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Abstract: One of the most important challenges for soil science is to determine the limits for the
sustainable functioning of contaminated ecosystems. The response of soil microbiomes to kerosene
pollution is still poorly understood. Here, we model the impact of kerosene leakage on the composi-
tion of the topsoil microbiome in pot and field experiments with different loads of added kerosene
(loads up to 100 g/kg; retention time up to 360 days). At four time points we measured kerosene
concentration and sequenced variable regions of 16S ribosomal RNA in the microbial communities.
Mainly alkaline Dystric Arenosols with low content of available phosphorus and soil organic matter
had an increased fraction of Actinobacteriota, Firmicutes, Nitrospirota, Planctomycetota, and, to a
lesser extent, Acidobacteriota and Verrucomicobacteriota. In contrast, in highly acidic Fibric Histosols,
rich in soil organic matter and available phosphorus, the fraction of Acidobacteriota was higher,
while the fraction of Actinobacteriota was lower. Albic Luvisols occupied an intermediate position
in terms of both physicochemical properties and microbiome composition. The microbiomes of
different soils show similar response to equal kerosene loads. In highly contaminated soils, the
proportion of anaerobic bacteria-metabolizing hydrocarbons increased, whereas the proportion of
aerobic bacteria decreased. During the field experiment, the soil microbiome recovered much faster
than in the pot experiments, possibly due to migration of microorganisms from the polluted area.
The microbial community of Fibric Histosols recovered in 6 months after kerosene had been loaded,
while microbiomes of Dystric Arenosols and Albic Luvisols did not restore even after a year.

Keywords: soil metagenome; jet-fuel; soil pollution; ecological indicators; controlled study; gasoline;
biodegradation; total petroleum hydrocarbons; bearing capacity; xenobiotic compounds

1. Introduction

Hydrocarbons serve as the main fuel for transportation engines worldwide, making
environmental pollution by hydrocarbons one of the major current ecological threats. Hy-
drocarbons disrupt intra-soil habitat conditions by filling in the pore spaces and impairing
the water and air exchange, thus transforming the composition of soil microorganisms. In
case of contamination, most groups die out while the fitter ones resist or even expand.
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Only a few studies have addressed the bacterial communities of terrestrial soils con-
taminated with different hydrocarbons, such as [1]. Still, they provide insufficient data
on the sensitivity and resistance of various groups of soil microorganisms to kerosene
contamination in natural conditions. Kerosene is a combustible hydrocarbon liquid derived
from petroleum and widely used in industry as a jet-fuel. Particularly, according to the
available data, the duration of hydrocarbon biodegradation in different environments
may vary from several months to several decades [2–7]. Although a wide range of hy-
drocarbons may adversely affect ecosystems, the research mainstream has focused on the
impact of crude and tank oil on aquatic and coastal ecosystems, paying little attention to
kerosene-contaminated soils.

Recent studies have identified bacteria from more than 79 genera capable of de-
grading petroleum hydrocarbons [8]. In undisturbed soils, the proportion of bacteria
capable of decomposing hydrocarbons is negligible [9], while the hydrocarbon contamina-
tion results in an increase in their abundance, e.g., Pseudomonas and Burkholderia in man-
groves polluted by tank oil in Okinawa [10]. Bacteria from the Achromobacter, Acinetobacter,
Alkanindiges, Alteromonas, Arthrobacter, Burkholderia, Dietzia, Enterobacter, Kocuria, Marinobacter,
Mycobacterium, Pandoraea, Pseudomonas, Rhodococcus, Staphylococcus, Streptobacillus, and
Streptococcus genera play vital roles in degrading petroleum hydrocarbons [11]. Interest-
ingly, that some initially rare taxa, e.g., Alkanindiges sp., can even become dominant in
response to such pollution [11].

As alkanes from C5 to C9 are highly volatile, quickly evaporate from the topsoil [12,13],
and are not highly toxic to humans, their impact on soil properties and microbiome is
understudied. Following the one health approach [14], it is important to understand the
danger of certain substances for each component of a whole ecosystem. It is necessary
to analyze their impact on the soil microbiota, even if they are non-toxic or little-toxic
for humans.

This study bridges the gap in our knowledge on the environmental consequences of
contamination with TS-1 kerosene, which is the fuel most commonly used for commercial
aviation in Russia [15]. We investigated three contrast soil reference groups and analyzed
the topsoil physicochemical properties and the microbiome composition. We conducted a
laboratory pot experiment with the Dystric Arenosols (N 45◦43′20′′ E 63◦11′40′′) sampled
in Kazakhstan and Albic Luvisols (N 55◦11′5′′ E 36◦25′5′′) of Russia and a field experiment
with Fibric Histosols (N 55◦11′03′′ E 36◦24′58′′) and the same Albic Luvisols in Russia.

Our research objective was to characterize the responses of soil microbiomes to
kerosene contamination under humid and semi-arid climates. We observed that the
kerosene content decreased faster under natural conditions than in a laboratory experiment.
The response of soil microbiomes to kerosene contamination was similar in the laboratory
and field experiments, that is, in the steady and natural environments, respectively.

2. Materials and Methods

The selected soils are representative of humid landscapes of temperate mixed forests
(the Kaluga region in the Russian Federation) and semi-arid landscapes of deserts (the
Kyzylorda region in the Republic of Kazakhstan).

The Kaluga region is located at the south-east of the Smolensk–Moscow Upland. The
region is characterized by a snowy fully humid climate with a warm summer [16] and
with an annual precipitation of about 650 mm. The growing season lasts from May to
September. The parent rocks of well-drained interfluves and slopes are the Quaternary
loess-like loams at least 2 m thick underlain by lacustrine sediments. Fibric Histosols with a
peat thickness of about 1.5 m are formed in local depressions of the interfluves, on the clayic
or loamic rocks under the sphagnum mosses. Albic Luvisols represent the predominant
soil in this region.

The Baikonur Cosmodrome area encompasses a part of the Daryalyk residual plateau
represented by an undulating plain composed of stony clay loams and sandy loams, and a
part of a terraced valley of the Syr Darya river [17]. Arenosols, Calcisols, and Gypsisols
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are the most typical soils of the region. The region is characterized by a cold arid desert
climate [16], with the annual precipitation of about 100–120 mm. The most favorable
hydrothermal regime for the biota development takes place in the periods from March to
June and from September to November [7,17].

