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Abstract

Machine learning algorithms are becoming increasingly popular for decoding psychological

constructs based on neural data. However, as a step towards bridging the gap between the-

ory-driven cognitive neuroscience and data-driven decoding approaches, there is a need for

methods that allow to interpret trained decoding models. The present study demonstrates

grouped model reliance as a model-agnostic permutation-based approach to this problem.

Grouped model reliance indicates the extent to which a trained model relies on conceptually

related groups of variables, such as frequency bands or regions of interest in electroenceph-

alographic (EEG) data. As a case study to demonstrate the method, random forest and sup-

port vector machine models were trained on within-participant single-trial EEG data from a

Sternberg working memory task. Participants were asked to memorize a sequence of digits

(0–9), varying randomly in length between one, four and seven digits, where EEG record-

ings for working memory load estimation were taken from a 3-second retention interval. The

present results confirm previous findings insofar as both random forest and support vector

machine models relied on alpha-band activity in most subjects. However, as revealed by fur-

ther analyses, patterns in frequency and topography varied considerably between individu-

als, pointing to more pronounced inter-individual differences than previously reported.

Author summary

Modern machine learning algorithms currently receive considerable attention for their

predictive power in neural decoding applications. However, there is a need for methods

that make such predictive models interpretable. In the present work, we address the prob-

lem of assessing which aspects of the input data a trained model relies upon to make pre-

dictions. We demonstrate the use of grouped model reliance as a generally applicable

method for interpreting neural decoding models. Illustrating the method on a case study,

we employed an experimental design in which a comparably small number of participants

(10) completed a large number of trials (972) over three electroencephalography (EEG)

recording sessions from a Sternberg working memory task. Trained decoding models

consistently relied on predictor variables from the alpha frequency band, which is in line
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with existing research on the relationship between neural oscillations and working mem-

ory. However, our analyses also indicate large inter-individual variability with respect to

the relation between activity patterns and working memory load in frequency and topog-

raphy. We argue that grouped model reliance provides a useful tool to better understand

the workings of (sometimes otherwise black box) decoding models.

Introduction

The application of statistical algorithms to neural data is becoming an increasingly popular

tool for explaining the link between biology and psychology [1, 2]. Supervised learning algo-

rithms, in particular methods such as random forest [3] and support vector machine (SVM)

[4] algorithms, are frequently utilized to decode various psychological phenomena, related to

functions such as perception, attention, and memory, with promising success [5–9]. However,

while these algorithms are optimized to provide accurate predictions, their interpretability is

often not given.

While encoding models aim to model the brain’s response to stimuli, decoding models can

be used to efficiently assess the presence of decodable information in a certain brain area [10].

In the simple case a of linear models and under some assumptions, a transformation of the

weights allows a decoding model to be interpreted as an encoding model [11]. As more com-

plex models cannot be interpreted as directly, however, there is a need for methods that allow

researchers to understand what drives those model’s predictions [9, 10, 12]. One application

where such interpretations are required is in the case of exploratory data-driven analyses, to

gain an insight into which parts of the data an accurate model uses to guide a closer examina-

tion of these relationships. Furthermore, having developed a predictive model, researchers

may be interested in assessing the plausibility of a trained model in relation to existing empiri-

cal research and theoretical work or for troubleshooting unexpected predictions. It should be

noted that care has to be taken when trying to interpret decoding models as “reading the code

of the brain”, since a decoding model alone does not provide a computational account of infor-

mation processing in the brain [10].

The present approach focuses on model-agnostic interpretations, targeting the question

of which parts of the data a trained decoding model relies upon to make predictions. Here,

model-agnosticism refers to an interpretation that is independent of the particular class of

models being used [13]. For instance, random forest and SVM models are based on different

principles (ensembles of decision trees for random forests and optimally separating hyper-

planes for SVMs). Rather than interpreting models in terms of their parameters, which may

not be easily comparable in the case of different model classes, a model-agnostic method allows

to interpret the influence of a predictor variable in any supervised model. Note that we use the

term predictor variable, or when the context is clear just variable, instead of feature here to stay

consistent with conventions in cognitive neuroscience rather than machine learning.

