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Michael Ford,1 Ehsan Haghshenas,1 Corey T. Watson,2 and S. Cenk Sahinalp3,4,*

SUMMARY

One of the remaining challenges to describing an individual’s genetic variation lies in the highly het-

erogeneous and complex genomic regions that impede the use of classical reference-guided mapping

and assembly approaches. Once such region is the Immunoglobulin heavy chain locus (IGH), which is

critical for the development of antibodies and the adaptive immune system. We describe Immuno-

Typer, the first PacBio-based genotyping and copy number calling tool specifically designed for IGH

V genes (IGHV). We demonstrate that ImmunoTyper’s multi-stage clustering and combinatorial opti-

mization approach represents themost comprehensive IGHV genotyping approach published to date,

through validation using gold-standard IGH reference sequence. This preliminary work establishes the

feasibility of fine-grained genotype and copy number analysis using error-prone long reads in complex

multi-gene loci and opens the door for in-depth investigation into IGHV heterogeneity using acces-

sible and increasingly common whole-genome sequence.

INTRODUCTION

With the advent of modern, high-speed bioinformatics tools and high-throughput sequencing, recon-

structing a human genome has gone from being one of the big challenges in genomics to standard pro-

tocol. Despite being a routine step in modern bioinformatics pipelines, there remains parts of the genome

that are difficult to reconstruct using standard techniques. One such region is the immunoglobulin heavy

chain locus (IGH), whose genes encode the foundation to the structure and development of antibodies.

Although IGH genes are critical to the structure and function of the adaptive immune system of vertebrates,

performing genotyping and copy number analysis of IGH genes remains challenging owing to the

complexity of the region, which is one of the most dynamic regions of the human genome (Watson and

Breden, 2012).

Of the four classes of coding gene segments present in the IGH region, the Variable genes class (IGHV)

plays a critical role in defining epitope binding affinity, as it completely contains two and partially contains

the last of the three complementary-determining regions. However, many of the IGHV alleles are highly

similar (see Figure 1), which in combination with their short length of between 165 and 305 bp (mean of

291 bp) and the high number in an individual (can be greater than 50 functional genes [Watson et al.,

2013; Matsuda et al., 1998]), makes the problem of IGHV genotyping challenging. To further complicate

the problem, the IGH region has been shown to contain many large structural variants (SVs), including

segmental duplications, large insertions and deletions, and other copy number variants (CNVs) (Watson

et al., 2013). Finally, there are two non-functional orphons of IGH (on chromosomes 15 and 16) that have

similar sequence to IGH (Lefranc, 2001a). As a result, classical reference-based mapping approaches to

IGH analysis typically perform poorly (see Figure 2).

To date there have been two attempts at IGHV genotyping using high-throughput sequence from germline

DNA-sourced materials, both focused exclusively on functional genes. For clarity, we consider a successful

IGHV genotyping result to report all the IGHV genes present in a given sample and report the allele for

every copy of every IGHV gene. Work by Yu et al. (2017) created a whole-genome sequencing (WGS) Illu-

mina short read analysis pipeline for identification of IGHV and T cell receptor sequence using a reference

mapping-based variant calling and frequency thresholding. Although the results of their paper are initially

impressive, with 8,750 novel IGHV sequences having been found, there have been doubts raised regarding

the accuracy of the findings by others in the field (Watson et al., 2017; Boyd et al., 2010; Kidd et al., 2012;

Gidoni et al., 2019). One of the main criticisms is the reliance on a genome reference. The high degree of
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haplotype diversity mentioned above means that any reads that may originate from an insertion or novel

sequence in the IGH region, relative to the mapping reference, will be missed from the pipeline.

The other work on IGHV genotyping using germline sequence data has been done by Luo et al. (2016,

2019), also using WGS Illumina short read data. Although their initial work also relied on whole reference

genome mapping, without addressing possible novel insertion sequence, their later work avoided this

pitfall by mapping short reads directly to IGHV reference sequences. This method focuses on gene iden-

tification and copy number calling. However, their method calls alleles only for 11 functional genes, as

they identify these as only having a single copy per chromosome. Additionally, there are seven groups

of genes, each of which is a set of genes they are not able to differentiate owing to high sequence

similarity.

One increasingly popular approach to investigating the variations within the genes of the IGH region is

through genotype and haplotype inference, using repertoire sequencing data. Although the analysis of

germline sequencing data is challenging, gathering sequencing data on expressed IGH sequences, typi-

cally called Adaptive Immune Receptor Repertoire sequencing (AIRR-seq), is commonplace, has estab-

lished protocols, and can easily be sequenced to a high depth (Vander Heiden et al., 2018). The availability

and quality of these data make it an appealing source to infer and investigate the germline sequence; how-

ever, owing to the nature of IGH sequence expression this is not straightforward. An IGH mRNA sequence,

as expressed by a B cell, is not only different from the germline sequence owing to VDJ recombination, but

has potentially also undergone somatic hypermutation, which introduces new variants relative to the germ-

line sequence. However, despite these challenges, there have been numerous published studies and tools

that have investigated the IGHV germline sequence through repertoire sequencing inference and have

been successful at identifying novel IGHV alleles and features (Gadala-Maria et al., 2015, 2019; Boyd

et al., 2010; Corcoran et al., 2016; Ralph andMatsen, 2016; Thörnqvist and Ohlin, 2018). There has addition-

ally been work done on haplotype inference through statistical learning frameworks, using the IGHJ geno-

type (Kirik et al., 2017; Kidd et al., 2012) and/or IGHD genotype (Gidoni et al., 2019) as an IGHV haplotype

indicator.

However, it has been noted that there are challenges to performing IGHV germline analysis through reper-

toire inference. For example, recent work has demonstrated that inferring some IGHV variants can be

nearly impossible because of the unpredictable removal of 30 bases during VDJ recombination or be partic-

ularly hard to overcome at regions of ‘‘mutational hotspots’’ (Kirik et al., 2017). Additionally, it has been

shown that the initial reference database used can affect the reliability of inference calls for alleles that

are highly similar (Kirik et al., 2017).

Figure 1. Histogram of the Edit Distance between Each Allele from the IGHV (Pseudo)Gene Database and its

Most Similar Allele (with Respect to Edit Distance)
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Another inherent challenge to IGHV inference is the effect of non-uniform expression of certain VDJ

configurations. This effect can be additionally complicated by the types and ratios of B cells that

are sequenced. Fundamentally, since inferring the presence of some allele is dependent on the allele

being expressed, the lack of some allele does not indicate its absence in the germline sequence. This

means that, although inference may result in the identification of confident true positives, true nega-

tives are impossible to differentiate from false negatives. Additionally, since the repertoire is adaptive

and dynamic, some method to account for possible temporal biases to expression ratios is necessary

to confidently make claims regarding the general functional significance of the presence or absence of

any given allele. The effect of expression bias is also particularly relevant to haplotype inference,

whose reliance on gene usage estimates can be directly confounded by expression bias (Gidoni

et al., 2019).

Although inference techniques havemade significant progress at genotyping despite the challenges, there

has been little work done on the other major sources of IGH heterogeneity, namely, SVs and CNVs. These

variants are expected to be common, as work by Watson et al. (2013) has discovered several large-scale

insertions and deletions in the IGH region, each containing multiple IGHV genes. However, this work

was done using Sanger sequencing of BAC and fosmid clones, which is prohibitively expensive and time

consuming. Haplotype inference has had some success at CNV calling, deletion detection, and even

phased haplotype calling (Gidoni et al., 2019; Kidd et al., 2012); however, it is limited by gene expression

bias as noted above. The work by Luo et al. includes copy number calls but does not call alleles for genes

with CNVs, thus missing a critical step in the path toward complete haplotype calling.

