

Received 25 November 2014 Accepted 10 January 2015

Edited by V. V. Chernyshev, Moscow State University, Russia

Keywords: Crystal structure; manganese porphyrin complex; hydrogen bonding

CCDC reference: 1042885 **Supporting information**: this article has supporting information at journals.iucr.org/e

Wafa Harhouri,^a Salma Dhifaoui,^a Shabir Najmudin,^b Cecilia Bonifácio^c and Habib Nasri^a*

^aLaboratoire de Physico-chimie des Matériaux, Faculté des Sciences de Monastir, Avenue de l'Environnement, 5019 Monastir, University of Monastir, Tunisia, ^bFaculdade de Medicina, Veterinària, Universidade Tecnica de Lisboa, Avenida da Universidade Tecnica, 1300-477 Lisboa, Portugal, and ^cREQUIMTE/CQFB Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal. *Correspondence e-mail: hnasri1@gmail.com

In the title compound, $[Mn(C_{44}H_{28}N_4)Cl]\cdot 2C_5H_6N_2$, the Mn^{III} centre is coordinated by four pyrrole N atoms [averaged Mn-N = 2.012 (4) Å] of the tetraphenylporphyrin molecule and one chloride axial ligand [Mn-Cl = 2.4315 (7) Å] in a square-pyramidal geometry. The porphyrin macrocycle exhibits a non-planar conformation with major *ruffling* and *saddling* distortions. In the crystal, two independent solvent molecules form dimers through N- $H \cdots N$ hydrogen bonding. In these dimers, one amino N atom has a short $Mn \cdots N$ contact of 2.642 (1) Å thus completing the Mn environment in the form of a distorted octahedron, and another amino atom generates weak N- $H \cdots Cl$ hydrogen bonds, which link further all molecules into chains along the *a* axis.

1. Chemical context

In a continuation of our studies of metalloporphyrins, which are usually used as models of hemoproteins and have various applications in many fields such as catalysis (Amiri *et al.*, 2014), photodynamic therapy (Kolarova *et al.*, 2005), conception of sensors (Garg *et al.*, 2013) or the design of photoluminescent species (Harry *et al.*, 2003), we report herein the synthesis and crystal structure of the title compound, $[Mn(C_{44}H_{28}N_4)Cl]\cdot 2C_5H_6N_2$, (I).

2. Structural commentary

In (I), the central Mn^{III} atom has a square-pyramidal coordination geometry (Fig. 1). The equatorial plane is formed by

research communications

Figure 1

The contents of the asymmetric unit of (I), showing the atomic numbering. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.

four nitrogen atoms of the porphyrin whereas the apical position is occupied by the chlorido ligand. The asymmetric unit of (I) consists of the [Mn^{III}(TPP)Cl] complex (TPP is the 5,10,15,20-tetraphenylporphyrinato ligand) and two 2-aminopyridine solvent molecules. The average equatorial manganese–N(pyrrole) distance $(Mn-N_p)$ is 2.012 (4) Å, while the Mn-Cl bond length is 2.4315 (7) Å. The manganese atom is displaced by 0.1616 (5) Å from the 24-atom porphyrin mean plane. The porphyrin core presents a major ruffling deformation, as seen in the positions of the meso carbons alternatively above and below the mean plane of the 24-atom porphyrin macrocycle, and a saddle distortion involving the displacement of the pyrrole rings alternately above and below the porphyrin macrocycle mean plane (Scheidt & Lee, 1987). This is confirmed by normal structural decomposition (NSD) calculations (Jentzen et al., 1998), with ruffling and saddle percentages of 40% and 36%, respectively.

3. Supramolecular features

In the crystal structure, two 2-aminopyridine solvent molecules are paired into dimers *via* $N-H\cdots N$ hydrogen bonds involving the amino groups of these two molecules (Table 1). In these dimers, one amino atom has a short $Mn\cdots N$ contact of 2.642 (1) Å and another amino atom generates weak N- $H\cdots Cl$ hydrogen bonds, which further link the components into chains along the *a*-axis direction (Fig. 2).

4. Database survey

The majority of the known manganese–porphyrin species with halides are penta-coordinated, *e.g.* $[Mn^{III}(TPP)CI]$ (Stute *et al.*, 2013), $[Mn^{III}(TPP)Br]$ and $[Mn^{III}(TPP)I]$ (Turner *et al.*, 1998). Nevertheless, the six-coordinated diffuoro-manganese(IV) porphyrin species is also known: $[Mn^{IV}(TMP)F_2]$ (TMP is the 5,10,15,20-tetramesitylporphyrinato ligand) (Liu *et al.*, 2012). In the Cambridge Structural Database (CSD, Version 5.35; Groom & Allen, 2014), there are fourteen

Table 1		
Hydrogen-bo	ond geometry (Å, '	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N5-H5A\cdots N8$	0.86	2.29	2.993 (3)	139
$N7 - H7A \cdot \cdot \cdot N6$	0.86	2.19	3.045 (3)	173
$N7-H7B\cdots Cl^{i}$	0.86	2.51	3.358 (2)	169

Symmetry code: (i) x + 1, y, z.

chlorido porphyrin structures with a penta-coordinate Mn^{III} atom, five of them with the 5,10,15,20-tetraphenylporphyrin (TPP) ligand. For the known [Mn^{III} (Porph)Cl] complexes (Porph = porphyrinato ligand) [CSD refcodes HIFMIS (Cheng & Scheidt, 1996) and SENMUU (Paulat *et al.*, 2006)], the equatorial manganese—N(pyrrole) distances ($Mn-N_p$) are in the range 2.002 (3)–2.019 (1) Å. This is also the case for (I), where the $Mn-N_p$ bond length is 2.012 (4) Å. The Mn-Cl distance of 2.4315 (7) Å in (I) is in agreement with those reported for related compounds [CSD refcodes HIFMIS (Cheng & Scheidt, 1996) and YEFYAL (Ishikawa *et al.*, 2012)], with Mn-Cl bond lengths covering the range 2.30– 2.66 Å.