2.1. Pot Experiment

Two A-horizon soil samples (20 kg, natural moisture) were sieved using sieves with
a 3 mm mesh, cleaned of roots and other coarse fractions, and dried to the air-dry state.
Before the pot experiment, the samples were moistened to a level of 60% of the maximum
field capacity. To reach the uniform absorption of distilled water, the soil was thoroughly
mixed each time after water was added. The soil moisture before the kerosene contamina-
tion, determined gravimetrically, was 22.7 ± 0.5% and 5.2 ± 0.3% for Albic Luvisols and
Dystric Arenosols, respectively. Then, the samples were stored in plastic bags (temperature
18–22 ◦C) for three days to activate the soil microbiome and were carefully and periodically
stirred to homogenize while preserving soil micro-aggregates [18].

After three days (time point 0), both soil samples were divided into six subsamples
(Supplementary Figure S1). One subsample without any contamination was used as a
control. The remaining five subsamples were treated with various loads (1, 5, 10, 25, and
100 g/kg of soil, separately) of kerosene. Low kerosene loads (1, 5, and 10 g/kg) were
applied as a spray. High loads (25 and 100 g/kg) were applied from a watering can.
The loads were selected based on the previous results on the response of vegetation [18],
cultivated soil microorganisms [19], and cellulolytic bacteria [20] to kerosene contamination.

All subsamples (12 in total) were placed into the glass containers with hermetically
sealed iron lids to the bulk density of 1.47 ± 0.04 and 0.92 ± 0.09 kg/dm3, which is typical
of natural Dystric Arenosols and Albic Luvisols, respectively. The experiment lasted for
12 months in 2019–2020 at a temperature of 18–22 ◦C. Every 5 days, the containers were
opened for ventilation and, if needed, moisturized with distilled water.

2.2. Field Experiment

The field experiment was conducted on Albic Luvisols under a spruce–aspen forest
and Fibric Histosols under a subshrub–sphagnum pine forest in the Kaluga region in
2020–2021.

Experimental plots with a size of 50 × 50 cm (Supplementary Figure S2) were selected
based on the microtopography, comprising spatial homogeneous microsites without visible
microslopes of the soil surface. The surface of each plot was cleared of plant litter to reduce
possible redistribution of kerosene over the soil surface and to achieve better absorption
into the topsoil. Plots were contaminated with the same kerosene TS-1 loads for the 0–10 cm
topsoil layer as in the pot experiment.

The field experiment lasted for 12 months from 2020–2021 under the natural conditions
(Supplementary Table S1). Topsoil samples were collected in summer (3 and 360 days after
treatment), fall (90 days), and early winter (180 days).

2.3. Soil Sampling and Chemical Analysis

In total, 288 topsoil (0–10 cm) samples, 50 g each, were collected, in triplicate, 3, 90, 180,
and 360 days after the kerosene contamination. For the chemical analysis, each replicate
was placed into a glass jar with metal lids. Then, subsamples of 1–2 g were collected for the
isolation of total DNA.

In 96 soil samples (1 mixed sample of the triplicate replicas), chemical analysis was
performed immediately after soil sampling using routine techniques for pH, moisture,
cation exchange capacity (CEC), content of soil organic matter (SOM), available phosphorus
(Pav) and potassium (Kav), exchangeable ammonium (NH4

+), and water-soluble nitrate
(NO3

−), as described in Supplementary Table S2.
In 288 soil samples, kerosene concentration was determined using the original method

partially reported in [21]. Briefly, we used a system of the Agilent 7890 V gas chromatograph
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by Agilent Technologies (Santa Clara, CA, USA) equipped with a 5977 A quadrupole mass-
spectrometric detector. Samples of natural moisture weighing 1–2 g were placed into glass
flasks. After that, 0.2 cm3 of 1 g/dm3 1-chlorooctadecane solution (internal standard), 2 g of
Na2SO4, and 10–20 cm3 of dichloromethane were added, and the flasks were loosely closed.
The extraction was carried out for 15 min in an ultrasonic bath. The extract was filtered
through a paper filter (a red ribbon), previously washed with 3 cm3 of dichloromethane.
The flask and the filter were rinsed with 5 cm3 of dichloromethane. The filtrates were
combined and transferred into 2 cm3 glass vials. Two parallel measurements were made.
To calibrate the chromatograph, we used the soil samples unpolluted with kerosene and jet-
fuel used for experiments. The retention time range of the components of kerosene and the
retention time of the internal standard were determined using the obtained chromatograms.
We found the total area of all peaks on the chromatogram using the total ion current and the
area of the internal standard and calculated the ratio of the total peak area of all kerosene
components to the peak area of the internal standard.

2.4. DNA Extraction, Amplification and Sequencing

Total DNA from soil subsamples was isolated using DNeasy PowerSoil (Qiagen,
Hilden, Germany). Three independent samples were collected from each pot and plot.
Further, they were placed immediately either into a PowerBead tube, or into a sterile 1.5 mL
tube and stored at −20 ◦C prior to extraction. Each sample of 300 mg was placed into
a PowerBead tube, then 60 µL of the C1 buffer were added, and the tube was inverted
4–5 times to mix the reagents. The samples were then disrupted using TissueLyser II or
TissueLyser LT (Qiagen, Hilden, Germany, 10 min, 30 Hz). Further DNA purification was
made according to the manufacturer’s protocol.

DNA concentration was measured on the Qubit 1 fluorimeter using the Qubit DNA HS
kit (Thermo Fisher Scientific, Waltham, MA, USA) and ranged from 2 to 3 ng/µL. Variable
16S rRNA regions were amplified with two primer combinations, V3/V4 and V4/V5
(341F 5′–CCTAYGGGRBGCASCAG–3′ and 806R 5′–GGACTACNNGGGTATCTAAT–3′;
515F 5′–GTGCCAGCMGCCGCGGTAA–3′ and 907R 5′–CCGTCAATTCCTTTGAGTTT–3′,
respectively) using the Phusion polymerase (New England Biolabs, Ipswich, MA, USA)
and the following program:

Step 1: 95 ◦C 2 min (initial DNA melting);
24 cycles as follows:
Step 2: 95 ◦C 30 s (melting);
Step 3: 58 ◦C 30 s (primer annealing);
Step 4: 72 ◦C 40 s (synthesis);
Step 5: 72 ◦C 5 min.
To prepare sequencing libraries, amplicons were purified using the AMPure XP beads

(Beckman Coulter, Brea, CA, USA) according to the manufacturer’s protocol. The amplicon
concentrations were measured on the Qubit 1 fluorimeter using the Qubit DNA HS kit
(Thermo Fisher Scientific, Waltham, MA, USA) and ranged from 0.8 to 40 ng/µL. Samples
containing no DNA processed in the same laboratory were used as negative controls, their
concentrations were in the range of 0.2–0.6 ng/µL.