Usually, the importance of predictors in a multivariate model is assessed for individual pre-

dictors, such as partial regression coefficients in a linear regression model, Gini importance,

or permutation importance in random forest algorithms [3]. However, as variables extracted

from electroencephalography (EEG) recordings or neuroimaging methods are often inter-cor-

related, questions about the importance of predictor variables rather concern sets of conceptu-

ally related than individual variables [14, 15]. For instance, when assessing the importance of

certain topographical or spectral components for predicting a psychological phenomenon,

neural activity may be shared across multiple brain regions or recording sites. The acquisition
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resolution of these components is usually on a more detailed level than is used for interpreta-

tion [16]. Hence, a method that assesses the importance of groups (or subsets) of variables pro-

vides researchers with more meaningful “chunks” for interpretation [13].

A practical approach for assessing the reliance on variables is given by permutation impor-

tance, used initially as a measure for the importance of variables in the random forest algo-

rithm [3]. The importance of a variable is quantified by the decrease in predictive performance

when that predictor variable is randomly permuted, essentially “nulling” the association

between the variable and the outcome. An intuitive terminology for this idea for any learning

algorithm is given by model reliance, as proposed by Fisher et al. [17]. Crucially for the present

problem, the method of permuting predictor variables can be adapted to permuting groups of

conceptually (or statistically) related variables (such as frequency bands, as opposed to single

frequencies) to measure their aggregate impact on predictive performance, as proposed by

Gregorutti et al. [18]. This is required as the reliance on a group of variables is not necessarily

equivalent to the sum of individual model reliances [18]. To emphasize that the interpretation

of a variable’s (or group of variables’) influence in a model’s prediction is based on the particu-

lar model being used, the term model reliance is adopted in this work, following Fisher et al.

[17]. By design, this approach treats the model as a black box, thereby making it a model

agnostic method that can be used for any supervised learning algorithm.

In order to demonstrate the use of grouped model reliance on a well-established construct

in cognitive neuroscience, random forest and SVM models are employed in this work to

decode working memory load based on single-trial EEG data, collected in multiple experimen-

tal sessions per participant. Consequently, grouped model reliance is used to interpret models

in terms of conceptually meaningful groups of predictors from a single-subject perspective.

Working memory is a widely studied psychological construct and refers to the temporary

retention of information in the absence of sensory input, needed for a subsequent behavioral

outcome. Neuronal oscillations are hypothesized to be involved in working memory by

generating a temporal structure for the brain [19, 20]. Amplitude modulation of neuronal

oscillations, in particular in the alpha frequency bands (8-12 Hz), is a robust finding in psycho-

physiological research [21–23]. It is hypothesized that these power modulations aid the func-

tional brain architecture during retention, protect against interference and thereby manifest in

relevant behavioral outcomes, as measured by accuracy and reaction time [24, 25]. Thus, the

scaling of alpha power with working memory load is considered an essential neural manifesta-

tion of the psychological construct of working memory. Apart from alpha activity, oscillatory

activity in the theta (5-7 Hz) and gamma (60-80 Hz) frequency bands have also been linked to

working memory. It has been proposed that theta-band oscillations underlie the organization

of sequentially ordered working memory items, whereas gamma-band oscillations are thought

to contribute to the maintenance of working memory information [24, 26–30].

Although oscillatory activity from different frequency bands have been established as corre-

lates of working memory across individuals, some studies suggest that inter-subject variability

may be high. This variability, however, can take different forms. For instance, working mem-

ory load-dependent shifts in alpha peak frequency have been shown to vary between individu-

als with low versus high working memory capacity [31]. There is also evidence for individual

differences in the exact frequency range in which the alpha-rhythm is modulated during the

exertion of working memory [32]. In comparison, for theta activity, power modulations have

been reported to vary substantially between subjects [33–35] as well as between trials of indi-

vidual subjects [36]. There is no consensus, however, on the determinants of this inter-subject

variability. As a way forward, employing single trial EEG analysis as well as assessing decoding

models on a single-subject level may be able to provide complementary information to that of

group-level statistics [37–40].
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In the present study, the Sternberg working memory task is used [41, 42]. Compared to

other paradigms, this task has the advantage that the periods of encoding, retaining and recog-

nizing stimuli are all temporally separated [24, 25]. Subjects are first presented with a list of

items, the number of which determines the working memory load. Following a retention inter-

val of several seconds, a probe item is presented, and subjects indicate the membership of this

item to the previously presented list.