Another large gap in our knowledge about IGH heterogeneity are non-coding sequence variants. Non-

coding sequence is already known to play a critical role in the antibody repertoire as it contains the recom-

bination signal sequence, which is required for V(D)J recombination (Janeway et al., 2001). However,

limitations in methodology have inhibited investigation into possible further effects through mechanisms

such as enhancers and promoters.

Identification of novel IGH and IGHV sequences, genes, and alleles is an important problem, as it has

been noted that the primary database for IGH gene reference sequences, hosted by the international

ImMunoGeneTics information system (IMGT) (Lefranc et al., 2015), is incomplete (Ohlin et al., 2019), and

the complexity of the IGH locus is likely to lead to high sequence heterogeneity across individuals and pop-

ulations. However, there is still a need for fast IGHV genotyping of known alleles using common data types

that are not specific to IGH research. Such tools can be integrated into standard precision medicine pipe-

lines, allowing for investigations such as disease association studies to be done with larger sample sizes.

Although the performance of IGHV genotyping tools may suffer initially depending on their degree of

Figure 2. Read Depth of IGH Region for CHM1 WGS PacBio Reads Mapped to CHM1 Reference Using minimap2

with Default Parameters, Demonstrating Significant Deviation from the Expected Coverage, Including at

Positions Containing IGHV Genes, Which Are Marked by Vertical Green Lines
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reliance on established IGHV reference databases, they will increase in accuracy as databases become

more complete over time.

In this paper we present ImmunoTyper, an IGHV genotyping and CNV calling tool that is the first to be

based on long read data. By using long read data we ensure that reads span the complete IGHV coding

region, and they provide information from non-coding regions, at the cost of increased sequencing error

rate over short read technologies. In order to avoid the gene expression biases found in inference-

based methods, it utilizes WGS to provide a complete picture of the IGHV germline landscape. Although

ImmunoTyper in its current implementation is solely for rapid genotyping of known IGHV alleles, several of

its design features, such as allele identification using ambiguity instead of identity, can allow for implemen-

tation of novel allele discovery in future versions of the tool. Finally, ImmunoTyper is the first IGH-specific

tool to report non-coding sequence by providing high-quality sequence for regions flanking IGHV genes,

as well as the first to provide allele and CNV calling for the vast majority of IGHV pseudogenes.

RESULTS

Owing to the lack of published IGH germline sequences, our ability to validate allele calls and copy number

variants is limited. As a result, we performed experiments using simulated data using both the GRCh37 and

GRCh38 references, which are the only published complete IGH sequences. Since the GRCh38 IGH refer-

ence is derived from the CHM1 hydatidiformmole haploid genome (Watson et al., 2013), we were also able

to perform tests with real data using publicly available WGS data for CHM1. For clarity, we used CHM1

instead of GRCh38 to reference this sample.

Simulated Data

Simulated data experiments were set up with the goal of testing the ImmunoTyper method, without the

confounding effects of unavoidable noise inherent in WGS datasets.

For generating the simulated data, we first extracted the IGHV genes and pseudogenes, along with 1-kbp

flanking regions, from the GRCh37 (NCBI NC_000014.8:106031614-107289051) and CHM1 (NCBI NC_

000014.9:105586437-106880844) references using the NCBI GenBank annotations (Clark et al., 2015). Next, we

discarded all sequences corresponding to alleles that are ignored (as described in Transparent Methods). We

simulated the reads from the IGHV-containing sequences at 20x using Simlord (Stöcker et al., 2016) in single-

pass configuration, resulting in a 15.8%mean total error rate. This resulted in 2,360 reads for the CHM1 sample

and 2,236 for the GRCh37 sample. The reads are simulated so that their length matches the length of the ex-

tracted sequences (2,300 bp) to emulated extracted subreads from a WGS sample. The resulting sets of reads

were then combined and provided as input to ImmunoTyper. The option ‘‘–no-coverage-estimation’’

was used to skip the subread coverageestimation stepdescribed inTransparentMethods, and use the user pro-

vided depth parameter of 20x. For the CHM1andGRCh37 samples, 1,524 and 1,323 of the inputs reads, respec-

tively, were identified as ambiguous and assigned in the second stage of the pipeline.

In addition to these simulated haploid runs, the subreads from both samples were combined to create a set

of 4,596 reads that simulate a diploid sample. Of the input reads, 2,760 were identified as ambiguous.

Results are shown in Table 1, where ImmunoTyper demonstrates strong results in all simulated samples,

with precision and recall above 94%, with the exception of 89% recall in the simulated CHM1 sample.

Note that the results in Table 1 are for all functional IGHV genes and non-functional IGHV pseudogenes.

Sample # IGHV Occurrences

in Reference

# IGHV Calls Precision Recall True Positive False Positive False Negative

CHM1 (simulated) 117 111 94.6% 89.7% 105 6 12

GRCh37 (simulated) 112 109 97.2% 94.6% 106 3 6

CHM1+GRCh37 (simulated) 229 227 94.3% 93.4% 214 13 15

CHM1 WGS 117 110 87.3% 82.1% 96 14 21

Table 1. Genotype Results for Simulated and CHM1 Real Data Samples
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Additionally, in all cases except GRCh37 ImmunoTyper was able to successfully differentiate alleles that

were distinguished by only a single SNP (see section Investigation into False-Positive Allele Calls and Fig-

ures S5–S7). Note that True Pos indicates the allele was called by ImmunoTyper and was present in the sam-

ple, False Pos indicates the allele was called by ImmunoTyper but was not in the sample, and False Neg

indicates the allele was not called by ImmunoTyper but was present in the sample.

WGS Data with Validation

ImmunoTyper was tested on the publicly available CHM1 PacBio sequence (62x coverage; SRA:

SRX1164774) (Chaisson et al., 2015), and the resulting allele calls were validated as with the simulated

CHM1 data. A total of 7,772 reads were extracted from the WGS sample, 3,131 of which contained at least

one complete IGHV gene with flanking sequences, resulting in 5,176 subreads; 1,431 were identified as

ambiguous. Table 1 shows that ImmunoTyper successfully genotypes the WGS CHM1 sample with reason-

able precision and recall values of 87% and 82%, respectively, and is able to successfully differentiate alleles

that have as few as four distinguishing SNPs (see section Investigation into False-Positive Allele Calls and

Figure S8).

Sequence Recovery and Reference Mapping

To further evaluate the performance of ImmunoTyper in subread error reduction, consensus sequences

(including coding and non-coding flanking sequences) from all clusters were mapped back to their refer-

ence sequence using minimap2 (Li, 2018) with default parameters. As shown in Table 2, ImmunoTyper re-

duces the median sequence error rate by at least 86% from the raw read error rate. Visualizations of the

distribution of error reduction can be found in Figures S1–S4. Note that the expected error rate for PacBio

reads is taken from Laehnemann et al., (2015).

Investigation into False-Positive Allele Calls

In order to investigate whether sequence similarity is a major contributor to false-positive allele calls, for

each sample we plot the number of false-positive alleles against the number of SNPs that distinguish

them from their most similar allele in the sample. We also include true positives in the plot to provide

context for the minimum number of variants ImmmunoTyper needs to successfully differentiate and call al-

leles. The plots can be found in Figures S5–S8.

Identification of Sequence Differences between GRCh37 and CHM1 References

The GRCh37 and CHM1 references have significant difference in sequence and IGHV gene composition.

The two references together contain four of the six known IGH insertion sequences listed in IMGT and

partially cover a fifth (Lefranc et al., 2015; Clark et al., 2015; Lefranc, 2001b, a). In Table 3, we provide the

IGHV genes and pseudogenes contained in each insertion sequence, as well as list the source reference

and an individual identifier.