To skip the adaptor ligation step, all primers already contained Illumina 1 (forward
primer) or Illumina 2 (reverse primer) adaptors. Index PCR was made using the Phusion
polymerase (New England Biolabs, Waltham, MA, USA) and the Nextera XT Index kit
(Illumina, San Diego, CA, USA) following the manufacturer’s protocols. The library
concentrations were measured on the Qubit 1 fluorimeter using the Qubit DNA HS kit
(Thermo Fisher Scientific, Ipswich, MA, USA), and the libraries were sequenced on Illumina
MiSeq with the read length of 250 bp (MiSeq Reagent Kit v2). The average number of reads
was 75,000 per sample.
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2.5. 16S rRNA Sequencing Data Analysis

The quality of reads was analyzed with FastQC [22]. Quality filtering, denoising,
paired reads merging, and chimera filtering were performed using the R package DADA2
v. 1.14.1 [23]. Parameters for DADA2 were modified to lose less than 50% of reads in the
pipeline (maxEE = c(3,3), minOverlap = 8, maxMismatch = 1, minFoldParentOverAbun-
dance = 8). The obtained Amplicon Sequence Variants (ASV) tables were analyzed and
filtered of potential contaminants using the R package phyloseq [24] and decontam [25],
respectively, taking into account the amplicon concentrations and ASVs found in negative
controls. Low total numbers of reads in negative controls and the results of the decontam
analysis indicated low levels of contamination. After filtration and removing the singleton
ASVs, the mean number of reads in the samples was approximately 52,000.

Taxonomic labels were assigned to ASVs using IdTaxa [26] from the R package deci-
pher [27] trained on 16S rRNA gene sequences from the SILVA database [28]. After that,
ASVs assigned to “Chloroplast” and ASVs not classified at the domain level were filtered
out and all samples were rarefied to a standard number of reads (10,000 reads) in order to
account for differences in sequencing depth.

Multiple alignment of ASVs and construction of phylogenetic trees was conducted
using AlignSeqs [29] from the decipher package and FastTree v.2.1.11 [30], respectively.

The metabolic potential of microbial communities in the samples was predicted with
Picrust2 [31]. Principal Component Analysis (PCA) (function prcomp in R) on the relative
abundance of predicted MetaCyc pathways was used to visualize metabolic potential
similarities between the samples.

2.6. Assessment of Soil Microbial Community Diversity and Statistical Analysis

The diversity analysis was carried out using the R package vegan [32]. The within-
sample (alpha) diversity was estimated using the Shannon index. The between-samples
(beta) diversities were estimated using the Bray–Curtis dissimilarity and weighted Unifrac.
To visualize the between-sample diversity, dimensionality reduction with the Principal
Coordinate Analysis (PCoA) was performed.

To ensure that changes in bacterial communities did not result only from their death
under high kerosene concentrations, the relative amount of bacteria in soil samples with
or without kerosene load at different time points was measured by quantitative PCR with
341F–806R primers. qPCR was performed using qPCRMix HS-SYBR (Evrogen, Moscow,
Russia) and DT-Lite machine (DNA Technology, Moscow, Russia). Each sample was
assayed in triplicate. The differences were calculated using ∆Ct.

Permutational Multivariate Analysis of Variance (PERMANOVA) using distance ma-
trices implemented in the adonis function from the vegan package was used to estimate
the significance of microbiome differences between the studied conditions. The FDR correc-
tion (Benjamini-Hochberg) for multiple testing was applied separately for different tests
in different soils. Aldex2 [33] was used to search for bacterial groups which proportion
significantly differed between the studied conditions.

3. Results and Discussion

The chosen soils are most representative for studying kerosene contamination. The
soils of the Kaluga region could be considered as the background for the Moscow region [20].
The latter’s contamination with kerosene occurs because it is the largest aviation hub in
Russia. Dystric Arenosols are the most vulnerable soils in the Baikonur Cosmodrome area,
where ‘Soyuz’ vehicles propelled by kerosene are launched and an airport is situated [7,15].

Since the choice of a 16S rRNA region for sequencing may introduce a bias to the final
results [34], we tested two different sets of primers for 16S rRNA region V3V4 and V4V5.
The results obtained with these two 16S rRNA regions were highly consistent (Spearman
correlation on bacterial family abundance greater than 0.75), while V3V4 resolved more
microbial families (Supplementary Figure S3). For example, Pseudomonadaceae, Chtho-
niobacteraceae, and Moraxellaceae, highly abundant in several samples, were observed
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with V3V4 but almost not detected with V4V5. The estimated alpha-diversity was also
generally higher in case of the V3V4 analysis (Figure 1). An exception was represented
by the Dystric Arenosols samples, where several bacterial families, i.e., Alcaligenaceae
and Nocardiaceae were relatively more abundant when V4V5 was used. For simplicity,
in the main text, the V3V4 data are used for plots, while the plots for V4V5 are provided
in the Supplementary Materials. These discrepancies are minor and do not influence
the conclusions.
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(V3V4) and triangle (V4V5).

The microbiomes of the topsoils of different properties (Dystric Arenosols, Fibric
Histosols, and Albic Luvisols) showed similar responses to equal kerosene loads. In most
of the contaminated soils, the proportion of anaerobic bacteria-metabolizing hydrocarbons
was elevated, whereas the proportion of aerobic bacteria was reduced. During the field
experiment, the soil microbiome recovered faster than in the pot experiments, possibly due
to migration of organisms from the surrounding uncontaminated environment.