5. Synthesis and crystallization

To a solution of [Mn^{III}(TPP)Cl] (100 mg, 0.142 mmol) (Cheng & Scheidt, 1996) in chlorobenzene (10 ml) was added an

A portion of the crystal packing showing the $N-H\cdots Cl$ hydrogen bonds (dotted blue lines) and short $Mn\cdots N$ contacts (dashed pink lines).

excess of 2-aminopyridine (50 mg, 0.531 mmol). The reaction mixture was stirred at room temperature for 12 h. Crystals of the title complex were obtained by diffusion of hexanes through the chlorobenzene solution.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were fixed geometrically and treated as riding, with C-H = 0.93, N-H = 0.86 Å and with $U_{iso}(H) = 1.2U_{ea}(C, N)$.

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

References

- Amiri, N., Le Maux, P., Srour, H., Nasri, H. & Simonneaux, G. (2014). *Tetrahedron*, **70**, 8836–8842.
- Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Burnett, M. N. & Johnson, C. K. (1996). *ORTEPIII*. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Cheng, B. & Scheidt, W. R. (1996). Acta Cryst. C52, 361-363.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Garg, K., Singh, A., Majumder, C., Nayak, S. K., Aswal, D. K., Gupta,
 S. K. & Chattopadhyay, S. (2013). Org. Electron. 14, 1189–1196.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Harry, P. D. (2003). *Advanced Inorganic Chemistry*, edited by K. M. Kadish, K. M. Smith & R. Guilard, Vol. 18, pp. 63–243. New York: Academic Press.
- Ishikawa, R., Katoh, K., Breedlove, B. K. & Yamashita, M. (2012). *Inorg. Chem.* 51, 9123–9131.
- Jentzen, W., Ma, J.-G. & Shelnutt, J. A. (1998). *Biophys. J.* 74, 753-763.
- Kolarova, H., Macecek, J., Nevrelova, P., Huf, M., Tomecka, M., Bajgar, R., Mosinger, J. & Strnad, M. (2005). *Toxicology in Vitro*, 19, 971–974.

Table 2	
Experimen	tal details

Crystal data	
Chemical formula	$[Mn(C_{44}H_{28}N_4)Cl]\cdot 2C_5H_6N_2$
M _r	891.33
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	180
a, b, c (Å)	9.9617 (4), 12.1247 (6), 18.9100 (9)
α, β, γ (°)	92.441 (3), 94.699 (2), 108.186 (2)
$V(\dot{A}^3)$	2157.01 (17)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.42
Crystal size (mm)	$0.48\times0.38\times0.16$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2006)
T_{\min}, T_{\max}	0.701, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	35821, 8499, 6523
R _{int}	0.041
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.107, 1.05
No. of reflections	8487
No. of parameters	577
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.49, -0.37

Computer programs: *APEX2* and *SAINT* (Bruker, 2006), *SIR2004* (Burla *et al.*, 2005), *SHELXL97* (Sheldrick, 2008, 2015), *ORTEPIII* (Burnett & Johnson, 1996), *ORTEP-3* for Windows and WinGX (Farrugia, 2012) and Mercury (Macrae *et al.*, 2008).

- Liu, W., Huang, X., Cheng, M., Nielsen, R., Goddard, W. & Groves, J. (2012). Science, 337, 1322–1325.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Paulat, F., Praneeth, V. K. K., Näther, C. & Lehnert, N. (2006). *Inorg. Chem.* **45**, 2835–2856.
- Scheidt, W. R. & Lee, Y. (1987). Struct. Bonding, 64, 1-7.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Stute, S., Götzke, L., Meyer, D., Merroun, M. L., Rapta, P., Kataeva, O., Seichter, W., Gloe, K., Dunsch, L. & Gloe, K. (2013). *Inorg. Chem.* 52, 1515–1524.
- Turner, P., Gunter, M. J., Skelton, B. W. & White, A. H. (1998). Aust. J. Chem. 51, 853–864.

supporting information

Acta Cryst. (2015). E71, 165-167 [doi:10.1107/S205698901500050X]

Crystal structure of chlorido(5,10,15,20-tetraphenylporphyrinato- $\kappa^4 N$)manganese(III) 2-aminopyridine disolvate

Wafa Harhouri, Salma Dhifaoui, Shabir Najmudin, Cecilia Bonifácio and Habib Nasri

Computing details

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT* (Bruker, 2006); program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008, 2015); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996), *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Chlorido(5,10,15,20-tetraphenylporphyrinato-κ⁴N)manganese(III) 2-aminopyridine disolvate

Crystal data	
$[Mn(C_{44}H_{28}N_4)Cl] \cdot 2C_5H_6N_2$ $M_r = 891.33$ Triclinic, $P1$ Hall symbol: -P 1 a = 9.9617 (4) Å b = 12.1247 (6) Å c = 18.9100 (9) Å a = 92.441 (3)° $\beta = 94.699$ (2)° $\gamma = 108.186$ (2)° V = 2157.01 (17) Å ³	Z = 2 F(000) = 924 $D_x = 1.372 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8818 reflections $\theta = 2.2-27.8^{\circ}$ $\mu = 0.42 \text{ mm}^{-1}$ T = 180 K Block, brown $0.48 \times 0.38 \times 0.16 \text{ mm}$
Data collection Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2006) $T_{\min} = 0.701, T_{\max} = 0.746$	35821 measured reflections 8499 independent reflections 6523 reflections with $I > 2\sigma(I)$ $R_{int} = 0.041$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 1.8^{\circ}$ $h = -12 \rightarrow 12$ $k = -14 \rightarrow 14$ $l = -20 \rightarrow 23$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.107$ S = 1.05 8487 reflections	Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