The simulated diploid sample is the most suited to evaluate ImmunoTyper’s ability to identify inserted

sequence as it covers the most amount of insertions. Table 4 provides a summary of the gene and allele

calls for IGHV genes and pseudogenes belonging to inserted sequence. ImmunoTyper was able to call

the presence and correctly identify the alleles 12 of 14 genes and pseudogenes contained in the inserted

sequences, demonstrating the ability to identify known insertion sequences in a sample. The missing allele

calls were likely lost owing to high coding and flanking sequence similarity with other genes in the region

(89% and 88% sequence identity for 3-69-*01 and 3-71*01; 1-8*01 and 1-69*06, respectively).

Sample Expected Read Error Median Mapping Error

CHM1 (simulated) 15.8% 2.0%

GRCh37 (simulated) 15.8% 2.0%

CHM1 + GRCh37 (simulated) 15.8% 2.2%

CHM1 WGS 16.19%a 2.3%

Table 2. Allele Sequence Error Reduction Results
aTaken from Laehnemann et al., 2015.
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CNV Analysis

There are several IGHV genes in the GRCh37 and CHM1 references that are present with multiple copies.

The greatest number of CNVs are present in the GRCh37 + CHM1 diploid sample, and ImmunoTyper’s re-

sults for calling all CNV genes in the sample are summarized in Table 5. ImmunoTyper accurately calls the

copies and alleles for the CNV genes in the sample in all cases except for 1-69, where the incorrect calls are

likely a result of the extreme challenge of differentiating the *01 and *06 alleles as they differ by a single

base pair. The 4-31 gene is included despite having a copy number of 2, because the second copy

(4-30-2) is due to a duplication in the B insertion sequence in GRCh37, rather than diploidy.

DISCUSSION

ImmunoTyper represents a generalizable approach to multigene genotyping and copy number analysis.

The results described above, although limited in sample size, provide robust validation of the methodol-

ogy against publicly available genotype calls that have been produced through gold-standard approaches.

In addition to accurate genotyping results with high precision and recall, the low mapping error rates

described in section Sequence Recovery and Reference Mapping demonstrate the success of our clus-

tering approach, especially considering the high error rates of the source reads and moderate sequencing

depth. However, it is clear that complete IGHV genotyping using long reads is especially difficult. Immu-

noTyper under-reported the number of IGHV genes present in the CHM1 WGS sample, likely because of

variation in the sequencing depth or IGHV-containing subread dropout due to subreads not being iden-

tified as a result of high sequence error. Subread dropout and potential noise from mistakenly including

subreads from elsewhere in the genome, such as the 2 IGH orphons, are also likely explanations of the

difference seen in the results of the CHM1 WGS and CHM1 simulated samples, in addition to the unavoid-

able shortcomings of simulating sequencing data. There also remain a few outlying cases in all samples

where the allele call was incorrect and/or the sequence recovery had a high number of errors. Given the

proportion of IGHV alleles that have a high degree of sequence similarity, it may be exceedingly difficult,

if not impossible, to achieve perfect genotyping and CNV calls using error-prone long reads without

reducing the sequence error rate through a method such as CCS reads or increasing the sequencing

depth.

Insertion Reference Number of Genes

and Pseudogenes

Number of Matching Genes

in Result

Number of Correct

Allele Calls

Missing Allele Calls

A CHM1 4 3 3 3-69-1*01

B GRCh37 2 2 2

C CHM1 2 2 2

D CHM1 2 2 2

E GRCh37 3 2 2 1-8*01

F CHM1 1 1 1

Table 4. IGHV Identification in Insertion Sequences Between GRCh37 and CHM1 in Diploid Sample

Insertion Identifier Reference Genes and Pseudogenes Present and Their Alleles

A CHM1 1-69*06, 1-69-2*01, 2-70D*04, 3-69-1*01

B GRCh37 4-31*02, (II)-31-1*01

C CHM1 (II)-30-21*01, 4-30-2*01

D CHM1 3-64D*06, 5-10-1*03

E GRCh37 3-9*01, 2–10*01, 1–8*01

F CHM1 7-4-1*01

Table 3. Sequence Differences between CHM1 and GRCh37 References
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In addition to identifying known IGHV alleles, ImmunoTyper also provides an opportunity to discover novel

sequences through the following features. First, the Mapping-based clustering step clusters reads based

on ambiguity rather than on allele sequence similarity. This allows for reads originating from a novel allele

to be clustered with the closest matching allele in the database. Super-clusters also account for novel al-

leles, as they are formed solely based on read-to-read sequence similarity and are therefore not dependent

on the known allele database. Finally, the non_code_cov_var error function acts as a reference-free coun-

terbalance to code_var_cov error function, as it is independent of allele references and influences clus-

tering based on read-to-read similarity, under the constraints of variant depth. As a result, the user is

able to call novel alleles using the output consensus sequence for each IGHV gene. However, owing to

the challenge of calling novel alleles using long reads, especially if they differ significantly from known al-

leles, ImmunoTyper is focused on known allele calling.

In addition to IGH, there are other regions of the genome where ImmunoTyper could be applied with min-

imal modification. In particular, the immunoglobulin k and l light chain loci and the T cell receptor loci are

related to IGH in that they all share a similar multi-gene segment construction and undergo V(D)J recom-

bination (Janeway et al., 2001). Luo et al. (2019) have taken this approach by applying their tool to the T cell

beta variable locus. Extending the protocol to these similar regions is an accessible opportunity to inves-

tigate lesser-studied regions of the genome, given the current configuration of ImmunoTyper.

Fundamentally, ImmunoTyper is the first IGHV genotyping tool to use error-prone long reads, the first to

integrate pseudogene calls, and the first to provide data on non-coding sequence that flanks IGHV genes.

Although it is developed specifically for IGHV analysis, the approach and the integer linear programming

formulation for allele assignment is generalizable to any multi-gene genotyping and copy number analysis

problem with known alleles.

Although this initial investigation was intentionally limited to samples that have published gold-standard

references, the results make us confident that ImmunoTyper represents the closest attempt at complete

IGHV genotyping using WGS data to date.

Limitations of the Study

By limiting our testing of ImmunoTyper to samples with published gold-standard references, we can be confi-

dent in the accuracy of our results; however, that comes at the cost of a certain degree of generalizability.We can

speculate that there may exist IGH haplotypes that have combinations of IGHV alleles, either previously

described or novel, which are challenging for ImmunoTyper to accurately identify. However, in the absence of

further complete IGH haplotypes or alternative validation methods to compare ImmunoTyper with, we are

limited in our ability to significantly test ImmunoTyper beyond what has been demonstrated in this paper.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

The datasets used for obtaining the results of this article can be retrieved from the Sequence Read Archive

(SRA) via accession number SRA: SRX1164774. These datasets have been published in an article by Chais-

son et al. (2015). The instructions to generate simulated data used in this article can be found in Simulated

Data.

Gene Number of Copies

in Sample

Number of Copies

Copies Called

Correct Allele Calls False-Positive Calls False-Negative Calls

1-69 4 5 1-69-2*01, 1-69*06, 1-69*06 1-69*06, 1-69*06 1-69*01

2-70 3 3 2-70*01, 2-70D*04 2-70*13

3-64 3 3 3-64*02, 3-64D*06 3-64*02

4-31 2 2 4-30-2*01, 4-31*02

Table 5. Calls for Known CNV Genes in the CHM1 + GRCh37 Sample
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SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.100883.
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S1. Supplemental Figures

S1.1. Plots of Remapped Consensus Sequence Error Reduction, related to Section 2.3

Figure S1: Related to Section 2.3. Histogram of sequence similarity between CHM1 simulated cluster consensus sequences and their best mapping
location on the IGH CHM1 reference
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Figure S2: Related to Section 2.3. Histogram of sequence similarity between GRCh37 simulated cluster consensus sequences and their best
mapping location on the IGH GRCh37 reference

Figure S3: Related to Section 2.3. Histogram of sequence similarity between the CHM1 + GRCh37 simulated cluster consensus sequences and
their best mapping location on the IGH CHM1 or IGH GRCh37 reference
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Figure S4: Related to Section 2.3. Histogram of sequence similarity between the CHM1 cluster consensus sequences and their best mapping
location on the IGH CHM1 reference
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S1.2. Investigation into False Positive Allele Calls Figures, related to Section 2.4

Figure S5: Related to Section 2.4. Comparing sequence similarity between TP and FP calls for the simulated CHM1 sample.