In the present study, using single-trial EEG data from a Sternberg task, random forest and

SVM models are trained on individual subjects to perform working memory load estimation

based on power spectra from the retention period. Consequently, grouped model reliance is

used to interpret the trained models. In order to put the interpretations of decoding models

into the context of more traditional methods from cognitive neuroscience, cluster-based

statistics are employed to further probe the relationship between working memory and neural

oscillations.

Materials and methods

Participants

Eleven subjects were recruited by advertisement at the University of Konstanz (M = 24.5 years,

SD = 4.8; 50% female) and reported no history of neurological and/or psychiatric disorders.

One subject was excluded from the analysis, as data acquisition was interrupted during the sec-

ond session of the experiment.

Ethics statement

All participants gave written informed consent in accordance with the Declaration of Helsinki

prior to participation. The study was approved by the local ethics committee.

Stimulus material and procedure

Participants performed a Sternberg task [41] with alternating levels of difficulty (1, 4, or 7

items to be kept in memory) while EEG was recorded. The data of each participant were

collected on three different sessions, which were, on average, M = 4.4 days (SD = 2.7) apart.

Written informed consent was obtained from each subject prior to each session. One session

comprised four practice trials and six main blocks, each consisting of 54 trials (lasting approxi-

mately nine minutes). In between blocks, participants were allowed to rest for a maximum of

three minutes. Each participant completed 324 trials per session, resulting in 972 trials in total.

Participants were asked to memorize a sequence of digits (0–9), varying randomly in length

between one, four or seven different digits. After an initial central fixation interval of 500 ms,

the sequence of digits was presented serially. Each digit was presented for 1200 ms, followed by

a blank screen for 1000 ms before the presentation of the next digit. After a 3000 ms retention

interval (blank screen), a probe stimulus was presented in the center of the screen for 5000 ms.

Participants were instructed to indicate whether the probe was part of the previously presented

sequence. The right arrow key on a standard keyboard indicated a “yes” and the left arrow key

a “no” response. Participants’ responses were followed by positive or negative feedback for 500

ms. Finally, a blank screen was presented for 1000 ms, after which the next trial began. Within

each block, there were nine positive trials (probe part of the study list) and nine negative trials

(probe not in the sequence) for each sequence length. Trials were presented in random order

with respect to the sequence length.

Interpreting neural decoding models using grouped model reliance

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007148 January 6, 2020 4 / 17

https://doi.org/10.1371/journal.pcbi.1007148


Data acquisition

EEG was recorded with an ANT Neuro 128-electrode system (www.ant-neuro.com) with

Ag/AgCl electrodes placed on a Waveguard cap with an equidistant hexagonal layout. Signals

were sampled at 512 Hz, and electrode impedance was kept below 20 kOhm. The recording

was DC and referenced to a common average reference.

Preprocessing

Data analysis was performed with the MATLAB-based FieldTrip toolbox [43]. For each partic-

ipant and channel, after demeaning and removing the linear trend across the session, indepen-

dent component analysis (ICA) [44] was used to remove variance associated with eye blinks

and cardiac activity. Increased noise in the electrodes closest to the ears (LM, LE1, LE2, RM,

RE1, RE2) in some participants led to the exclusion of these electrodes from all subsequent

analyses for all participants. All trials per session and condition were included. Spectral analy-

ses were conducted for each trial using a Fast Fourier Transformation (FFT) with a single Han-

ning taper for the retention interval of 3 sec. The predictor variables used for the classification

model covered the frequency bands (delta 1–4 Hz, theta 5–7 Hz, alpha 8–12 Hz, beta 13–20 Hz

and low gamma 21–40 Hz) in 1 Hz steps, for electrodes from nine regions of interest (ROI).