577 parameters 0 restraints $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0438P)^{2} + 1.0654P] \qquad \Delta \rho_{max} = 0.49 \text{ e} \text{ Å}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.37 \text{ e} \text{ Å}^{-3}$ $(\Delta/\sigma)_{max} = 0.001$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates an	d isotropic or e	quivalent isotropic	displacement	parameters	$(Å^2)$
		1		p	(/

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Mn	0.71850 (3)	0.20739 (3)	0.748853 (16)	0.02309 (10)	
Cl	0.47678 (6)	0.07348 (5)	0.73057 (3)	0.03758 (15)	
N1	0.77802 (17)	0.14667 (15)	0.66018 (9)	0.0234 (4)	
N2	0.80369 (18)	0.10608 (15)	0.80656 (9)	0.0250 (4)	
N3	0.68922 (18)	0.28550 (15)	0.83972 (9)	0.0244 (4)	
N4	0.66655 (18)	0.32903 (15)	0.69325 (9)	0.0234 (4)	
N5	0.9736 (2)	0.36456 (17)	0.76389 (10)	0.0359 (5)	
H5A	0.9784	0.3197	0.7283	0.043*	
H5B	0.9219	0.4093	0.7592	0.043*	
N6	1.1266 (2)	0.29239 (19)	0.83104 (11)	0.0427 (5)	
N7	1.2610 (2)	0.2348 (2)	0.70136 (14)	0.0552 (6)	
H7A	1.2301	0.2540	0.7396	0.066*	
H7B	1.3217	0.1975	0.7035	0.066*	
N8	1.1197 (2)	0.32107 (18)	0.63848 (11)	0.0410 (5)	
C1	0.7439 (2)	0.17043 (18)	0.59150 (11)	0.0233 (4)	
C2	0.7927 (2)	0.10102 (18)	0.54253 (11)	0.0272 (5)	
H2	0.7837	0.1013	0.4932	0.033*	
C3	0.8539 (2)	0.03566 (19)	0.58099 (11)	0.0275 (5)	
H3	0.8953	-0.0173	0.5632	0.033*	
C4	0.8439 (2)	0.06235 (18)	0.65415 (11)	0.0239 (4)	
C5	0.8866 (2)	0.00644 (18)	0.71051 (11)	0.0249 (5)	
C6	0.8707 (2)	0.03070 (18)	0.78147 (11)	0.0257 (5)	
C7	0.9224 (2)	-0.0208 (2)	0.84009 (12)	0.0322 (5)	
H7	0.9723	-0.0739	0.8374	0.039*	
C8	0.8855 (2)	0.0216 (2)	0.89976 (12)	0.0322 (5)	
H8	0.9056	0.0035	0.9459	0.039*	
C9	0.8098 (2)	0.09952 (19)	0.87930 (11)	0.0260 (5)	
C10	0.7539 (2)	0.16021 (19)	0.92676 (11)	0.0270 (5)	
C11	0.6954 (2)	0.24586 (19)	0.90708 (11)	0.0261 (5)	
C12	0.6382 (2)	0.3106 (2)	0.95446 (12)	0.0311 (5)	
H12	0.6278	0.2992	1.0023	0.037*	
C13	0.6022 (2)	0.39102 (19)	0.91726 (11)	0.0301 (5)	

H13	0.5639	0.4462	0.9348	0.036*
C14	0.6336 (2)	0.37604 (19)	0.84551 (11)	0.0261 (5)
C15	0.6088 (2)	0.44238 (18)	0.79069 (11)	0.0252 (5)
C16	0.6228 (2)	0.41858 (18)	0.71991 (11)	0.0245 (5)
C17	0.5830 (2)	0.47860 (19)	0.66212 (11)	0.0291 (5)
H17	0.5532	0.5439	0.6660	0.035*
C18	0.5967 (2)	0.42307 (19)	0.60135 (12)	0.0283 (5)
H18	0.5755	0.4416	0.5554	0.034*
C19	0.6499 (2)	0.33038 (18)	0.62017 (11)	0.0241 (4)
C20	0.6799 (2)	0.25316 (18)	0.57174 (11)	0.0239 (4)
C21	0.9456 (2)	-0.09079 (19)	0.69477 (11)	0.0255 (5)
C22	1.0792 (2)	-0.0706 (2)	0.67155 (12)	0.0310 (5)
H22	1.1331	0.0046	0.6632	0.037*
C23	1.1328 (2)	-0.1620(2)	0.66072 (12)	0.0348 (5)
H23	1.2228	-0.1477	0.6456	0.042*
C24	1.0536 (3)	-0.2736 (2)	0.67222 (12)	0.0358 (6)
H24	1.0902	-0.3347	0.6654	0.043*
C25	0.9196 (3)	-0.2945 (2)	0.69389 (13)	0.0364 (6)
H25	0.8652	-0.3701	0.7010	0.044*
C26	0.8656 (2)	-0.2043 (2)	0.70511 (12)	0.0319 (5)
H26	0.7751	-0.2195	0.7197	0.038*
C27	0.7585 (2)	0.1328 (2)	1.00308 (11)	0.0297 (5)
C28	0.6758 (3)	0.0259 (2)	1.02330 (13)	0.0359 (6)
H28	0.6216	-0.0310	0.9888	0.043*
C29	0.6734 (3)	0.0032 (2)	1.09463 (14)	0.0430 (6)
H29	0.6161	-0.0679	1.1077	0.052*
C30	0.7548 (3)	0.0850 (3)	1.14558 (14)	0.0469 (7)
H30	0.7520	0.0698	1.1933	0.056*
C31	0.8410 (3)	0.1896 (3)	1.12667 (13)	0.0432 (7)
H31	0.8985	0.2441	1.1616	0.052*
C32	0.8427 (3)	0.2145 (2)	1.05562 (12)	0.0358 (5)
H32	0.9003	0.2860	1.0432	0.043*
C33	0.5585 (2)	0.54284 (19)	0.81056 (11)	0.0271 (5)
C34	0.6532 (3)	0.6437 (2)	0.84414 (13)	0.0379 (6)
H34	0.7487	0.6501	0.8526	0.045*
C35	0.6072 (3)	0.7357 (2)	0.86545 (14)	0.0448 (6)
H35	0.6719	0.8033	0.8880	0.054*
C36	0.4665 (3)	0.7271 (2)	0.85329 (13)	0.0417 (6)
H36	0.4357	0.7887	0.8676	0.050*
C37	0.3715 (3)	0.6272 (2)	0.81989 (14)	0.0418 (6)
H37	0.2760	0.6211	0.8118	0.050*
C38	0.4171 (2)	0.5354 (2)	0.79812 (13)	0.0347 (5)
H38	0.3521	0.4684	0.7750	0.042*
C39	0.6393 (2)	0.25768 (18)	0.49454 (11)	0.0243 (4)
C40	0.7006 (2)	0.35470 (19)	0.45743 (11)	0.0289 (5)
H40	0.7709	0.4185	0.4807	0.035*
C41	0.6578 (2)	0.3570 (2)	0.38642 (12)	0.0322 (5)
H41	0.6983	0.4227	0.3624	0.039*