Figure S6: Related to Section 2.4. Comparing sequence similarity between TP and FP calls for the simulated GRCh37 sample.
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Figure S7: Related to Section 2.4. Comparing sequence similarity between TP and FP calls for the simulated CHM1+GRCh37 diploid sample.

Figure S8: Related to Section 2.4. Comparing sequence similarity between TP and FP calls for the WGS CHM1 sample.
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S2. Transparent Methods

S2.1. Algorithmic Foundations
Our goal in this paper is selecting a set of alleles that best describes a set of reads from the IGHV region. The

principal challenge lies in deciding what represents the best selection. The complexity of the problem depends on the
number and heterogeneity of allele candidates. There are two key considerations that need to feature in evaluating a
potential solution:

1. The read sequences must be similar to their matched allele as well as to each other, as much as possible.

2. The number of reads assigned to an allele must match the expected read coverage.

Both these features are quantitative and their linear combination can be used as an error function to describe the
quality of an assignment of reads to alleles in the context of what we call the Allele Assignment Problem, which we
formally define as follows.

Definition: Allele Assignment Problem (AAP). Given a set of input reads R = {1, ..., n}, and a set of candidate alleles
A = {a1, ..., am} as the input, consider, for any subset of reads si ✓ R and an allele a j, a function f (si, a j) describing the
error corresponding to the assignment of si to allele a j. The Allele Assignment Problem asks to partition R into non-
intersecting subsets si and assign each subset si to one allele a j such that

P
i f (si, a j) is minimized. More specifically,

given S , the set of all 2m � 1 non-empty subsets of R, consider the set of all possible assignments between each si 2 S
and each a j 2 A with weight f (si, a j). Let xi, j be a binary variable which takes value 1 if si is assigned to a j and is 0
otherwise. The allele assignment problem thus asks to determine the values of xi, j that minimize the objective

X

si2S ,a j2A
xi, j f (si, a j)

subject to the constraint that
S
8xi, j=1

si = R 1. As such, AAP modifies the well known many-to-one assignment problem

(Pentico, 2007) in the following manner: (i) AAP does not have the constraint that each allele a j needs to be assigned
a non-empty subset si, nor does it have the constraint that each subset si is assigned to a distinct allele a j, and (ii)
the cost of assigning a read to an allele depends on the other reads assigned to the same allele. Note that any error
function f that captures the features summarized above leads to a computationally di�cult combinatorial optimization
problem; as a result we first greedily establish some read to allele assignments through a number of distinct steps so
as to reduce the size of the eventual allele assignment problem we solve.

S2.2. Overview of the ImmunoTyper Approach
ImmunoTyper aims to solve the Allele Assignment Problem (AAP) through which it can identify all alleles of the

IGHV genes and their respective copy numbers.2 For that it follows a number of distinct steps as described below.

1. IGHV-containing Read Identification and Subread Extraction
Reads relevant to the IGH region are identified by mapping to the GRCh38 reference. Reads originating from
possible novel IGH sequence are identified by mapping the unmapped reads to the IGHV allele database. IGHV
sequences are identified by mapping all extracted reads to the IGHV allele database, and subsequences contain-
ing the coding region and flanking sequence, dubbed subreads, are extracted.

2. Mapping-based Clustering
Subreads are mapped to the IGHV allele database, and then are greedily assigned to their best mapped allele
under the conditions that (i) the mapping is unambiguous and (ii) the number of assigned reads for any given
allele is su�ciently close to the estimated read coverage. (Read coverage is estimated using high confidence
allele mappings and the provided sequence coverage.) Subreads not meeting these criteria are passed to the next
step.

1in certain applications, with the additional constraint that (xi, j = 1)! (xi0 , j = 0)
2Note that ImmunoTyper is currently tailored for V gene analysis even though it can easily be extended to perform D or J gene analysis or could

be generalized to other multi-copy genes as well.
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3. Allele assignment for Ambiguous Subreads
The set of ambiguous subreads (those which could not be assigned to a single allele unambiguously) are pro-
cessed in three stages:

a. Super-cluster Building
In order to reduce the solution space, we partition the allele assignment problem on ambiguous subreads
into smaller, independent sub-problems. This is achieved by clustering subreads based on sequence simi-
larity, into super-clusters, each corresponding to a small set of alleles that share high sequence similarity.

b. Super-cluster Breaking
For each super-cluster, the ILP formulation for AAP is solved independently as follows. First, candidate
alleles are identified by mapping the super-cluster subreads to all IGHV alleles. Variants with respect to
the consensus sequence generated from all subreads are determined. Finally an ILP formulation for AAP
is solved using the commonly used Gurobi ILP package (Gurobi Optimization, 2018), to break each super-
cluster into smaller clusters of subreads, each representing a single copy of an IGHV gene or pseudogene.

c. Allele Calling
Each subread cluster is then assigned to an allele by mapping the consensus sequence of cluster subreads
against the IGHV allele database (implicitly reducing mapping errors that would be due to read error
biases).

ImmunoTyper additionally includes two independent subread filtering steps which are designed to remove sub-
reads that were mistakenly included in the analysis due to mapping errors in the subread extraction step. (See Supple-
mental Information S2.5.1 and S2.6.1 for details.)

Solving the Allele Assignment Problem, and ultimately IGHV genotyping in this multi-stage, optimization-based
approach o↵ers several advantages. First, by employing multiple distinct methods at di↵erent stages, we can reduce
the solution space and solve the problem more e�ciently. For example, the ’Mapping-based Clustering’ stage priori-
tizes speed, but only solves allele assignments for su�ciently distinct alleles. Second, by using two di↵erent methods
for allele assignment, we tailor the method to the di�culty of a given allele assignment. As a result, allele assign-
ment for IGHV sequences that are highly similar is solved using the optimization approach in ”Allele Assignment
for Ambiguous Subreads”, which is specifically designed to di↵erentiate highly similar sequences by considering
distinguishing variants on a nucleotide level.

S2.3. Allele Database
ImmunoTyper utilizes the complete set of human IGHV gene and pseudogene alleles as provided by the The

International Immunogenetics information system (IMGT:www.imgt.org (Lefranc, 2008)). However calls for alleles
that are shorter than 200bp, redundant or poorly defined are ignored. In addition, we have modified two pseudogene
sequences to avoid ambiguity in the database. See Supplemental Information S2.8 for a complete record of alleles
that are ignored or modified.

S2.4. IGHV-containing Read Identification and Subread Extraction
ImmunoTyper takes as input a BAM file representing a PacBio WGS mapping to the GRCh38 reference, as well

as the depth of coverage as a parameter. In order to extract relevant reads that contain IGHV sequences, ImmunoTyper
first extracts all reads with primary and supplementary mappings to the IGH region (chr14:105586437-106880844).
Second, all reads that are identified as being unmapped are also extracted.

S2.4.1. Subread Extraction
Extracted reads from both steps above are then mapped to the IGHV allele database. This is performed using

Minimap2 (Li, 2018) with increased sensitivity parameters (“-cx map-pb -k10 -w3 -N5”) to account for any novel
IGHV sequence that may not be represented in the database. Reads with no mapping are then discarded.