Hence, there were a total of 4880 predictor variables (40 frequencies for each of 122 elec-

trodes). ROI’s were left/central/right occipital, left/central/right central and left/central/right

frontal. The exact electrodes per group and a layout of their respective locations can be found

in Fig 1.

Decoding model training and evaluation

The random forest algorithm, a type of ensemble method, was used as the main model for all

decoding analyses [3]. This algorithm was chosen for its ability to perform multiclass classifica-

tion on a large number of possibly correlated and non-linearly associated variables [3]. The

number of trees in the forest was set to 5000 with all other hyperparameters set to default val-

ues. Additional analyses employed an SVM model [4] with a radial basis function (RBF) kernel

with the penalty term C set to 1. Classification accuracy was used as the performance metric

for all models. Hence, no distinction was made between misclassifying a load 1 trial as load 4

or 7, for instance.

As the classification task comprises three balanced classes (load 1, 4 and 7), chance level

accuracy corresponds to 33:33%. Models for each subject were trained and tested using strati-

fied and shuffled 10-fold cross-validation. Stratification ensures that the distribution of classes

is the same for each fold of the cross-validation procedure and can lead to more stable perfor-

mance estimates than standard k-fold cross validation [45]. Simulation studies indicate robust

performance for stratified k-fold cross-validation with k set to k = 10 [45], which is therefore

employed in the present analyses. The reported accuracy and model reliance values corre-

spond to the arithmetic means over all 10 folds of the cross-validation procedure. Single-trial

data from all 3 sessions and 6 blocks per session were pooled for each participant and used in

the cross-validation procedure.

In addition to the within-subject decoding models, between-subject analyses were carried

out using a random forest model. Here, models were trained in a 10-fold cross-validation

procedure, where the splits were given by individual participants. That is, each training fold

consists of all trials of all participants but one, whose trials provide the validation fold. All

decoding analyses were implemented in Python, making use of the scikit-learn [46] module.

Interpreting neural decoding models using grouped model reliance
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Model reliance

Model reliance scores for any particular predictor variable are defined here as the ratio of the

error obtained using a random permutation of that variable and the error obtained when

using the original predictor variables [17]. Note that it is also possible to define model reliance

as the difference in original and permuted error [17]. However, since decodability can differ

considerably between participants, the ratio was chosen here for comparability. As such, a

higher positive model reliance value for a predictor variable indicates that the model relies on

that variables more strongly to make predictions, whereas values towards zero indicate that

performance is not impacted by “nulling” the information contained in that variable. Negative

model reliance values can arise due to the random permutation, but large and consistent

negative values may indicate that performance rather improves when the information con-

tained in that variable is permuted [17]. In the present study, the interpretation of model reli-

ance outlined above still holds, but is generalised to groups of variables, rather than individual

variables.

Grouped model reliance is normalized in order to make differently sized groups of variables

comparable [18]. This follows the rationale that a large group of variables (such as the gamma-

Fig 1. Definition of ROI in terms of electrodes. Note that electrodes LM, LE1, LE2, RM, RE1 and RE2 were excluded

from the analyses.

https://doi.org/10.1371/journal.pcbi.1007148.g001
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band in the present study) is penalized for its size relative to a smaller group of variables (such

as the alpha-band). To this end, the model reliance score for a particular group of variables is

divided by the number of variables in that group.

In the present study, model reliance is computed on the validation folds in a 10-fold cross-

validation procedure. It should be noted that model reliance could also be computed on the

training folds, in which case the interpretation would relate to which variables the model relies

upon to fit the training data. This, however, would depart from the focus of the present study

to assess which variables a trained model relies upon to make predictions.