C42	0.5555 (2)	0.2625 (2)	0.35099 (12)	0.0348 (5)
H42	0.5275	0.2643	0.3030	0.042*
C43	0.4945 (2)	0.1651 (2)	0.38668 (12)	0.0343 (5)
H43	0.4262	0.1008	0.3627	0.041*
C44	0.5351 (2)	0.16335 (19)	0.45802 (11)	0.0290 (5)
H44	0.4922	0.0982	0.4821	0.035*
C45	1.0496 (2)	0.3647 (2)	0.82897 (13)	0.0367 (6)
C46	1.1971 (3)	0.2868 (3)	0.89372 (17)	0.0570 (8)
H46	1.2503	0.2360	0.8960	0.068*
C47	1.1952 (3)	0.3518 (3)	0.95452 (16)	0.0635 (9)
H47	1.2454	0.3454	0.9970	0.076*
C48	1.1166 (3)	0.4267 (3)	0.95052 (16)	0.0600 (8)
H48	1.1145	0.4732	0.9905	0.072*
C49	1.0412 (3)	0.4330 (2)	0.88792 (14)	0.0474 (7)
H49	0.9857	0.4820	0.8850	0.057*
C50	1.0728 (3)	0.3510(2)	0.57616 (15)	0.0513 (7)
H50	1.0070	0.3910	0.5762	0.062*
C51	1.1165 (4)	0.3258 (3)	0.51199 (16)	0.0669 (10)
H51	1.0816	0.3484	0.4698	0.080*
C52	1.2135 (4)	0.2663 (3)	0.51215 (19)	0.0770 (12)
H52	1.2454	0.2483	0.4696	0.092*
C53	1.2625 (3)	0.2338 (3)	0.57395 (19)	0.0633 (9)
H53	1.3272	0.1927	0.5743	0.076*
C54	1.2141 (3)	0.2631 (2)	0.63784 (15)	0.0436 (6)