3.1. Soil Similarities and Differences in Physicochemical Properties and Microbiome Composition

Prior to kerosene pollution, all soil communities under consideration were dominated
by Proteobacteria, Actinobacteriota, Acidobacteriota, Verrucomicrobiota, and Bacteroidota.
These phyla comprised nearly 80% of all bacteria in communities (Figures 2C and 3A),
consistent with the previous results on soil microbiomes [35,36], in particular on Aridis-
ols of (semi)arid regions [37,38], Albic Luvisols [39–42], and Fibric Histosols [43–46] of
humid environments. Dystric Arenosols with the alkaline environment and the minimal
available phosphorus and SOM (Figure 2A) had an increased fraction of Actinobacteriota,
Firmicutes, Nitrospirota, Planctomycetota and less Acidobacteriota, Verrucomicobacteriota
(Figure 2C). In highly acidic Fibric Histosols with the maximal content of SOM and available
phosphorus (Figure 2A), the fraction of Acidobacteriota was higher, while the fraction of
Actinobacteriota was lower (Figure 2C). Albic Luvisols occupied an intermediate position
in terms of both physicochemical properties and the microbiome composition (Figure 2).
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Figure 2. Differentiation of the studied soils in the pot and field experiments: (A) principal component
analysis (PCA) of the soil chemical properties; (B) principal coordinate analysis (PCoA) of the
microbiome composition based on weighted UNIFRAC as a metric; (C) the relative abundance of the
top 12 most frequent phyla among all uncontaminated samples in all experiments (all time points).
The soil is shown by the color: (dark) red, Albic Luvisols; green, Dystric Arenosols; blue, Fibric
Histosols. The microbial composition was estimated using the V3V4 region of 16S rRNA gene.

In the uncontaminated samples, the changes in microbial communities with time (Sup-
plementary Figure S4) were less pronounced compared to the changes in the contaminated
soils, indicating high stability of the studied soil microbiomes (Figures 2C and 3).

Based on metabolic properties estimated with Picrust2, the Dystric Arenosols samples
formed a clearly separated and compact cluster (Supplementary Figure S5). This separation
resulted from the specific low-level pathways within such categories rather than changes
in high-level pathway categories.

3.2. Temporal Changes in the Kerosene Concentration and the Physicochemical Soil Properties

As a null hypothesis of the field and laboratory experiments, we assumed monotonous
changes in the analyzed soil properties (pH value, soil moisture, CEC, content of SOM,
available P and K, exchangeable ammonium, water-soluble nitrates) dependent on the
kerosene load and smoothing of the observed differences over time due to a decline in
kerosene concentration and self-recovery processes in soils.
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The numbers above the histograms represent the initial kerosene loads, in g/kg. The bacterial
composition was assessed using the V3V4 region of 16S rRNA; the results for the V4V5 region
are provided in Supplementary Figures S12 and S13. The families whose relative abundance was
increased after kerosene pollution in all, or almost all, soils are shown in red in the legend. The
dominant families whose relative abundance increased after kerosene pollution in a specific soil type
and experiment setup are shown in bold.

Indeed, the content of kerosene continuously decreased, with a more rapid and pro-
nounced decline in the field experiment (Figure 4). Even only 3 days after pollution of Albic
Luvisols, the observed kerosene concentration under the same loads was 1.5–4-fold higher
in the pot experiment than in the field experiment (Supplementary Table S3), implying a
more intensive soil self-restoration of volatile hydrocarbons in natural conditions. After
90 and 180 days, the concentration dropped by up to several orders of magnitude from
the initial level in all samples from the field experiment, whereas in the pot experiment,
it showed a slow decline in moderately contaminated samples and only a slight decrease
in highly contaminated ones. After a year, in the samples with initial loads of 10 g/kg
or less, kerosene was detected in negligible concentrations (<0.1 g/kg) in all soils. In the
samples with higher initial loads, kerosene was almost not detectable in Fibric Histosols
and reached approximately 0.1–0.3 g/kg (initial load of 25 g/kg) and 0.3–1.1 g/kg (initial
load of 100 g/kg) in the Albic Luvisols samples from the field experiment. The sam-
ples of the laboratory pot experiment with high initial kerosene loads maintained higher
kerosene concentrations.
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Figure 4. Temporal changes in the concentration of kerosine (g/kg) during the pot and field experi-
ments (0, 1, 5, 10, 25, and 100 are the initial concentrations of kerosene in g/kg). The red line indicates
the lowest detectable level.

In all experiments and soils, the controlled physicochemical properties did not show
similar changes after kerosene contamination, e.g., the SOM content and moisture increased
during the pot experiments (3, 90, and 180 days after treatment) and did not change during
the field experiments. It could have resulted from a thorough imbibition of soil with
kerosene in a lab, which cannot be achieved in a field due to the absence of soil agitation
and prevention of kerosene contamination in wet soil microcompartments. A water film
on the surface of soil aggregates prevents them from imbibition of nonpolar hydrocarbons
and being affected by kerosene [47,48].

In the pot experiment with Dystric Arenosols, a higher kerosene load was associated
with lower pH (by 0.2–0.3 units; Supplementary Table S4). Initially (3 days after treatment),
the SOM content increased more than 5-fold from samples with the minimal kerosene
load to samples with the maximal one, reaching 0.3–0.6% by the end of the year. The soil
moisture behaved similarly: in the most-contaminated sample, the moisture was twice
as high as that in the uncontaminated samples (3, 90, and 180 days after treatment) and
varied stochastically after a year. Monotonous dependencies on the kerosene load were not
observed for CEC, available P and K, water-soluble nitrates, and exchangeable ammonium.

In the pot Albic Luvisols samples, the SOM content, moisture, and CEC grew at
increasing kerosene load and then with time returned to the initial values. In all time points
there were no monotonous dependencies on the initial kerosene load for pH, available K
and P, water-soluble nitrates, and exchangeable ammonium. After a year, no monotonous
dependency on the initial kerosene load was observed for any measured parameter.
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In the field Albic Luvisols experiment, the content of available K (during the whole
observation period) and exchangeable ammonium (days 3 and 180) increased with the
kerosene load, whereas there was no monotonicity for pH, SOM, available P, water-soluble
nitrates, moisture, and CEC.

In Fibric Histosols, no monotonous trends relative to the kerosene load were identified
for any of the analyzed parameters. Therefore, the physicochemical properties of this soil
tend to be the most susceptible to kerosene influence.