Non-overlapping mapping locations on every read are then identified as being IGHV sequences. A subread is
extracted for every IGHV sequence, using its best mapped allele. The subread contains the IGHV sequence along
with the adjacent 1000bp flanking sequence. A subread extraction is conditional on (1) The best mapping covering at
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Figure S9: Histogram of edit distance between each CHM1 IGHV allele and its most similar IGHV allele (with respect to edit distance) from the
complete database. Ambiguous mapping threshold is set to 6 (red line) as described in Supplemental Information S2.5.

least 90% of the target IGHV reference sequence. (2) Neither of the 1000bp flanking sequence being clipped by the
read ends. After all the valid IGHV-containing subreads are extracted, they are oriented so as to all be on the same
strand.

S2.5. Mapping-based Clustering
Despite the presence of highly similar and hard to di↵erentiate V genes (Luo et al., 2016) (see Figure 1 for

allele sequence similarity distribution), many IGHV (pesudo)genes have su�ciently distinct sequence composition to
allow for confident and unambiguous mapping results, even for error-prone long reads (see Supplemental Figure S9).
Thus ImmunoTyper initially identifies high-confidence assignment of subreads to alleles (again, provided that the
mapping is unambiguous and the coverage of the allele by the assigned subreads is close to the estimated coverage),
leading to the identification and accurately genotyping of >50% of the IGHV (pseudo)genes in the sample, resulting
in a significant reduction of the computational problem (i.e. of handling the subreads that could not be confidently
assigned to alleles).

More specifically, we identify high-confidence mappings among the subread-to-allele mappings returned by the
S2.4.1 step by sorting them according to the number of errors in the alignment, combined with the number of bases
in the reference sequence that are not included in the alignment, i.e.

error = NM + astart + (alength � aend)

where NM is the total number of mismatch and indel bases in the alignment, astart is the start of the alignment on
the reference allele, and therefore represents the number of bases in the reference allele that are not included in the
alignment, and alength � aend, represents the end positing of the alignment on the reference allele subtracted from the
total length of the reference allele - overall providing us the total number of reference allele bases not included in the
alignment.

Subreads are then assigned to their best-mapping allele, provided that mapping is unambiguous, i.e. if the second-
best mapping reference allele has at least 6 additional edit errors to the subread in comparison to the best-mapping
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reference allele. Subreads with an unambiguous mapping to one of the ignored alleles as described in Supplemental
Information S2.8 are discarded.

Since subreads are assigned to reference alleles based on mapping ambiguity (more specifically, a lack of mapping
ambiguity) and not sequence similarity, this approach for subread clustering may still produce a valid cluster from
subreads that originate from a novel (i.e. not in the Allele Database) IGHV (pseudo)gene, provided (i) the novel allele
is su�ciently similar to an existing allele in the Database to produce acceptable mappings, and (ii) the existing allele
is su�ciently distinct from all other alleles in the database so as to result in unambiguous mappings.3 Even though we
are not explicitly aiming to identify novel alleles, it is possible to generate the consensus sequence of each cluster of
subreads at this stage and compare it with the reference allele they are assigned to so as to identify any di↵erence in
the sequence composition (see Supplemental Information S2.7.4), allowing for subsequent identification of any novel
allele sequence.

Subreads that have ambiguous best-mapping loci are passed to the S2.6 step.

S2.5.1. Read coverage depth estimation
In order to confidently describe a cluster of subreads as one originating from a reference allele, it is not su�cient

that the subreads have unambiguous allele assignments; the number of subreads in the cluster must also be congruent
with the expected depth of coverage. In fact, depth of coverage could, in principle, be used to determine the copy
number of each allele. Unfortunately it is possible that the observed depth of coverage di↵ers from the actual sequenc-
ing depth due to natural fluctuations in sequencing coverage, or read dropout in the mapping process due to factors
such as sequencing error rate and repetitive DNA in the mapping locus.

To account for any potential divergence from the actual sequencing depth, ImmunoTyper uses the results from
subread mapping-based clustering to calculate a read depth statistic in order to ensure that the expected coverage is
empirically derived from the data. To calculate the updated sequencing depth, clusters  50% of the user-provided
actual sequence depth are considered unlikely to be representative of an actual allele in the sample and are not
considered, as are clusters >150% of the actual sequence depth, as these are likely to originate from alleles with
multiple copies. ImmunoTyper then calculates the empirical read coverage as the median coverage of the remaining
clusters.

S2.5.2. Cluster Filtering
In order to ensure that S2.5 step provides only high-confidence results, clusters are finally filtered based on the

newly calculated empirical read coverage value. Clusters with coverage  85% of this value are discarded, and their
subreads are passed to the S2.6 step. This step primarily eliminates allele assignments whose lower concordance with
the expected depth are deemed lower-confidence. This step would also filter any subreads that do not contain true
IGHV sequences, but were incorrectly extracted in S2.4 step due to chance sequence error. These subreads can be
discarded later in the subread filtering steps explained in Supplemental Information S2.6. After the completion of all
the filtering, the remaining subread clusters and their assigned reference alleles are then called with a copy number
estimated to be the integral multiple of the empirical read coverage that is closest to the size of the cluster.

S2.6. Super-cluster Building
The subreads that could not be assigned in S2.5 step require a more refined approach. ImmunoTyper utilizes a

second clustering approach for these more di�cult cases, considering both the coding region of the V genes, as well
as the adjacent non-coding flanking regions - of length 1000bp .

Variants present in the non-coding flanking regions have the potential to aid subread di↵erentiation; unfortunately
distinguishing non-coding variants from sequencing errors is a major challenge. Reference-guided approaches are not
possible here as there is no non-coding reference sequence/variant database available. This implies that variants must
be identified through subread-to-subread comparison. Additionally, due to the high sequencing error rate of long read
(PacBio) data, there is necessarily a large number of errors present in the subreads associated with the full 2000bp
flanking sequence. The high error rate, combined with the lack of non-coding references and the limited utility of

3Note that if this reference allele from is also present in the dataset with subreads originating from it, its coverage will be close to an integral
multiple of the overall expected coverage.
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coding reference alleles may result in allele asssignments with a low signal-to-noise ratio. Finally, there may be
thousands of subreads originating from dozens of alleles which need to be processed in this stage, implying that any
method with subread-to-subread comparisons will have a large solution space.

In order to reduce the solution space of the implied problem and improve the signal-to-noise ratio, ImmunoTyper
first performs a rough clustering based on a subread-to-subread sequence similarity graph as follows. Subreads are
first aligned to each other (we have used Minimap2 (Li, 2018) (with the “-cx ava-pb -k14 -w3” options to increase
sensitivity). A graph is then constructed by creating a node for each subread r, and creating an edge between r and
each subread r0 provided the two subreads align well with a weight equal to the normalized error metric similar to that
used in S2.5 step.

weight(r, r0) =

2NM + (rstart + (rlength � rend)) + (r0start + (r0length � r0end))

rlength + r0length

Here NM is the total number of mismatched and indel bases in the alignment, rstart is the start of the alignment on
r, and therefore the length of the prefix of r not included in the alignment and rlength � rend is the length of the su�x of
r not included in the alignment. Corresponding definitions apply for r0. Finally the error is normalized by the sum of
the lengths of r, r0.

In order to ensure precision (and compensate for the increased sensitivity parameters used with Minimap2) we
only maintain edges with weight  0.3 - the rest are deleted. Then, any node with degree 0 and its associated subread
is discarded so as to eliminate subreads not su�ciently similar to others because they do not originate from the IGHV
region but nevertheless were extracted in S2.4 step due to chance sequencing or mapping errors.