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	1/12	1713	1 /23
0 0 2 9 2 9 (1 9)			U	U	U
0.02030 (10)	0.02739 (19)	0.01763 (17)	0.01494 (14)	0.00212 (13)	0.00061 (13)
0.0315 (3)	0.0396 (3)	0.0404 (4)	0.0096 (2)	0.0044 (2)	0.0016 (3)
0.0267 (9)	0.0253 (9)	0.0205 (9)	0.0118 (7)	0.0020 (7)	0.0010 (7)
0.0288 (9)	0.0303 (10)	0.0199 (9)	0.0154 (8)	0.0026 (7)	0.0002 (8)
0.0285 (9)	0.0295 (10)	0.0189 (9)	0.0147 (8)	0.0014 (7)	0.0009 (7)
0.0273 (9)	0.0267 (10)	0.0186 (9)	0.0124 (7)	0.0021 (7)	-0.0004 (7)
0.0387 (11)	0.0423 (12)	0.0300 (11)	0.0197 (9)	-0.0001 (9)	-0.0066 (9)
0.0391 (12)	0.0477 (13)	0.0399 (13)	0.0146 (10)	-0.0048 (10)	-0.0007 (10)
0.0464 (13)	0.0565 (15)	0.0671 (18)	0.0259 (12)	0.0012 (12)	-0.0122 (13)
0.0362 (11)	0.0405 (12)	0.0412 (13)	0.0052 (9)	0.0054 (10)	-0.0041 (10)
0.0255 (10)	0.0250 (11)	0.0191 (11)	0.0075 (9)	0.0025 (8)	0.0010 (9)
0.0345 (12)	0.0296 (12)	0.0192 (11)	0.0128 (10)	0.0039 (9)	-0.0003 (9)
0.0326 (11)	0.0284 (12)	0.0251 (12)	0.0141 (9)	0.0072 (9)	-0.0008 (9)
0.0268 (11)	0.0246 (11)	0.0219 (11)	0.0106 (9)	0.0033 (9)	0.0001 (9)
0.0242 (10)	0.0267 (12)	0.0251 (12)	0.0103 (9)	0.0020 (9)	-0.0012 (9)
0.0271 (11)	0.0291 (12)	0.0243 (12)	0.0147 (9)	0.0004 (9)	0.0004 (9)
0.0367 (12)	0.0390 (14)	0.0286 (13)	0.0236 (11)	0.0005 (10)	0.0031 (10)
0.0391 (13)	0.0416 (14)	0.0220 (12)	0.0223 (11)	-0.0003 (10)	0.0041 (10)
0.0292 (11)	0.0319 (12)	0.0196 (11)	0.0141 (9)	-0.0002 (9)	0.0020 (9)
0.0290 (11)	0.0347 (13)	0.0196 (11)	0.0139 (10)	0.0008 (9)	0.0016 (9)
	0.02838 (18) 0.0315 (3) 0.0267 (9) 0.0288 (9) 0.0285 (9) 0.0273 (9) 0.0387 (11) 0.0391 (12) 0.0464 (13) 0.0362 (11) 0.0362 (11) 0.0345 (12) 0.0326 (11) 0.0268 (11) 0.0242 (10) 0.0271 (11) 0.0367 (12) 0.0391 (13) 0.0290 (11)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.02838 (18) $0.02739 (19)$ $0.01763 (17)$ $0.0315 (3)$ $0.0396 (3)$ $0.0404 (4)$ $0.0267 (9)$ $0.0253 (9)$ $0.0205 (9)$ $0.0288 (9)$ $0.0303 (10)$ $0.0199 (9)$ $0.0285 (9)$ $0.0295 (10)$ $0.0189 (9)$ $0.0273 (9)$ $0.0267 (10)$ $0.0186 (9)$ $0.0387 (11)$ $0.0423 (12)$ $0.0300 (11)$ $0.0391 (12)$ $0.0477 (13)$ $0.0399 (13)$ $0.0464 (13)$ $0.0565 (15)$ $0.0671 (18)$ $0.0362 (11)$ $0.0405 (12)$ $0.0412 (13)$ $0.0255 (10)$ $0.0296 (12)$ $0.0192 (11)$ $0.0345 (12)$ $0.0296 (12)$ $0.0192 (11)$ $0.0268 (11)$ $0.0267 (12)$ $0.0251 (12)$ $0.0268 (11)$ $0.0267 (12)$ $0.0251 (12)$ $0.0271 (11)$ $0.0291 (12)$ $0.0243 (12)$ $0.0367 (12)$ $0.0390 (14)$ $0.0286 (13)$ $0.0391 (13)$ $0.0416 (14)$ $0.0220 (12)$ $0.0292 (11)$ $0.0347 (13)$ $0.0196 (11)$	0.02838(18) $0.02739(19)$ $0.01763(17)$ $0.01494(14)$ $0.0315(3)$ $0.0396(3)$ $0.0404(4)$ $0.0096(2)$ $0.0267(9)$ $0.0253(9)$ $0.0205(9)$ $0.0118(7)$ $0.0288(9)$ $0.0303(10)$ $0.0199(9)$ $0.0154(8)$ $0.0285(9)$ $0.0295(10)$ $0.0189(9)$ $0.0147(8)$ $0.0273(9)$ $0.0267(10)$ $0.0186(9)$ $0.0124(7)$ $0.0387(11)$ $0.0423(12)$ $0.0300(11)$ $0.0197(9)$ $0.0391(12)$ $0.0477(13)$ $0.0399(13)$ $0.0146(10)$ $0.0464(13)$ $0.0565(15)$ $0.0671(18)$ $0.0259(12)$ $0.0362(11)$ $0.0405(12)$ $0.0412(13)$ $0.0052(9)$ $0.0255(10)$ $0.0296(12)$ $0.0192(11)$ $0.0128(10)$ $0.0345(12)$ $0.0296(12)$ $0.0192(11)$ $0.0141(9)$ $0.0268(11)$ $0.0267(12)$ $0.0251(12)$ $0.0141(9)$ $0.0271(11)$ $0.0267(12)$ $0.0251(12)$ $0.0147(9)$ $0.0367(12)$ $0.0390(14)$ $0.0286(13)$ $0.0236(11)$ $0.0391(13)$ $0.0416(14)$ $0.0220(12)$ $0.0223(11)$ $0.0292(11)$ $0.0319(12)$ $0.0196(11)$ $0.0141(9)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

