additional details on unsupervised feature learning

We convert the selected patches into one-dimensional vectors v1,… ∈ℝD with D=729. The number of feature vectors from each image depends
on the number of excluded patches due to the presence of lesions. We learn features for the myelin and T1w input vectors independently by using a
Gaussian-Bernoulli RBM (Krizhevsky and Hinton, 2009) for each modality. Each RBM has real-valued visible units v of dimension D=729, binary
hidden units h of dimension K1=500, and symmetric connections between these two layers as represented by a weight matrix �∈ ×W D K1. The
energy function of a Gaussian-Bernoulli RBM (Krizhevsky and Hinton, 2009) is defined as
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where bj is the bias for the j-th hidden unit ( �∈b K1), σi is the variance term for the i-th visible unit, and ci is the bias for the i-th visible unit (c ∈ℝD).
The variance term is set to 1 by standardizing the dataset as described in Section 2.2. The units of the binary hidden layer (conditioned on the visible
layer) are independent Bernoulli random variables = = ∑ +P h σ W v bv( 1| ) ( )j i ij i j , where =

+ −
σ s( ) s

1
1 exp( ) is the sigmoid function. The visible units

(conditioned on the hidden layer) are D independent Gaussians with diagonal covariance = ∑ +P v W h ch( | ) ( , 1)i j ij j iN . In order to capture higher-
level correlations between the first-level features, another layer of binary hidden units of dimension K2=500 is stacked on top of each RBM to form a
DBN for each modality. We follow a standard layer-by-layer approach for training a DBN (Hinton et al., 2006), in which each RBM adopts the
previous layer's activations as its input. Fig. 4 shows a large variety of spatial features learned by this network from both myelin and T1w images,
which supports the hypothesis that myelin maps contain potentially useful structural information.

We next build a joint model (Fig. 3) that finds multimodal myelin and T1w patterns by modeling the joint distribution between myelin and T1w
features. We form a multimodal DBN by adding a layer of K3=1000 binary hidden units that are connected to both the myelin and the T1w DBNs,

Myelin

T1w
p-value

1.0

0

Fig. A.7. Voxel-wise t-test results displayed in the MNI152
template showing the most discriminative locations between 55
RRMS patients and 44 normal controls. The red areas indicate
statistical significance (p<0.05). Most of the voxels selected
from the myelin maps are located in cerebral white matter re-
gions (the top three images), while most selected from the T1w
images are from the cortex and periventricular areas (the bottom
three images). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of
this article.)

Fig. A.8. Discriminative patches in the MNI152 template that
were extracted from the scans of 50 RRMS patients and 40
normal controls used as training data in one cross-validation
fold, using the patch extraction method described in Section 2.5.
In this figure, the patches have been rescaled from 9×9×9 to
3×3×3 for the purpose of visualization. The patches are used
for training the multimodal unsupervised deep learning network
with the goal of extracting features that can be used to detect MS
pathology on normal-appearing tissues.
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thereby combining their second-layer activations. Finally, we model higher-level multimodal features by stacking another layer of binary hidden
units on top of the multimodal RBM. For this multimodal layer, the dimensionality is reduced to K4=100 for each patch.

We perform contrastive divergence (Hinton et al., 2006) to approximate gradient descent to update the weights and biases during training. To
avoid the difficulty of setting a fixed learning rate and decay schedule, we apply AdaDelta (Zeiler, 2012), which adaptively determines the learning
rate for each model parameter and improves the chances of convergence to a global minimum. Given the high dimensionality of the feature vectors
and the inherent risk of overfitting to the training data, we use two common regularization approaches during training, consisting of weight decay
(Hinton, 2012) with the penalty coefficient 0.0002, which penalizes large weights, and dropout (Srivastava et al., 2014) with a probability of 0.5,
which randomly drops hidden units to simulate the effect of using many “thinned” networks to produce an average solution.

Appendix C. Determining random forest and LASSO parameters

The number of decision trees and their depth determine the generalizability of the random forest. In general, overly shallow trees lead to
underfitting while overly deep trees lead to overfitting. We found that tree depths between 20 and 40 produced almost identical out-of-bag errors in
our case. From this perspective, the tree depth value was empirically set as 30 to avoid under- and overfitting. To determine a suitable number of
trees, we started with 10 and increased it by a step size of 0.2 on a log scale until we observed a stabilization in the out-of-bag error (Fig. C1) using
the entire dataset. We determined an appropriate value of 105, which was used for all of our experiments.

After fixing the random forest parameters, we performed a nested cross-validation procedure to determine the LASSO regularization parameter
λ1, which we expected to vary between cross-validation folds. For each of the 11 folds, we performed a nested cross-validation with 10 inner folds.
For each inner fold, we varied λ1 between 10−7 and 1 with a step size of 1 on a log scale, and the λ1 that produced the best mean MS/NC
classification accuracy was used for the outer fold.
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