Previously, it was reported that the kerosene pollution yielded an increase in the con-
centration of organic carbon and a decrease of available nitrogen and phosphorus [49–51].
Injection of kerosene only weakly influenced CEC and the exchangeable acidity of soils [51],
although the soil pH shifted towards neutral values [50,51].

3.3. Taxonomic Composition of Soil Samples Treated with Kerosene

In untreated Albic Luvisols and Fibric Histosols from the field experiment, only weak
seasonal variability was observed in the microbiome composition (Figures 2C and 3).

The treatment of soil samples with kerosene led to significant changes in the soil micro-
bial composition and diversity (Supplementary Figures S4 and S6, Figure 1), which strongly
depended on the kerosene load, forming three distinct patterns for slightly (0 and 1 g/kg),
moderately (5 and 10 g/kg), and heavily (25 and 100 g/kg) contaminated samples.

The alpha-diversity of slightly contaminated samples stayed almost stable for all soils
and dramatically decreased in heavily contaminated samples (Figure 1). In moderately
contaminated samples, the alpha-diversity decreased until 180 days and then started to
increase towards the initial levels for some of the samples, while continuing to decrease for
others. The Fibric Histosol samples were an exception, since even in heavily contaminated
samples the alpha-diversity started to restore after 180 days. In the pot experiments we
observed an increase of the alpha-diversity throughout 90 days after treatment, possibly
arising from the ongoing adaptation of soil microbial communities to the laboratory condi-
tions. We also observed a decrease of diversity by 360 days even in the control samples
possibly due to the exhaustion of nutrients and the lack of migration opportunity in a
closed system.

To verify that the observed changes did not stem solely from the eliminating sensitive
phyla, we performed qPCR for some of the samples (Supplementary Figure S7); this
showed that in the field experiment both with Fibric Histosols and Albic Luvisols, the total
abundance of 16S rRNA amplicons did not change with time both in the control and highly
contaminated samples, compared to the abundance in control samples at day 3. However,
in the highly contaminated samples of Albic Luvisols (pot experiment), the abundance of
amplicons dramatically decreased with time, while being stable in the control. While the 16S
rRNA sequencing demonstrated the similarities of the microbiome response in the pot and
field experiments with all treated soils, particularly, an increase in the relative abundance
of kerosene-degrading bacteria, the absolute bacterial abundance did not reach the level
observed before contamination, indicating that the contamination in the pot conditions was
much more stressful for the microbiome than in the field experiment. A natural caveat is
that limitations of the qPCR analysis, e.g., different copy number of the 16S rRNA loci or
different efficiency of PCR for bacterial taxa could have impacted the observations.

In PCoA plots with the weighted UNIFRAC serving as metric, the first axis (explaining
37–63% of the variance) always reflected the response to the kerosene contamination. In
all studied systems, slightly and heavily contaminated samples could be easily separated
when projected onto this axis (Figure 5). The functional role of the second axis was less
prominent, but in several cases, it could be connected with the period after treatment.
Therefore the kerosene contamination appears to be the main factor introducing vari-
ance between the samples. PCoA with the Bray–Curtis dissimilarity was more sensitive
to batch effects, separating samples sequenced in different runs (plots B and D in the
Supplementary Figures S8–S11). In the pot experiment, samples were sequenced in three
runs: (i) samples collected on day 3; (ii) samples collected on days 90 and 180; (iii) samples
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collected on day 360. Using Bray–Curtis dissimilarity for estimate beta-diversity between
the samples from these three runs resulted in clearly distinct clusters along the Axis 1 on
PCoA plots (Supplementary Figures S8 and S9), while use of weighted UNIFRAC pre-
vented such clustering. For instance, control samples from different days were closer to
each other rather than to highly contaminated samples from the same run. All samples
from the field experiment were sequenced in one run and for them we did not observe any
drastic difference between PCoA plots based on Bray–Curtis dissimilarity and weighted
UNIFRAC (Supplementary Figures S8 and S9).
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Figure 5. Principal coordinate analysis (PCoA) plots for soils with different initial kerosene loads.
The load in g/kg is shown by the dot color, and the day after kerosene treatment is shown by the dot
shape (see legend). The beta-diversity is estimated by the weighted UNIFRAC metric (the V3V4 16S
rRNA region). The names of the most abundant bacterial families mark the main shifts in the soil
microbial composition. The families whose relative abundance increased after kerosene pollution
in all, or almost all, soils are in red. Dominant families whose relative abundance increased after
kerosene pollution in a specific soil type and experimental setup are in boldface. The PCoA for the
V4V5 region and for Bray–Curtis dissimilarity are in Supplementary Figures S8–S11.
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In the pot experiment, the samples collected on the third day after kerosene treatment
formed a dense cluster with smaller mean beta-diversity between samples with different
kerosene loads, as compared to the field experiment (Figures 5 and S4). This discrepancy
might result from several causes. All pot microbiomes could be highly and similarly
stressed by the soil preparation procedure and environmental change, while the DNA
of bacteria that died immediately following the kerosene pollution could be preserved
longer as the surviving bacteria were suppressed and inactive. On the other hand, in the
field experiments, the bacterial community could react actively to the kerosene treatment
as some soil microcompartments might be uncontaminated and bacteria could migrate
naturally. However, these differences were relatively small and statistically significant in
the pot experiment and insignificant in the field one. The cause might have lain in the small
number of samples and a high diversity between those from the same group in the field
experiment (Supplementary Table S5).

Compared to the control samples (zero kerosene pollution, day > 3), the highly
contaminated samples (kerosene loads of 25 and 100 g/kg, day > 3) demonstrated that
the fractions of Burkholderiaceae and Sphingomonadaceae increased in response to the
kerosene contamination at least at some time points in all studied soils. Moreover, the frac-
tions of Acetobacteraceae, Caulobacteraceae, Mycobacteriaceae, Nocardiaceae, Oxalobacteraceae,
Pseudomonadaceae, and Solimonadaceae, as well as unclassified families of the Burkholderiales
order were elevated in three out of four studied systems (Figures 3b, S12 and S13).

At the phylum level, the most remarkable changes at high kerosene loads were the
increase of the relative abundance of Proteobacteria in all soils and a decrease of Aci-
dobacteriota and Actinobacteriota (Figures 3A and S14). Given that, the increased relative
abundance of Proteobacteria suggested that the observed changes were not caused by
survival of spore-forming bacteria as opposed to extinction of most other bacteria, since
Proteobacteria do not form endospores [52].