The resulting subread distance graph can then be clustered using the Dense Subgraph Finder (DSF) tool (Safonova
et al., 2015). DSF is designed to solve the ’corrupted-clique problem’ as an approximation to the problem of clustering
subreads originating from the same allele that have been subject to sequencing errors. It finds dense subgraphs through
identification and merging of maximal cliques in the input graph. In order to ensure high precision clustering and
encourage clustering that is concordant with the calculated read depth, we use the “--min-fillin 0.95” parameter
and set the minimum cluster size at  75% of the empirical read coverage using the “--min clust size” parameter.
Any clusters that are smaller than the minimum are returned as single subreads and are passed to the next step.

S2.6.1. Unclustered Subread Merging
The output of DSF is a set of dense clusters of subreads, each cluster composed of subreads with similar sequence

composition. As each such cluster may include subreads that originate from more than one gene copy, we will call
them super-clusters.

In addition to the super-clusters, DSF also outputs some unclustered subreads which, due to sequence error,
are not su�ciently similar to other subreads to be assigned to a cluster, or were grouped into clusters smaller than
the minimum size as described above. In order to assign these unclustered subreads, ImmunoTyper merges them
with one of the available super-clusters. This is achieved by first constructing a representative consensus sequence
for each super-cluster (using SPOA v1.1.3 (Vaser et al., 2017), a SIMD-accelerated, partial-order alignment-based
consensus and Multiple Sequence Alignment (MSA) tool which has been shown to be particularly e↵ective and
aligning indel-rich long reads). Unclustered subreads are then mapped to these consensus sequences (again using
Minimap2 with “-cx map-pb -k10 -w3 -N5” options), and are added to the super-cluster with the best associated
mapping. Subreads without a good mapping are then discarded (this second filtering step is again for eliminating
subreads erroneously included in the analysis).

S2.7. LP Super-cluster Breaking
The subread super-clusters are broken into smaller clusters so that each individually represents a single allele

copy - by the use of a novel ILP approach. For that we first generate a likely set of candidate alleles (described
below), and then assign subreads from each super-cluster to candidate alleles using the ILP formulation (described in
Supplemental Information S2.7.1 and S2.7.2).
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Given a super-cluster, the set of relevant candidate alleles are determined using the subread-to-allele mappings
that were performed in S2.4 step. Specifically, we first generate a candidate allele pool that includes each allele that is
the best-mapping allele of at least one subread in the super-cluster. In order to reduce the candidate pool, we count the
number of subreads that have each allele as its best mapping; if a subread has 2 or more equally good best mapping
allele, it contributes to the count of each allele by 1. We now discard any allele if (i) its (best mapping) subread count
is not one of the top 10 counts among all candidate alleles, or (ii) its subread count is  50% of the empirical read
coverage.

S2.7.1. Identifying Allele-Defining Variants
In order to distinguish candidate alleles from one another, we generate a set of allele-defining variants for each

candidate allele. This is achieve by first obtaining the consensus sequence of the subreads in the super-cluster and then
comparing each candidate allele with the consensus sequence.4 We then generate the MSA (again obtained by the use
of the POA method) of the candidate allele sequences and the consensus sequence. This allows us to identify a set of
candidate allele-defining variants. Any of these variants that are shared among all candidate alleles are then discarded
since they do not provide information for discriminating alleles; the remaining variants form our allele-defining variant
set for the super-cluster.

Each subread is now compared against the consensus sequence using the subread MSA described above, to identify
the allele-defining variants it includes. Then, the candidate variants are filtered based on their subread support: if the
number of subreads including a variant  0.9· empirical read coverage, it is discarded - since it is likely a result of
sequencing errors. Similarly if a variant has � 2· empirical read coverage, subread support it is discarded as well -
since it is not going to be very helpful in distinguishing alleles supported by the super-cluster.

S2.7.2. ILP Formulation
Each subread super-cluster can now be partitioned into distinct clusters, each corresponding to a single allele,

using a ILP formulation defined below. Note that in order to allow for multiple copies of each candidate allele,
the candidate allele set (and the associated allele-defining variants) is duplicated by the max-copy-number value, a
user-defined parameter with a default value of 4.

Given a super-cluster C, let a j denote the j-th candidate allele and ri denote the i-th subread associated with C.
Variables

Let Dj
i =

8>><
>>:

1 if ri has been assigned to a j

0 otherwise

Let � j =

8>><
>>:

1 if a j is called for C
0 if a j is not called for C

Constraints

For all ri,
X

a j

D j
i = 1 (1)

For all a j,
X

ri

D j
i � empirical read coverage · 0.9 (2)

For all ri, a j, � j � Dj
i (3)

4ImmunoTyper uses the POA method (Lee et al., 2002) that implements the partial order alignment algorithm introduced there. POA is slower
than SPOA but it generates a higher quality consensus sequence of the subreads and as well as their implied MSA.
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min num 
X

a j

� j  max num (4)

here min num ⇡ size(C)/(empirical read coverage ⇤ 0.9) and max num ⇡ size(C)/(empirical read coverage ⇤ 1.1)
where ⇡ rounds the value to the closest integer.
(The above interval constraint allows each super-cluster to deviate from the empirical read coverage.)
Objective
Minimize: X

a j

↵ ⇤ code var cov(a j) + non code var cov(a j)

where:
code var cov(a j) =

X

vk2VC

8>>>>><
>>>>>:

����
⇣P

ri if vk2ri D j
i

⌘
�
⇣
� j ⇤ expcov

⌘���� if vk 2 a j

⇣P
ri if vk2ri

⌘
Dj

i otherwise

non code var cov(a j) =

X

vk

�������

0
BBBBBB@
X

ri if vk2ri

D j
i

1
CCCCCCA �
⇣
� j ⇤ expcov

⌘
�������

Here, given the set of all variants V for all reads and candidate alleles, vk denotes the k-th variant in V and VC ✓ V
denotes the set of all allele defining variants for all candidate alleles. Additionally, ↵ is a user defined parameter with
default value 1000 - optimized for simulated data; code var cov(a j) is the variant coverage error for allele-defining
variants in a j and non code var cov(a j) is the variant coverage error for non-coding variants for subreads assigned to
a j.

S2.7.3. Cluster merging and re-breaking
A super-cluster may fail to be partitioned so as to be assigned to distinct alleles in the following two cases: (1)

there is no qualifying candidate allele, or (2) the ILP infeasible. In both cases we deduce that we have a poor-quality
clustering, discard the super-cluster and assign each of its subreads to its best-mapping valid cluster as follows. We
first map the subread to the consensus sequence obtained for every cluster from S2.7 step (using SPOA). Any such
cluster with a newly mapped subread is then merged with all its sibling clusters to re-create the original subread
super-cluster - additionally containing one or more newly mapped subreads. The super-cluster is then re-partitioned
using a new instance of the ILP. This iterative process is repeated until no such erroneous cluster is obtained by the
ILP formulation (the user may put an upper bound on the number of attempts, which is set to 3 by default).