More formally, as adapted from [18], X is a n by p matrix of observations of predictor vari-

ables, respectively. y is a vector of outcomes of length n. f is a fitted model. A group of variables

(that is, columns) in X is indexed by a set J, where all j 2 J are 1� j� p. ACCbl refers to the

baseline accuracy of f on X and y, whereas ACCpermJ
refers to the accuracy on the data after

randomly permuting all predictor variables within each column indexed by J. Note that while

classification accuracy is used in the present study, model reliance can be computed on other

performance metrics in classification or regression settings. The model reliance value, MR(XJ),

for a group of variables, J, is given by

MRðXJÞ¼def
1

jJj
1 � ACCpermðJÞ

1 � ACCbl
� 1

� �

: ð1Þ

For every cross-validation fold, grouped model reliance is averaged over 10 random permu-

tations and subsequently averaged over all 10 cross-validation folds. This follows from two

considerations: While computing grouped model reliance over all possible random permuta-

tions is computationally prohibitive, computing only one random permutation may lead to

unreliable results. As a simple Monte Carlo estimate, averaging over several random permuta-

tions thus provides a feasible middle ground. Note that this only involves permuting the data

from a given validation fold and predicting the class labels rather than re-training the model.

Averaging model reliance scores over cross-validation folds further provides an estimate of

the expected reliances from (partially) different training folds, validation-folds and random

initializations. Thus, the model reliance scores reported here can be seen as an estimate of the

expected reliance for a particular model class, where a class is given e.g. by random forests or

SVMs) on a particular set of observations. It should be noted that only average model reliance

scores are used here.

Following related work [47], one may also look at computing confidence intervals or p-val-

ues using the null-distribution of model performance on permuted predictors. While the inter-

pretations of average model reliance on the present data did not differ between using 10 or 100

random permutations, one may need more random permutations to obtain reliable estimate

of p-values or measures of dispersion. Since obtaining estimates of the variance from cross-val-

idation folds is problematic [48], this may be most relevant when there are a sufficient number

of observations to perform a training(-validation)-test split rather than k-fold cross-validation.

Code for the implementation of grouped model reliance in addition to Jupyter notebooks

for all analyses are available from https://github.com/simonvalentin/wmdecoding.

Non-parametric statistical testing with clusters

Effects of working memory load on neural data were probed by a cluster-based randomization

approach [49]. This method identifies clusters (in frequency and space) of activity on the basis

of which the null hypothesis can be rejected, while addressing the multiple-comparison prob-

lem. The null hypothesis tested here was that the trials of each subject sampled from the three

load conditions stem from the same distribution; thus the labels (i.e., load 1, load 4 and load 7)
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are exchangeable. Dependent samples F-tests were used as test statistics. Random permuta-

tions of the labels were computed 1000 times resulting in a distribution of 1000 F-values. The

original value of the test statistic was compared against this randomization distribution using

an alpha level of 5%.

Results

Behavioral

In order to establish that the experimental manipulation yielded the expected behavioral

effects, accuracy, as well as reaction times (RT) of participants, were recorded. In line with pre-

vious findings, accuracy decreased and reaction times increased with an increase in working

memory load (cf. Table 1).

Model reliance

Averaged across all subjects, within-subject classification accuracy using the random forest

model was 48.51% (SE = 1.25%) in a three-class classification task with a chance level accuracy

of 33:33%. As illustrated in Fig 2 (right), trained models relied mostly on the alpha frequency

band. As described in the methods, model reliance is normalized according to the size of a

group of predictor variables. Hence, large groups, such as the gamma band, are penalized

more than smaller groups, like the alpha band. However, as shown in S1 Fig, even when no

normalization for the group size is used, the interpretation that alpha-band activity is central

Table 1. Means and standard deviations of reaction times and accuracies across subjects.

Load Reaction time [ms] Accuracy [%]

M SD M SD
1 530.9 133.8 97.6 2.9

4 659.8 147.8 95.3 3.2

7 784.1 144.6 89.9 6.7

Values per participant were computed as the average across all trials.

https://doi.org/10.1371/journal.pcbi.1007148.t001

Fig 2. Grouped model reliances. Box-whisker plots of average grouped model reliance (MR) per participant for

different ROI’s (left) and frequency bands (right) using a random forest model.

https://doi.org/10.1371/journal.pcbi.1007148.g002
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for decoding performance holds. While model reliance on the alpha band consistently emerges

across subjects, there is variability in individual profiles, as presented in Fig 3A.