In all soils except Fibric Histosols, upon the high kerosene load, we observed several
dominant bacterial families that expanded up to 50% of the total bacterial community
(Figure 3B). For example, in Albic Luvisols in the pot experiment, Burkholderiaceae and
Yersiniaceae became dominant families in the moderately and highly contaminated samples,
reaching, respectively, up to 56% and 22% of the total community in some samples. Such
relative increase of abundance was not soil-specific, because in the field experiment, other
bacterial families became dominant in the same Albic Luvisols soil; for example, in sev-
eral highly contaminated samples, Rhodocyclaceae constituted 38% of the total community.
Caulobacteraceae and Pseudomonadaceae increased in almost all soils and represented the dom-
inant family in several samples of two different soils, field Albic Luvisols (Caulobacteraceae
up to 10%, Pseudomonadaceae up to 15%) and pot Dystric Arenosols (Caulobacteraceae up
to 12%, Pseudomonadaceae 22%). Similarly, in Dystric Arenosols, the families that were
enriched in almost all soils, such as Sphingomonadaceae (up to 21%) and Nocardiaceae (up to
16%), were predominant in the moderately and highly contaminated samples.

Most bacterial families that either increased their relative abundance in most of the
studied soils, or became dominant in some samples, belonged to Proteobacteria. An
increase in Proteobacteria is a frequent response to soil contamination by crude oil or
its derivates [53–56]. Some families belonged to the phylum Actinobacteria, also known
to respond to contamination [53]. Bacterial families that were expanded in moderately
and highly contaminated soils comprise representatives with a known ability to sur-
vive and degrade aliphatic or/and aromatic hydrocarbons. For instance, Burkholderiaceae
and Sphingomonadales are well-known for their ability to degrade polycyclic aromatic
hydrocarbons [57]. Some Sphingomonadales can degrade petroleum hydrocarbons includ-
ing polycyclic aromatic hydrocarbons [58]. Burkholderiaceae are enriched in many oil-
contaminated soils [53,59], whereas Pseudomonadaceae dominate bacterial communities
of oil-contaminated mangrove sediments [10]. Members of Pseudomonadaceae are among
the main bacteria responding to biodiesel contamination [56], degrade diesel in Antarc-
tic soils [60] and are dominant degraders of polycyclic aromatic hydrocarbons in Arc-
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tic soils [61]. Caulobacteraceae are highly enriched in oil contaminated soils [53,62], and
Solimonadaceae have been extracted from oil contaminated water samples [63]. Represen-
tatives of Rhodocyclaceae degrade aromatics compounds both in aerobic and anaerobic
conditions [64]. Oxalobacteraceae, while being members of uncontaminated soil commu-
nities [53,62], also act as key functional n-alkene degraders in crude-oil contaminated
soils [65]. Several members of Acetobacteraceae degrade hydrocarbons in slightly acidic
environments [66].

Members of phylum Actinobacteria, e.g., Nocardioidaceae, can degrade alkane and
aromatic compounds in contaminated soils [67], Mycobacteriaceae are propagated in soils
contaminated with petroleum and diesel [68].

The metabolic potential determined with Picrust2 clearly differentiates slightly con-
taminated (kerosene load is less than 1 g/kg) and moderately and highly contaminated
(5–100 g/kg) samples (Figures 6 and S15). On the PCA plot, the moderately and highly
contaminated samples were shifted in the same direction as compared to the slightly
contaminated samples in all soils. This could indicate that in response to kerosene contam-
ination, abundance of similar metabolic pathways decreased or increased. Interestingly,
such a shift appeared in the samples from the pot experiment starting from day 90, while
the samples from the field experiment responded faster and showed the shift from day 3.
The Aldex2 analysis of MetaCyc pathways differentially abundant in slightly and highly
contaminated samples showed that the highly contaminated samples featured a larger num-
ber of degradative pathways, specifically, the degradation of aromatic compounds, amino
acids, and secondary metabolites (Supplementary Figures S16 and S17). This could result
from an increase in the relative abundance of bacteria capable of degrading aromatic hy-
drocarbons from kerosene. Slightly contaminated samples featured more pathways related
to the biosynthesis of cofactors, nucleotides, amino-acids, lipids, carbohydrates, secondary
metabolites, and aromatic compounds; still, several pathways of polymer degradation and
respiration were enriched.
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Figure 6. PCA plot based on the relative abundance of metabolic pathways in samples, as pre-
dicted by Picrust2 on the V3V4 data. All soils were plotted together in one plane and then sepa-
rated to four subplots for better readability. Separate PCA plots for individual soils are shown in
Supplementary Figure S15.

Furthermore, the soils of the same geographic origin demonstrated stronger similarity
to each other in the fraction of metabolic pathways. Fibric Histosols and Albic Luvisols
from the humid environments of the Kaluga region being the most similar, and the soils
of semi-arid environments in Kazakhstan were significantly different from the Kaluga
region soils.

While the studied soils had quite different initial microbial communities, several
groups of bacteria simultaneously decreased the relative abundance in response to the
kerosene contamination in almost all soils (Supplementary Figure S13); these were un-
classified Acidobacteriae, Bryobacteraceae, Haliangiaceae, Nitrosomonadaceae, Pedosphaeraceae,
Pyrinomonadaceae, Solibacteraceae, unclassified Kapabacteriales, Polyangia, and RCP2-54, as well
as the WD2101 soil group. The resolution at genus level is shown in Supplementary Figure S18.



Life 2022, 12, 221 14 of 22

3.3.1. Albic Luvisols, the Pot Experiment

In the PCoA plot with weighted UNIFRAC (Figure 5), all samples were arranged
across two axes that visually correlated well with the experimental conditions. All samples
from the time point 0 (day 3) clustered together in one corner (upper left) of the plot
(p-value < 0.0001 for the V3V4 data on; however, this was insignificant for the V4V5 data,
Supplementary Table S5).