S2.7.4. Allele Calling
In the final step, each subread cluster, obtained by partitioning a super-cluster, is assigned to an allele by first

generating its consensus sequence (using SPOA), and then mapping the consensus sequence to the allele reference
database as defined in Supplemental Section S2.3 with a copy number of one.5

5Any mapper including our own lordFAST (Haghshenas et al., 2018) or Minimap2 (Li, 2018) can be used here - however we have observed that
our non-standard mapping of long reads to short reference alleles works best with Blasr (Chaisson and Tesler, 2012) on simulated data.
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S2.8. Filtered IMGT Alleles
S2.9. Ignored Allele Calls

Alleles whose reference sequence shorter 200 bp are ignored. This includes the functional alleles:

Allele Length
3-72*02 165
4-39*04 196

And the following non-functional alleles:

(III)-44*01 21
(III)-44D*01 21
3-62*02 106
3-76*02 155
1-12*02 154
7-56*01 154
(III)-22-2*01 30
(III)-22-2D*01 30
(III)-5-1*01 99
(III)-67-2*01 99
(II)-40-1*01 77
(II)-67-1*01 139
(II)-46-1*01 147
(II)-1-1*01 182

Additionally, the following alleles were completely removed from the database:

• 1-69D*01 was removed because it is identical in coding sequence to IGHV1-69*01

• 3-30-52*01 was removed because it di↵ers from 3-30-2*01 by a 2bp truncation at the 3’ end

• 2-70*04 was removed because it di↵ers from 2-70D*04 by a 13bp 3’ truncation

• 3-42D*01 was removed because it di↵ers from 3-42*02 by a single bp truncation at the 5’ end

Pseudogene IGHV(II)-43-1D*01 was ignored as it di↵ers from IGHV(II)-43-1*01 by a single bp insertion, and
ImmunoTyper di↵erentiates alleles in LP Super-cluster Breaking using only SNPs. See below for a sequence compar-
ison:

IGHV_II_-43-1*01 TCTGGATTCCCCAACAGAACCAGTGCTTCCTGCTGGAGCTGGATCCATCAGCCCCCAGGG 60
IGHV_II_-43-1D*01 TCTGGATTCCCCAACAGAACCAGTGCTTCCTGCTGGAGCTGGATCCATCAGCCCCCAGGG 60

************************************************************

IGHV_II_-43-1*01 AAGGGA-TGGAGTGGGTCAGGTGCACAGGTCATGAAGGGAGCACAAATTCTAACCCACTC 119
IGHV_II_-43-1D*01 AAGGGACTGGAGTGGGTCAGGTGCACAGGTCATGAAGGGAGCACAAATTCTAACCCACTC 120

****** *****************************************************

IGHV_II_-43-1*01 CTCAAGAGTCCAGTCACCACCTCCAGATCTATGTCCAAAAACAGCTCTTCGTATGGCTGA 179
IGHV_II_-43-1D*01 CTCAAGAGTCCAGTCACCACCTCCAGATCTATGTCCAAAAACAGCTCTTCGTATGGCTGA 180

************************************************************

IGHV_II_-43-1*01 GTGACATTAGCAACAAGCACACAGCCATGT 209
IGHV_II_-43-1D*01 GTGACATTAGCAACAAGCACACAACCATGT 210
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Alleles belonging to either of the chr15 or chr16 orphons are also ignored:

IGHV3-42D*01IGHV1/OR15-1*01
IGHV1/OR15-1*02
IGHV1/OR15-1*03
IGHV1/OR15-1*04
IGHV1/OR15-2*01
IGHV1/OR15-2*02
IGHV1/OR15-2*03
IGHV1/OR15-3*01
IGHV1/OR15-3*02
IGHV1/OR15-3*03
IGHV1/OR15-4*01
IGHV1/OR15-5*01
IGHV1/OR15-5*02
IGHV1/OR15-6*01
IGHV1/OR15-6*02
IGHV1/OR15-9*01
IGHV1/OR16-1*01
IGHV1/OR16-2*01
IGHV1/OR16-3*01
IGHV1/OR16-4*01
IGHV1/OR16-4*02
IGHV1/OR21-1*01
IGHV2/OR16-5*01
IGHV3/OR15-7*01
IGHV3/OR15-7*02
IGHV3/OR15-7*03
IGHV3/OR15-7*04
IGHV3/OR15-7*05
IGHV3/OR16-10*01
IGHV3/OR16-10*02
IGHV3/OR16-10*03
IGHV3/OR16-11*01
IGHV3/OR16-12*01
IGHV3/OR16-13*01
IGHV3/OR16-14*01
IGHV3/OR16-15*01
IGHV3/OR16-15*02
IGHV3/OR16-16*01
IGHV3/OR16-6*01
IGHV3/OR16-6*02
IGHV3/OR16-7*01
IGHV3/OR16-7*02
IGHV3/OR16-7*03
IGHV3/OR16-8*01
IGHV3/OR16-8*02
IGHV3/OR16-9*01
IGHV4/OR15-8*01
IGHV4/OR15-8*02
IGHV4/OR15-8*03

All pseudogenes that are classified as ’non-localized’ are also ignored:
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IGHV1-NL1*01
IGHV3-NL1*01
IGHV7-NL1*01
IGHV7-NL1*02
IGHV7-NL1*03
IGHV7-NL1*04
IGHV7-NL1*05

Alleles belonging to pseudogene IGHV(II)-20-1 are ignored due to a lack of reference sequences in the IMGT
database, despite IGHV(II)-20-1*02 being listed in the CHM1 annotation.

S2.9.1. Allele reference sequence modifications
Pseudogene IGHV(II)-30-41*01 has been modified by removing the 3’ sequence that di↵erentiates it from the

IGHV(II)-28-1 alleles. While both the IGHV(II)-28-1*03 and IGHV(II)-28-1*01 sequences from CHM1 and GRCh37
respectively contain this 3’ sequence, indicating the IGHV(II)-28-1 references should be modified, we decided that
modifying a single reference sequence was more parsimonious and therefore suitable. See below for alignment of
relevant alleles and sample sequences.

IGHV_II_-28-1*03_hg38/969-2245 CATCAACAACTATGTTTCTCAGCACACTTCTGGCTTGAGACGTCCTTGCA 1019
IGHV_II_-28-1*03_reference/1-283 ---CAACAACTATGTTTCTCAGCACACTTCTGGCTTGAGACGTCCTTGCA 1016
IGHV_II_-30-41*01_reference/1-299 ---CAACAACTATGTTTCTCAGCACACTTCTGGCTTGAGACGTCCTTGCA 1016
IGHV_II_-28-1*02_reference/1-253 ---------------------------------CTTGAGACGTCCTTGCA 986
IGHV_II_-28-1*01_reference/1-253 -------------------------------GGCTTGAGAC-TCCTTGCA 987
IGHVII-28-1*01_hg37/970-2241 CATCAACAACTATGTTTCTCAGCACACTTCTGGCTTGAGAC-TCCTTGCA 1018

******** ********

IGHV_II_-28-1*03_hg38/969-2245 GACCCTCTCCCTCACCTGCACTGTCTCTGGATTCCCCATCATAACCAGTG 1069
IGHV_II_-28-1*03_reference/1-283 GACCCTCTCCCTCACCTGCACTGTCTCTGGATTCCCCATCATAACCAGTG 1066
IGHV_II_-30-41*01_reference/1-299 GACCCTCTCCCTCACCTGCACTGTCTCTGGATTCCCCATCATAACCAGTG 1066
IGHV_II_-28-1*02_reference/1-253 GACCCTCTCCCTCACCTGCACTGTCTCTGGATTCCCCATCATAACCAGTG 1036
IGHV_II_-28-1*01_reference/1-253 GACCCTCTCC-TCACCTGCACTGTCTCTGGATTCCCCATCATAACCAGTG 1036
IGHVII-28-1*01_hg37/970-2241 GACCCTCTCC-TCACCTGCACTGTCTCTGGATTCCCCATCATAACCAGTG 1067

********** ***************************************

IGHV_II_-28-1*03_hg38/969-2245 TGTCCTGCTAGAATTGTATCTGCTTGCCCCTAGAAGATGGACAGGAGTGG 1119
IGHV_II_-28-1*03_reference/1-283 TGTCCTGCTAGAATTGTATCTGCTTGCCCCTAGAAGATGGACAGGAGTGG 1116
IGHV_II_-30-41*01_reference/1-299 TTTCCTGCTAGAATTGTATCTGCTTGCCCCTAGAAGATGGACAGGAGTGG 1116
IGHV_II_-28-1*02_reference/1-253 TTTCCTGCTAGAATTGTATCTGCTTGCCCCTAGAAGATGGACAGGAGTGG 1086
IGHV_II_-28-1*01_reference/1-253 TTTCCTGCTAGAATTGTATCTGCTTGCCCCTAGAAGATGGACAGGAGTGG 1086
IGHVII-28-1*01_hg37/970-2241 TTTCCTGCTAGAATTGTATCTGCTTGCCCCTAGAAGATGGACAGGAGTGG 1117