In comparison, model reliance on scalp topographic ROI for classification accuracy is less

decisive Fig 2 (left). There is no ROI that clearly stands out across subjects in terms of grouped

model reliance. Instead, scores show considerable inter-individual variability, as presented

in Fig 3B. In line with the notion of inter-individual variation, training and testing a random

forest model between subjects yielded comparably poor generalization performance, with an

average accuracy of 34.53%.

Fig 3. Grouped model reliances per subject. (A) Grouped model reliance scores (MR) on each frequency band for individual participants. (B)

Topography of model reliances for individual participants.

https://doi.org/10.1371/journal.pcbi.1007148.g003
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To assess whether fitting a different but similarly performant model would result in compa-

rable estimates of model reliance, additional analyses using an SVM algorithm were con-

ducted. These analyses yielded similar results and interpretations, as illustrated in S3 Fig.

Further, in order to assess whether this reflects only the reliance on these groups of predic-

tors in a multivariate model, or also the relevance of the predictor groups assessed separately,

additional analyses were run. Here, a classifier was trained and tested only on separate predic-

tor groups (S2 Fig). This analysis further supported the interpretation that alpha-band activity

contains information that is particularly relevant for decoding working memory load, while

reliances are broadly distributed across ROI.

Additionally, in an exploratory fashion, Spearman’s rank correlations were computed to

assess whether reliance on the alpha-band per participant is associated with performance on

the Sternberg task. No statistically significant correlations were found at the 5% level between

the reliance on the alpha-band and average reaction time across conditions per subject

(ρ = −0.042; p = 0.907), the difference between high and low-load reaction times (ρ = −0.406;

p = 0.244), participants’ average accuracy across all conditions (ρ = 0.273; p = 0.446) or the dif-

ference in accuracies between high and low load (ρ = 0.37; p = 0.293). However, it should be

kept in mind that these correlational analyses are based on only 10 data points.

Cluster-based inferential statistics

Model reliance scores imply that predictors from the alpha band are of particular importance

(being the most critical frequency band for all subject except for Subj. #4). Thus, cluster-based

statistics were computed on the alpha-band for each participant. As shown in Fig 4A, a signifi-

cant effect of working memory load on alpha activity was found in all subjects but one (Subj.

#9). Descriptively, no clear topographic pattern could be identified across participants.

Power spectra were computed for those electrodes contained in clusters for which signifi-

cant condition differences were found (Fig 4B). As no cluster was found for Subj. #9, power

spectra were computed over electrodes selected from Subj #7. This individual was chosen due

to the similar topographic pattern of the effect of load. Crucially, some participants were char-

acterized by a positive relationship of alpha-band activity with increasing working memory

load, yet others displayed a reverse ordering or very small to no differences.

Additional analyses were conducted using cluster-based statistics computed across subjects

for the alpha and theta frequency bands, for which no significant effects of working memory

load were found.

Discussion

The aim of the present study was to demonstrate the use of grouped model reliance for inter-

preting decoding models, based on the case study of single-trial EEG recordings from a Stern-

berg working memory task. Models were probed and interpreted in terms of frequency bands

as well as ROI on a single-subject level. Random forest models performed with, on average,

48.51% (SE = 1.25%) accuracy in a three-way classification task of working memory load.

Grouped model reliance scores suggest that across most participants, models particularly

relied on the alpha band for classifying working memory load. That is, alpha was the most

critical frequency band for all participants but one (Subj. #4 for whom theta activity was most

important). Further, across participants, models did not rely on particular ROI more than on

others. Instead, grouped model reliance scores were found to be distributed across different

ROI. To put these interpretations of decoding models into the context of more established

methods from cognitive neuroscience, subsequent analyses were carried out using cluster-

based permutation tests. Here, testing on a single subject level revealed a significant effect of
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working memory load on alpha power for all but one subject (Subj. #9). However, in contrast

to previous accounts, the amplitude of alpha activity increased with load in some individuals

(e.g. Subj. #1), while it decreased in others (e.g. Subj. #5). When cluster-based permutation

tests were employed on an across subject level, no significant effect of working memory load

was found.