C11	0.0290 (11)	0.0331 (12)	0.0186 (11)	0.0138 (9)	0.0011 (9)	-0.0004 (9)
C12	0.0394 (13)	0.0406 (14)	0.0186 (11)	0.0202 (11)	0.0042 (9)	0.0008 (10)
C13	0.0379 (12)	0.0336 (13)	0.0237 (12)	0.0191 (10)	0.0038 (10)	-0.0026 (10)
C14	0.0284 (11)	0.0292 (12)	0.0237 (11)	0.0140 (9)	0.0018 (9)	-0.0014 (9)
C15	0.0260 (11)	0.0263 (11)	0.0252 (11)	0.0113 (9)	0.0027 (9)	-0.0002 (9)
C16	0.0254 (10)	0.0253 (11)	0.0247 (12)	0.0106 (9)	0.0032 (9)	0.0024 (9)
C17	0.0366 (12)	0.0290 (12)	0.0273 (12)	0.0183 (10)	0.0033 (10)	0.0035 (10)
C18	0.0349 (12)	0.0323 (12)	0.0224 (12)	0.0175 (10)	0.0006 (9)	0.0042 (9)
C19	0.0254 (10)	0.0270 (11)	0.0212 (11)	0.0102 (9)	0.0018 (8)	0.0018 (9)
C20	0.0253 (10)	0.0256 (11)	0.0198 (11)	0.0070 (9)	0.0017 (8)	0.0020 (9)
C21	0.0302 (11)	0.0321 (12)	0.0185 (11)	0.0170 (10)	0.0003 (9)	-0.0003 (9)
C22	0.0341 (12)	0.0315 (13)	0.0307 (13)	0.0145 (10)	0.0063 (10)	0.0020 (10)
C23	0.0337 (12)	0.0458 (15)	0.0326 (13)	0.0224 (11)	0.0097 (10)	0.0015 (11)
C24	0.0459 (14)	0.0394 (14)	0.0302 (13)	0.0261 (12)	0.0021 (11)	-0.0037 (11)
C25	0.0400 (13)	0.0284 (13)	0.0417 (15)	0.0131 (11)	0.0010 (11)	0.0008 (11)
C26	0.0287 (11)	0.0351 (13)	0.0342 (13)	0.0133 (10)	0.0041 (10)	0.0022 (10)
C27	0.0370 (12)	0.0413 (14)	0.0201 (11)	0.0252 (11)	0.0042 (9)	0.0031 (10)
C28	0.0417 (13)	0.0431 (15)	0.0294 (13)	0.0216 (11)	0.0052 (10)	0.0065 (11)
C29	0.0489 (15)	0.0558 (17)	0.0366 (15)	0.0303 (13)	0.0126 (12)	0.0187 (13)
C30	0.0550 (16)	0.077 (2)	0.0263 (14)	0.0421 (16)	0.0109 (12)	0.0179 (14)
C31	0.0506 (15)	0.0693 (19)	0.0228 (13)	0.0410 (15)	-0.0052 (11)	-0.0058 (12)
C32	0.0411 (13)	0.0448 (15)	0.0267 (13)	0.0223 (11)	-0.0002 (10)	0.0002 (11)
C33	0.0373 (12)	0.0295 (12)	0.0202 (11)	0.0173 (10)	0.0078 (9)	0.0036 (9)
C34	0.0382 (13)	0.0354 (14)	0.0416 (15)	0.0149 (11)	0.0042 (11)	-0.0057 (11)
C35	0.0573 (17)	0.0303 (14)	0.0462 (16)	0.0141 (12)	0.0080 (13)	-0.0096 (11)
C36	0.0632 (17)	0.0386 (15)	0.0366 (15)	0.0320 (13)	0.0175 (13)	0.0041 (12)
C37	0.0437 (14)	0.0479 (16)	0.0450 (16)	0.0278 (13)	0.0136 (12)	0.0066 (13)
C38	0.0353 (12)	0.0339 (13)	0.0377 (14)	0.0145 (10)	0.0059 (10)	0.0014 (11)
C39	0.0282 (11)	0.0279 (12)	0.0206 (11)	0.0143 (9)	0.0023 (9)	0.0009 (9)
C40	0.0327 (12)	0.0291 (12)	0.0259 (12)	0.0113 (10)	0.0026 (9)	0.0004 (9)
C41	0.0390 (13)	0.0362 (13)	0.0274 (13)	0.0185 (11)	0.0083 (10)	0.0092 (10)
C42	0.0403 (13)	0.0513 (16)	0.0199 (12)	0.0248 (12)	0.0012 (10)	0.0044 (11)
C43	0.0339 (12)	0.0397 (14)	0.0282 (13)	0.0132 (11)	-0.0038 (10)	-0.0074 (10)
C44	0.0327 (12)	0.0296 (12)	0.0252 (12)	0.0107 (10)	0.0028 (9)	0.0026 (9)
C45	0.0294 (12)	0.0419 (14)	0.0351 (14)	0.0068 (11)	0.0026 (10)	-0.0006 (11)
C46	0.0472 (16)	0.062 (2)	0.060 (2)	0.0181 (14)	-0.0072 (14)	0.0082 (16)
C47	0.0538 (18)	0.088 (2)	0.0372 (17)	0.0111 (17)	-0.0118 (14)	0.0014 (16)
C48	0.0478 (17)	0.078 (2)	0.0399 (17)	0.0036 (16)	0.0007 (13)	-0.0175 (15)
C49	0.0413 (15)	0.0527 (17)	0.0417 (16)	0.0079 (13)	0.0027 (12)	-0.0129 (13)
C50	0.0511 (16)	0.0459 (17)	0.0456 (17)	-0.0001 (13)	0.0015 (13)	0.0027 (13)
C51	0.081 (2)	0.055 (2)	0.0391 (18)	-0.0149 (18)	0.0059 (16)	-0.0031 (14)
C52	0.085 (3)	0.062 (2)	0.057 (2)	-0.0197 (19)	0.037 (2)	-0.0230 (18)
C53	0.0516 (17)	0.0527 (19)	0.076 (2)	0.0002 (14)	0.0282 (17)	-0.0235 (17)
C54	0.0337 (13)	0.0394 (15)	0.0496 (17)	0.0016 (11)	0.0061 (12)	-0.0129 (12)

Geometric parameters (Å, °)

Mn—N2	2.0083 (17)	C22—H22	0.9300
Mn—N1	2.0089 (16)	C23—C24	1.374 (3)
Mn—N3	2.0127 (17)	C23—H23	0.9300
Mn—N4	2.0169 (16)	C24—C25	1.379 (3)
Mn—Cl	2.4351 (7)	C24—H24	0.9300
N1—C1	1.381 (3)	C25—C26	1.376 (3)
N1C4	1.382 (2)	C25—H25	0.9300
N2—C9	1.378 (3)	C26—H26	0.9300
N2—C6	1.379 (3)	C27—C32	1.390 (3)
N3—C14	1.380 (3)	C27—C28	1.391 (3)
N3—C11	1.384 (3)	C28—C29	1.389 (3)
N4—C19	1.380 (3)	C28—H28	0.9300
N4—C16	1.381 (3)	C29—C30	1.363 (4)
N5—C45	1.391 (3)	С29—Н29	0.9300
N5—H5A	0.8600	C30—C31	1.372 (4)
N5—H5B	0.8600	С30—Н30	0.9300
N6—C45	1.333 (3)	C31—C32	1.390 (3)
N6-C46	1.343 (3)	C31—H31	0.9300
N7—C54	1.350 (3)	С32—Н32	0.9300
N7—H7A	0.8600	C33—C34	1.380 (3)
N7—H7B	0.8600	C33—C38	1.383 (3)
N8—C54	1.338 (3)	C34—C35	1.388 (3)
N8—C50	1.338 (3)	C34—H34	0.9300
C1—C20	1.394 (3)	C35—C36	1.372 (4)
C1—C2	1.438 (3)	С35—Н35	0.9300
C2—C3	1.344 (3)	C36—C37	1.372 (4)
С2—Н2	0.9300	C36—H36	0.9300
C3—C4	1.426 (3)	C37—C38	1.386 (3)
С3—Н3	0.9300	С37—Н37	0.9300
C4—C5	1.394 (3)	C38—H38	0.9300
C5—C6	1.394 (3)	C39—C44	1.392 (3)
C5—C21	1.502 (3)	C39—C40	1.393 (3)
C6—C7	1.432 (3)	C40—C41	1.379 (3)
С7—С8	1.345 (3)	C40—H40	0.9300
С7—Н7	0.9300	C41—C42	1.376 (3)
С8—С9	1.428 (3)	C41—H41	0.9300
C8—H8	0.9300	C42—C43	1.381 (3)
C9—C10	1.392 (3)	C42—H42	0.9300
C10-C11	1.390 (3)	C43—C44	1.379 (3)
C10—C27	1.495 (3)	C43—H43	0.9300
C11—C12	1.431 (3)	C44—H44	0.9300
C12—C13	1.345 (3)	C45—C49	1.384 (3)
C12—H12	0.9300	C46—C47	1.371 (4)
C13—C14	1.434 (3)	C46—H46	0.9300
С13—Н13	0.9300	C47—C48	1.372 (4)
C14—C15	1.391 (3)	C47—H47	0.9300