* ************************************************

IGHV_II_-28-1*03_hg38/969-2245 ATCAGGTGCATGGGTTGTGAAGGGAGCACAAATTACAACCCACTGCTCAA 1169
IGHV_II_-28-1*03_reference/1-283 ATCAGGTGCATGGGTTGTGAAGGGAGCACAAATTACAACCCACTGCTCAA 1166
IGHV_II_-30-41*01_reference/1-299 ATCAGGTGCATGGGTTGTGAAGGGAGCACAAATTACAACCCACTGCTCAA 1166
IGHV_II_-28-1*02_reference/1-253 ATCAGGTGCATGGGTTGTGAAGGGAGCACAAATTACAACCCACTGCTCAA 1136
IGHV_II_-28-1*01_reference/1-253 ATCAGGTGCATGGGTTGTGAAGGGAGCACAAATTACAACCCACTGCTCAA 1136
IGHVII-28-1*01_hg37/970-2241 ATCAGGTGCATGGGTTGTGAAGGGAGCACAAATTACAACCCACTGCTCAA 1167

**************************************************

IGHV_II_-28-1*03_hg38/969-2245 GAGTCCATATCCAGATCCAAGAAACAGTTCTTACAGCTGAGCTCTGTGCC 1219
IGHV_II_-28-1*03_reference/1-283 GAGTCCATATCCAGATCCAAGAAACAGTTCTTACAGCTGAGCTCTGTGCC 1216
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IGHV_II_-30-41*01_reference/1-299 GAGTCCATATCCAGATCCAAGAAACAGTTCTTACAGCTGAGCTCTGTGCC 1216
IGHV_II_-28-1*02_reference/1-253 GAGTCCATATCCAGATCCAAGAAACAGTTCTTACAGCTGAGCTCTGTGCC 1186
IGHV_II_-28-1*01_reference/1-253 GAGTCCATATCCAGATCCAAGAAACAGTTCTTACAGCTGAGCTCTGTGCC 1186
IGHVII-28-1*01_hg37/970-2241 GAGTCCATATCCAGATCCAAGAAACAGTTCTTACAGCTGAGCTCTGTGCC 1217

**************************************************

IGHV_II_-28-1*03_hg38/969-2245 CAGTGAACACACAACTACGCATTTTTAAGCAAAAGACGCAATGAAGGGCC 1269
IGHV_II_-28-1*03_reference/1-283 CAGTGAACACACAACTACGCATTTTTAAGCAAAAGA-------------- 1252
IGHV_II_-30-41*01_reference/1-299 CAGTGAACACACAACTACGCATTTTTAAGCAAAAGACGCAATGAAGGGCC 1266
IGHV_II_-28-1*02_reference/1-253 CAGTGAACACACAACTACGCATTTTTAAGCAAAAGA-------------- 1222
IGHV_II_-28-1*01_reference/1-253 CAGTGAACACACAACTACGCATTTTTAAGCAAAAGA-------------- 1222
IGHVII-28-1*01_hg37/970-2241 CAGTGAACACACAACTACGCATTTTTAAGCAAAAGACGCAATGAAGGGCC 1267

************************************

IGHV_II_-28-1*03_hg38/969-2245 TTCATTGT 1277
IGHV_II_-28-1*03_reference/1-283 --------
IGHV_II_-30-41*01_reference/1-299 TT------ 1268
IGHV_II_-28-1*02_reference/1-253 --------
IGHV_II_-28-1*01_reference/1-253 --------
IGHVII-28-1*01_hg37/970-2241 TTCATTGT 1275

Similarly, pseudogene IGHV(III)-25-1*02 has been modified by removing the 3’ insertion relative to IGHV(III)-
25-1*01. This was performed for the same reasons as above; the 3’ insertion is present in the GRCh37 copy of
IGHV(III)-25-1*01. Sequence alignment is provided below:

IGHV_III_-25-1*01_reference/1-295 --GAAGTTCACCGGGGGAGACAGAGGAAATAACGGTGCAGCCGGGGGCTA 1057
IGHVIII-25-1*01_hg37/1010-2306 GTGAAGTTCACCGGGGGAGACAGAGGAAATAACGGTGCAGCCGGGGGCTA 1059
IGHV_III_-25-1*02_reference/1-344 --GAAGTTCACCGGGGGAGACAGAGGAAATAACGGTGCAGCCGGGGGCTA 1057

************************************************

IGHV_III_-25-1*01_reference/1-295 TCTGAGTCTCTCCTCCAAAGACTCTGGATTCACCTTCACTGATTGCAGCA 1107
IGHVIII-25-1*01_hg37/1010-2306 TCTGAGTCTCTCCTCCAAAGACTCTGGATTCACCTTCACTGATTGCAGCA 1109
IGHV_III_-25-1*02_reference/1-344 TCTGAGTCTCTCCTGCAAAGACTCTGGATTCACCTTCACTGATTGCAGCA 1107

************** ***********************************

IGHV_III_-25-1*01_reference/1-295 TAAGCTTGGTCCAGCAAGCTCCAGGACCAGGGTTGATGTGGGCAGCAACA 1157
IGHVIII-25-1*01_hg37/1010-2306 TAAGCTTGGTCCAGCAAGCTCCAGGACCAGGGTTGATGTGGGCAGCAACA 1159
IGHV_III_-25-1*02_reference/1-344 TAAGCTTGGTCCAGCAAGCTCCAGGACCAGGGTTGATGTGGGCAGCAACA 1157

**************************************************

IGHV_III_-25-1*01_reference/1-295 GGGAGAAATTGAAGAGGAAGCTCTCAGTGGTGCCCTCCATGAATACAAAG 1207
IGHVIII-25-1*01_hg37/1010-2306 GGGAGAAATTGAAGAGGAAGCTCTCAGTGGTGCCCTCCATGAATACAAAG 1209
IGHV_III_-25-1*02_reference/1-344 GGGAGAAATTGAAGAGGAAGCTCTCAGTGGTGCCCTCCATGAATACAAAG 1207

**************************************************

IGHV_III_-25-1*01_reference/1-295 AATCTTCACAGTCCCCAGGACACCCTTACGTGC----------------- 1240
IGHVIII-25-1*01_hg37/1010-2306 AATCTTCACAGTCCCCAGGACACCCTTACGTGCATGGTCTCACTGATATC 1259
IGHV_III_-25-1*02_reference/1-344 AATCTTCACAGTCCCCAGGACACCCTTACGTGCATGGTCTCACTGATATC 1257

*********************************
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IGHV_III_-25-1*01_reference/1-295 --------------------------------------
IGHVIII-25-1*01_hg37/1010-2306 TTTACTTCTTTTATCACTTTTGTTATGTAAATCACAAT 1297
IGHV_III_-25-1*02_reference/1-344 TTTACTTCCTTTATCACTTTTGTTATGTAAAT------ 1289

17


	ISCI100883_proof_v23i3.pdf
	Genotyping and Copy Number Analysis of Immunoglobin Heavy Chain Variable Genes Using Long Reads
	Introduction
	Results
	Simulated Data
	WGS Data with Validation
	Sequence Recovery and Reference Mapping
	Investigation into False-Positive Allele Calls
	Identification of Sequence Differences between GRCh37 and CHM1 References
	CNV Analysis

	Discussion
	Limitations of the Study

	Methods
	Data and Code Availability
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References