With time, the moderately and highly contaminated samples were shifted along Axis
1 (explaining 63% of variation), whereas the slightly contaminated samples were shifted
along Axis 2 (approximately 16% of variation). Therefore, Axis 1 may reflect the response to
kerosene treatment, while Axis 2 reflects the influence of laboratory conditions. Given that,
the samples with high kerosene loads tended to move faster along the Axis 1, while the
samples with intermediate loads showed some recovery potential, as after 1 year of incuba-
tions they were more similar to the controls than after 6 months. The main bacterial families
that increased during this shift along the Axis 1 were Yersiniaceae, Burkholderiaceae, and
Solimonadaceae; bacterial families that considerably changed in relative abundance in the
contaminated samples are shown in Figure 7 and Supplementary Figure S19.
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Figure 7. Heatmap with the relative abundance of bacterial families with a significant difference
between highly contaminated (kerosene load = 25 or 100, day > 3) and control (kerosene load = 0,
day > 3) samples of Albic Luvisols, the pot experiment. In the left panel, the abundance of each
bacteria family is scaled (Z-score) across all samples to highlight the relative changes between samples.
In the right panel, the medians of-centered log-ratio (clr) transformed abundances of bacterial families
in highly contaminated and control samples are shown. The V3V4 data are shown, a similar heatmap
for the V4V5 region is shown in Supplementary Figure S19.
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3.3.2. Dystric Arenosols, the Pot Experiment

In the PCoA plot, samples again arrange across Axis 1, according to the added kerosene
load, with more contaminated samples located farther from the control samples (Figure 5).
However, by day 360, the samples with the lowest kerosene load (1 g/kg) and moderately
contaminated samples appear to move back, somewhat closer to the control samples, un-
like the highly contaminated ones. This might result from the reconstitution of the soil
communities. In moderately contaminated samples, this effect was seen in the taxonomic
barplot, as in Proteobacteria, the relative abundance of which had increased in the initial
response to kerosene and declined after 1 year of incubation (Figure 3A). Bacterial fami-
lies that considerably changed in abundance in the contaminated samples are shown in
Figures 8, S20 and S21.
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Figure 8. Heatmap with the relative abundance of the top 50 most abundant bacterial families
with significant differences between highly contaminated (kerosene load = 25 or 100, day > 3) and
control (kerosene load = 0, day > 3) samples of Dystric Arenosols, the pot experiment. Notation as in
Figure 7. The V3V4 data are shown. All bacterial families with significant differences between highly
contaminated and control samples according to V3V4 data are shown in Supplementary Figure S20, a
similar heatmap for the V4V5 region is shown in Supplementary Figure S21.

3.3.3. Albic Luvisols, the Field Experiment

Microbial communities in the field experiments were expected to exhibit a noisier
behavior compared to the pot experiment due to environmental seasonal changes, and a
faster recovery due to kerosene removal by natural degradation (oxidation, illuviation, and
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evaporation) and possible colonization by bacteria from adjacent, untreated areas. Despite
soil sampling in summer, autumn, and winter, the alpha-diversity in slightly contaminated
samples showed an elevated temporal stability (Figure 1C), while in highly contaminated
samples, it decreased after the treatment and was not restored to the initial state even
1 year after the treatment, continuing to decrease. Hence, 1 year after treatment in the field
experiment, the microbial communities in highly contaminated soils were still stressed
in spite of the low concentration of kerosene in all samples. In moderately contaminated
samples, the alpha-diversity initially declined, but 1 year later, it could become even higher
than at the initial time point, as in the series with the initial kerosene load 10 g/kg and in
one of the two series with kerosene load 5 g/kg (the other one showing a slight decrease of
the alpha-diversity). This could be interpreted as microbiome recovery.

In PCoA, the difference between samples can be observed already on day 3, with
highly contaminated samples being located separately from others (p-value < 0.0001,
Supplementary Table S5, Figure 5). Similar to Dystric Arenosols, the slightly contaminated
samples formed a tight cluster in one half of the plot, while the moderately and highly
contaminated samples were shifted along the Axis 1, the shift being more pronounced for
the highly contaminated samples.

On the taxonomic barplot, the most of moderately contaminated samples showed
a tendency to reconstitute, with bacterial communities becoming similar to the control
after 1 year (Figure 3B). The changes in bacterial communities in the highly contaminated
samples became more pronounced over the whole experiment. Caulobacteraceae and
Pseudomonadaceae expanded after 90 and 180 days of incubation, and Rhodocylaceae and
Moraxellaceae propagated after 180 and 360 days (Figures 9 and S22).
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shown, a similar heatmap for the V4V5 region is shown in Supplementary Figure S22.
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3.3.4. Fibric Histosols, the Field Experiment

Soil communities in Fibric Histosols showed the most pronounced ability to restore
the alpha-diversity after kerosene contamination (Figure 1). This might result from fast soil
recovery from kerosene, its level being not detectable in most samples after 6 months. In
the moderately and highly contaminated samples, the alpha-diversity was the lowest after
90 days, but was at least partially restored by day 180. After 360 days, the alpha-diversity
was similar to the initial level in most samples of the series.

The differences in average beta-diversity were insignificant both between groups
of samples with different kerosene loads at the same day, or between groups with the
same kerosene load on different timepoints (Supplementary Table S5). This is most likely
caused by the high heterogeneity of the Fibric Histosols samples. However, the moderately
and highly contaminated samples were shifted compared to the slightly contaminated
samples along Axis 1 of the PCoA plot (Figure 5). Interestingly, this shift decreased with
time in most samples. Addition of moderate and high amounts of kerosene reduced the
fraction of Acidobacteriota and increased the fraction of Proteobacteria. These changes were
already observed by day 3 (Figure 3A). Burkholderiaceae, Moraxellaceae, Mycobacteriaceae,
Chthoniobacteraceae, and unclassified Vampirivibrionia expanded in relative abundance
from day 3 to day 180 (Figures 3B, 10 and S23), but then the fraction of these families
decreased again. Hence, while the alpha-diversity of communities was almost restored after
180 days, their taxonomic composition was different compared to the slightly contaminated
samples (Supplementary Figure S4).
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Figure 10. Heatmap with the relative abundance of bacterial families with significant differences
between highly contaminated (kerosene load = 25 or 100, day > 3) and control (kerosene load = 0,
day > 3) samples of Fibric Histosols, the field experiment. Notation as in Figure 7. The V3V4 data are
shown, a similar heatmap for the V4V5 region is shown in Supplementary Figure S23.