C15—C16	1.385 (3)	C48—C49	1.367 (4)
C15—C33	1.500 (3)	C48—H48	0.9300
C16—C17	1.435 (3)	C49—H49	0.9300
C17—C18	1.345 (3)	C50—C51	1.376 (4)
С17—Н17	0.9300	C50—H50	0.9300
C18—C19	1.430 (3)	C51—C52	1.374 (5)
C18—H18	0.9300	C51—H51	0.9300
C19-C20	1 397 (3)	$C_{52} - C_{53}$	1 351 (5)
C_{20} C_{39}	1.397(3)	C52—H52	0.9300
$C_{20} = C_{20}$	1.190(3) 1.387(3)	C53 - C54	1 409 (4)
$C_{21} - C_{26}$	1.307(3)	C53—H53	0.9300
$C_{22} = C_{23}$	1.396(3)		0.9500
022 025	1.500 (5)		
N2—Mn—N1	89.86 (7)	C24—C23—C22	120.4 (2)
N2—Mn—N3	89.23 (7)	C24—C23—H23	119.8
N1—Mn—N3	171.24 (7)	C22—C23—H23	119.8
N2—Mn—N4	170.21 (7)	C23—C24—C25	119.5 (2)
N1—Mn—N4	89.56 (7)	C23—C24—H24	120.2
N3—Mn—N4	89.85 (7)	C25—C24—H24	120.2
N2—Mn—Cl	97.32 (5)	C26—C25—C24	120.6 (2)
N1—Mn—Cl	94.06 (5)	C26—C25—H25	119.7
N3—Mn—Cl	94.70 (5)	C24—C25—H25	119.7
N4—Mn—Cl	92.47 (5)	C25—C26—C21	120.4(2)
C1—N1—C4	106.00 (16)	C25—C26—H26	119.8
C1—N1—Mn	125.95 (13)	C21—C26—H26	119.8
C4—N1—Mn	127.55 (13)	C32—C27—C28	118.5 (2)
C9—N2—C6	106.07 (16)	C_{32} C_{27} C_{10}	120.9(2)
C9 - N2 - Mn	127.08 (13)	$C_{28} - C_{27} - C_{10}$	120.6(2)
C_{6} N_{2} M_{n}	126.83 (14)	$C_{29} - C_{28} - C_{27}$	120.0(2) 120.6(2)
C14 - N3 - C11	106.01 (16)	C^{29} C^{28} H^{28}	119.7
C14—N3—Mn	126 43 (14)	C27—C28—H28	119.7
C11 - N3 - Mn	126.57 (14)	C_{30} C_{29} C_{28}	120.2(3)
C19 N4 $C16$	106.07 (16)	C_{30} C_{29} H_{29}	119.9
C19N4Mn	126 53 (13)	C_{28} C_{29} H_{29}	119.9
C16 N4 Mn	126.92 (13)	$C_{20} = C_{20} = C_{30} = C_{31}$	119.9 120.2(2)
C45—N5—H5A	120.92 (13)	$C_{29} - C_{30} - H_{30}$	110.2 (2)
C45 N5 H5B	120.0	$C_{23} = C_{30} = H_{30}$	110.0
H5A N5 H5B	120.0	C_{30} C_{31} C_{32}	119.9
C45 N6 C46	120.0 117.3(2)	$C_{30} = C_{31} = C_{32}$	120.5 (5)
C_{43} NO C_{40}	117.3 (2)	$C_{30} = C_{31} = H_{31}$	119.8
C_{54} N7 H7P	120.0	$C_{32} - C_{31} - C_{31}$	117.0 120.2(2)
$U_{7} = \frac{1}{1} \frac{1}{2}$	120.0	$C_{31} = C_{32} = C_{27}$	120.2 (2)
$\Pi/A = \Pi/D$	120.0 117.7(2)	$C_{31} - C_{32} - H_{32}$	119.9
$\frac{1}{10} - \frac{1}{10}$	117.7 (2)	$C_2 / - C_3 / - C_3 / C_3^2$	117.7
N1 - C1 - C20	120.20(10) 100.19(17)	C_{34} C_{33} C_{30}	110.0(2)
$\frac{1}{1} - \frac{1}{1} - \frac{1}{2}$	109.10(17) 124.51(10)	C_{34} C_{33} C_{15}	117.9(2)
$C_2 U = C_1 = C_2$	124.31 (19)	$C_{30} - C_{30} - C_{10}$	121.3(2) 120.6(2)
$C_2 = C_2 = U_1$	107.33 (19)	$C_{22} = C_{24} = U_{24}$	120.0 (2)
UJ-UZ	120.2	UJJ-UJ4-HJ4	119./