Fig 4. Cluster-based inferential statistics. (A) Topography of the main effect of working memory load illustrated for each individual participant.

Warm colors indicate the spatial distribution of F-values. Asterisks denote electrodes corresponding to clusters on the basis of which the null hypothesis

is rejected. (B) Power spectra averaged across the electrodes belonging to the corresponding clusters illustrated in A in arbitrary units (a.u.). Note that

scales are plotted on an individual level, as condition differences within participants are of primary interest.

https://doi.org/10.1371/journal.pcbi.1007148.g004
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Taken together, results from the cluster-based permutation tests are in conflict with previ-

ous studies reporting scaling of alpha amplitude with working memory on an across subject

level [21, 22, 24, 50]. Rather, the present study identified high inter-individual variability of

alpha amplitude and topography. When decoding models were trained across subjects, gener-

alization performance was comparably poor (accuracy 34.53%), further supporting the inter-

pretation of high heterogeneity between subjects. Additional analyses therefore aimed to test

whether this observed heterogeneity relates to differences in behavior, as has been proposed

previously [51, 52]. Here, it was found that the reliance on the alpha-band did not correlate

with average reaction time across conditions per subject, the difference between high and low-

load reaction times, average accuracy across all conditions or the difference between accuracies

on the high and low load condition. One interpretation of these findings is that the variability

found in grouped model reliance scores does not necessarily arise from differences in cognitive

abilities but from differences in the physiological manifestation of working memory, as well as

behavioral strategies used by each individual. In line with this, previous work has shown that

individuals who are more likely to employ verbal, rather than visual, processing approaches

exhibit different neural activation during the Sternberg task [53, 54]. However, findings on

how differences in working memory performance relate to task-specific strategies are mixed.

For instance, it has been reported that subjects who used a verbal rather than a spatial strategy

perform better in a 2-back working memory task [55]. In comparison, for a digit span back-

wards task, which is similar to the Sternberg task used in the present study, no relation was

found between the task-specific strategy and working memory performance [53, 54].

Apart from the alpha-band, theta-band power modulations are commonly reported in the

study of working memory load [21, 24, 33] and are hypothesized to play a crucial role in orga-

nizing sequential information [22, 24]. In the present study, decoding models for most subjects

did not rely on theta, with the exception of subject #4. This might be due to a high variability

of theta-band activity, which has been reported both between subjects [21, 35], as well as

between individual trials [36]. For instance, in contrast to the seminal study by Jensen and

Tesche [33], which found theta power to increase with working memory load in the delay

period of the Sternberg task, a subsequent study could not replicate this finding [21]. More

precisely, although a frontal theta power increase was present in the group average data, this

increase was largely driven by only one subject [33, 34]. Indeed, the high inter-subject variabil-

ity of theta power reactivity has motivated some studies to pre-screen human subjects for the

presence of a theta response prior to conducting the main experiment [34, 56]. Hence, the

present finding of theta being most critical for the decoding of working memory load in only

one out of 10 subjects might be in line with previous reports on the inter-subject variability

of theta power modulation. Note that supplemental analysis using cluster-based permutation

statistics revealed no statistically significant effect of working memory load on theta power

modulations across subjects. From these findings one cannot infer that theta modulations

were absent in all subjects in the present study, however. Instead, high inter-trial variability of

theta power modulations might result in decoding models relying less on theta but more on

the alpha-band.

Looking at decoding models more generally, while they have become increasingly popular,

several methodological and interpretational considerations should be kept in mind. First, rele-

vant to the interpretation of grouped model reliance, decoding models that have predictive

power should not necessarily be interpreted as models of the generative process of the data.

That is, decoding models, as used in the present study, are primarily useful to indicate that

there is information in the data that allows for classification/regression [10]. Grouped model

reliance allows to assess which parts (i.e. which variables or groups of variables) of the data a

model relies upon. However, note that this interpretation is relative to the model. For instance,
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a model may not rely upon groups of variables that contain redundant information already

contained in other variables. In such cases, we may make false-negative inferences in conclud-

ing that a group of variables is not associated with the outcome if its reliance is (close to) zero.