C1—C2—H2	126.2	C35—C34—H34	119.7
C2—C3—C4	107.50 (18)	C36—C35—C34	120.2 (3)
С2—С3—Н3	126.3	C36—C35—H35	119.9
С4—С3—Н3	126.3	C34—C35—H35	119.9
N1—C4—C5	125.35 (18)	C37—C36—C35	119.7 (2)
N1—C4—C3	109.74 (17)	C37—C36—H36	120.1
C5-C4-C3	124.80 (19)	C35—C36—H36	120.1
C6-C5-C4	123.90(19)	$C_{36} - C_{37} - C_{38}$	120.3(2)
C6-C5-C21	116.96 (18)	$C_{36} - C_{37} - H_{37}$	119.8
C4-C5-C21	119.04 (18)	$C_{38} - C_{37} - H_{37}$	119.8
N_{2} C6 C5	126 34 (19)	C_{33} C_{38} C_{37}	1204(2)
$N_2 = C_0 = C_3$	120.34(19) 100.38(18)	$C_{33} = C_{38} = C_{37}$	110.4 (2)
12 - 60 - 67	109.30(10) 124.28(10)	$C_{33} = C_{38} = H_{38}$	119.8
$C_{3} = C_{0} = C_{1}$	124.26(19) 107.47(10)	$C_{3} = C_{3} = C_{3} = C_{4} = C_{4}$	119.0 118.2(2)
$C_{8} = C_{7} = U_{7}$	107.47 (19)	C44 - C39 - C40	110.5(2)
C8—C/—H/	126.3	C44 - C39 - C20	119.52 (18)
C6-C/-H/	126.3	C40 - C39 - C20	122.15 (19)
C7—C8—C9	107.47 (19)	C41—C40—C39	120.6 (2)
С/—С8—Н8	126.3	C41—C40—H40	119.7
С9—С8—Н8	126.3	C39—C40—H40	119.7
N2—C9—C10	126.17 (19)	C42—C41—C40	120.3 (2)
N2—C9—C8	109.58 (18)	C42—C41—H41	119.8
C10—C9—C8	124.24 (19)	C40—C41—H41	119.8
C11—C10—C9	123.46 (19)	C41—C42—C43	120.0 (2)
C11—C10—C27	118.20 (18)	C41—C42—H42	120.0
C9—C10—C27	118.34 (18)	C43—C42—H42	120.0
N3—C11—C10	125.52 (19)	C44—C43—C42	119.8 (2)
N3—C11—C12	109.44 (18)	C44—C43—H43	120.1
C10—C11—C12	124.97 (19)	C42—C43—H43	120.1
C13—C12—C11	107.56 (19)	C43—C44—C39	120.9 (2)
C13—C12—H12	126.2	C43—C44—H44	119.5
C11—C12—H12	126.2	C39—C44—H44	119.5
C12—C13—C14	107.46 (19)	N6—C45—C49	122.7 (2)
C12—C13—H13	126.3	N6—C45—N5	115.6 (2)
C14—C13—H13	126.3	C49—C45—N5	121.7 (2)
N3-C14-C15	126.07 (18)	N6—C46—C47	123.7(3)
N3-C14-C13	109 49 (18)	N6-C46-H46	118 1
C_{15} C_{14} C_{13}	124 43 (19)	C47 - C46 - H46	118.1
C_{16} C_{15} C_{14}	124.43(19) 124.14(19)	C46 - C47 - C48	117.7(3)
$C_{10} = C_{15} = C_{14}$	124.14(19) 110.05(18)	$C_{40} = C_{47} = C_{48}$	121.2
$C_{10} = C_{13} = C_{33}$	119.03(18) 116.77(18)	$C_{40} = C_{47} = H_{47}$	121.2
C14 - C15 - C55	110.77(10) 125.00(18)	C48 - C47 - H47	121.2 120.2(2)
N4 - C10 - C13	123.90(18)	C49 - C48 - U48	120.2 (3)
N4-C16-C17	109.38 (18)	C49 - C48 - H48	119.9
$C_{13} = C_{10} = C_{17} = C_{17}$	124.33 (19)	C47 - C48 - C48	119.9
C18 - C17 - C16	107.37 (19)	$\begin{array}{cccc} \mathbf{C} 4 5 & \mathbf{C} 4 5 \\ 5 & 5 5 \\ $	118.4 (3)
	126.3	C48—C49—H49	120.8
C16—C17—H17	126.3	C45—C49—H49	120.8
C17—C18—C19	107.57 (19)	N8—C50—C51	123.7 (3)
C17—C18—H18	126.2	N8—C50—H50	118.2

C19—C18—H18 N4—C19—C20 N4—C19—C18	126.2 125.45 (18) 109.55 (18)	C51—C50—H50 C52—C51—C50 C52—C51—H51	118.2 117.9 (3) 121.0
C20-C19-C18	125.00 (19)	C50—C51—H51	121.0
C1-C20-C19 C1-C20-C39	123.73 (19) 117.83 (18)	C53—C52—C51 C53—C52—H52	120.1 (3) 119.9
C19—C20—C39	118.43 (18)	C51—C52—H52	119.9
C22—C21—C26	118.8 (2)	C52—C53—C54	119.1 (3)
C22-C21-C5 C26-C21-C5	122.0 (2) 119.19 (18)	C52—C53—H53 C54—C53—H53	120.5
C23—C22—C21	120.3 (2)	N8—C54—N7	116.7 (2)
C23—C22—H22	119.8	N8—C54—C53	121.5 (3)
C21—C22—H22	119.8	N7—C54—C53	121.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
N5—H5A…N8	0.86	2.29	2.993 (3)	139
N7—H7 <i>A</i> …N6	0.86	2.19	3.045 (3)	173
N7—H7 <i>B</i> ···Cl ⁱ	0.86	2.51	3.358 (2)	169

Symmetry code: (i) x+1, y, z.