To assess this aspect on the present data, models were also trained and validated on separate

groups of frequencies and ROI, yielding similar interpretations.

Additionally, care has to be taken with the interpretation of “information is present” that

can be obtained from decoding analyses. Crucially, a decoding model may use various kinds

of information, which might take a different form than what one may expect from the perspec-

tive of cognitive neuroscience. For instance, similar to suppression effects, a decoding model

may give different weights depending on the noise covariance structure of the data [11]. This

aspect is discussed in depth by Hebart and Baker [2], who argue that a distinction can be made

between an activation-based and information-based view on neural data analysis. The activa-

tion-based view focuses on patterns of de- and increases of activity (e.g., alpha power) and is

typically adopted in cognitive neuroscience. The information-based view, on the other hand, is

not restricted to activation but regards any change in the multivariate distribution of the data

as information that can be used for making predictions, such as the noise distribution [2, 11].

Given that any information contained in the predictor variables may be used by the supervised

learning algorithm to make predictions, preprocessing also plays a role in removing known

confounding signals from the data. For instance, in the present case-study, ICA was used to

remove ocular and cardiac artifacts from the EEG recordings.

Since model reliance provides a summary of the extent to which a model relies upon partic-

ular variables to make predictions, this encapsulates both direct associations with the predicted

class (or dependent variable, more generally) as well as potentially complex interaction terms.

This has the advantage of providing a concise summary of the reliance on a group of variables,

but has the caveat of not distinguishing between different types of information. For instance, it

may be that certain variables are only relevant in a potentially complex interaction term with

other variables, but not on their own. Hence, similar to false-negative inferences from conclud-

ing that a variable is not relevant as discussed above, care also has to be taken when interpret-

ing what it means for information to be present.

Some methods such as linear models allow for inferences about a certain type of informa-

tion more directly [11] but have the downside of being limited in their flexibility to fit more

complex relationships that may be present in the data [57]. Grouped model reliance has the

advantage of being model-agnostic, i.e. it is applicable to any supervised model, and can thus

be used on models that may make use of complex non-linear relationships. Further methodo-

logical development may build on work by Henelius et al. [58], who propose a permutation-

based algorithm to identify groups of variables that interact to provide predictions. As pro-

posed by Fisher et al. [17], one may also be interested in conditional model reliance, that is, the

extent to which a model relies upon a particular variable while holding all other variables con-

stant. To this end, only those observations of a variable are permuted that have the same values

on all other variables. While this is comparably straightforward a small number of discrete var-

iables, the problem of matching variables becomes considerably more intricate with more (and

particularly with continuous) variables, though see [17] for a discussion.

Looking at fitted models more generally, given that there can be multiple similarly perfor-

mant solutions in high-dimensional data [59], model reliance, and hence interpretations, may

also vary across models. In the present study, cross-validation and repeated random permuta-

tions were employed to obtain a representative value of what an “average” model relies upon.

Fisher et al. [17] further propose model class reliance as a method to obtain upper and lower

bounds on the model reliance of a particular variable for all well-performing models of a cer-

tain class, such as random forests or SVMs. How these or other approaches of assessing the
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characteristics of the data a model relies upon in more detail may be applied to grouped model

reliance and used on neural data is beyond the scope of the present article but may be a fruitful

direction for future research.

Supporting information

S1 Fig. Model reliance without normalization for group sizes. Results indicate that alpha

still emerges as the group of variables that trained models relied upon the most when not

accounting for the size of the group of variables.

(EPS)

S2 Fig. Classification accuracy for training and testing on individual predictor groups.

Results highlight the difference between the relevance and reliance on predictor variables in

multivariate models.

(EPS)

S3 Fig. Model reliance for SVM models. An RBF kernel function was used for the SVM mod-

els and the penalty term C was set to 1. Cross-validated classification accuracy was 48.21%.

(EPS)
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