Life 2022, 12, 221 18 of 22

4. Conclusions

Our results demonstrate that kerosene cannot be considered as a safe substance for
soil bacteria, having a detrimental effect on soil microbiome. Even after its clearance, the
composition of microbiome (especially at high loads) can drastically differ from the initial
one, which we call a ‘kerosene label’. Kerosene pollution should be taken into account
when conducting ecological soil monitoring and for agricultural purposes. Moreover, the
obtained results may guide the selection of candidate bacteria for bioremediation and enable
ranging soils according to their resistance or vulnerability to hydrocarbon contamination.

We show that kerosene disappears faster in the natural conditions of a field experiment
as compared to a laboratory experiment with limited aeration, drainage, and the migration
of bacteria and substances. One year after the treatment all studied soils contained no
more than 1.4 g/kg of kerosene upon a high initial kerosene load (>25 g/kg) and were
kerosene-free at lower initial loads. Consistent changes in the physicochemical properties
of soils were observed in even shorter periods and only in the pot experiment.

The response of the studied soil systems to adverse kerosene impact were somewhat
similar, as the proportion of bacteria resistant to hydrocarbons and/or able to metabolize
hydrocarbons was increased. After kerosene input, the alpha-diversity of all moderately
and highly contaminated soils decreased due to extinction of many minor bacterial groups
and the development of dominant bacteria taxa comprising the degraders of aliphatic and
aromatic hydrocarbons. Despite the fact that kerosene was gradually dissipated and the
soil physicochemical properties generally restored to the initial levels, the microbiome
composition in moderately and highly contaminated samples recovered slowly, and not
in all studied systems. In the highly contaminated soils (25–100 g/kg), the changes were
irreversible within 1 year in Dystric Arenosols and Albic Luvisols, but reversible in Fibric
Histosols. The microbocenoesis of the moderately contaminated samples (5–10 g/kg of
soil) of Albic Luvisols restored faster during the field experiment and remained disturbed
in the pot experiment. Adding 1 g/kg of kerosene only slightly changed the composition
of all studied soil microbiomes. During the pot experiment, the alpha-diversity of the soil
microbial community continued to decline after 1 year even in the control samples.

We conclude with the following useful practical suggestions. (1) Weak seasonal varia-
tion of the microbiome composition of untreated soils in the field experiments from Summer
to Fall and Winter allows for the comparative analysis of soil bacterial communities sampled
in different seasons. (2) As the data obtained with two 16S rRNA regions were consistent,
and more bacterial families could be identified using the V3V4 region compared with
the V4V5 region, the former is more suitable for the characterization of soil microbiomes.
(3) Weighted UNIFRAC accounting for the phylogenetic relationships of the soil bacteria is
more robust to sequencing errors than the Bray–Curtis dissimilarity measure.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.
3390/life12020221/s1. Supplementary Table S1. Meteorological conditions for the period of the field
experiment with Albic Luvisols and Fibric Histosols. Supplementary Table S2. Methods of soil chemi-
cal analyses used. Supplementary Table S3. Temporal changes (mean and standard deviation) in the
concentration of kerosine during the pot (P) and field (F) experiment (g/kg). Supplementary Table S4.
Temporal changes in soil physicochemical properties during the pot (P) and field (F) experiment.
Supplementary Table S5. Significance of the differences between the topsoil samples (16S rRNA) in
pot (P) and field (F) experiments grouped according to the initial kerosene load or a day after treatment
and assessed using PERMANOVA on weighted UNIFRAC beta-diversity. Supplementary Figure S1.
Soil treatment with kerosene and soil sampling. A. Kerosene treatment of the soil stored in a plastic
bag (1 g/kg load). B. The subsamples placed in 400 cm3 glass containers with hermetically sealed
iron lids. C. The structure of the A-horizon of Arenosols preserved after kerosene treatment. D.
The structure of the A-horizon of Luvisols preserved after kerosene treatment. E. The soil subsam-
ples ready for transportation to the laboratory. F. Soil subsamples subjected to the DNA isolation.
Supplementary Figure S2. Experimental plots with a size of 50 × 50 cm. Supplementary Figure S3.
Bacterial abundances estimated using different 16S rRNA. Supplementary Figure S4. The mean beta
distance (weighted UNIFRAC) of the microbiomes to the microbiomes from the control samples
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collected on the same day. Supplementary Figure S5. A PCA plot on fractions of the abundance
of MetaCyc pathways in the samples without added kerosene, based on Picrust2 predictions for
the V3V4 region. Supplementary Figure S6. The mean beta distance (weighted UNIFRAC) of mi-
crobiomes to the microbiomes from the samples with the same kerosene load collected on day 3.
Supplementary Figure S7. A log fold change of the amplicon concentration estimated with qPCR
relative to the mean amplicon concentration in control samples collected on day 3. Supplementary
Figure S8. Principal coordinate analysis (PCoA) plots for the samples of Albic Luvisols (pot ex-
periment). Supplementary Figure S9. Principal coordinate analysis (PCoA) plots for the samples
of Dystric Arenosols (pot experiment). Supplementary Figure S10. Principal coordinate analy-
sis (PCoA) plots for the samples of Albic Luvisols (field experiment). Supplementary Figure S11.
Principal coordinate analysis (PCoA) plots for the samples of Fibric Histosols (field experiment).
Supplementary Figure S12. The relative abundance of the top 40 most frequent bacterial families
in the studied soils. The bacterial composition was assessed using the V4V5 region of 16S rRNA.
Supplementary Figure S13. The number of common bacterial families significantly increased and de-
creased in their relative abundance in highly contaminated soil samples. Supplementary Figure S14.
The relative abundance of bacterial phyla in the studied soils assessed using the V4V5 region of 16S
rRNA. Supplementary Figure S15. PCA plots based on the relative abundance of metabolic pathways
predicted with Picrust2 on the V3V4 data. Supplementary Figure S16. The number of differentially
abundant MetaCyc pathways from different categories in highly contaminated and slightly contami-
nated samples in all soils. Supplementary Figure S17. Number of differentially abundant MetaCyc
pathways from high-level categories in highly contaminated and slightly contaminated samples in
all soils. Supplementary Figure S18. The relative abundance of the top 10 most frequent bacterial
genera in the studied soils. Bacterial composition was assessed using the V3V4 and V4V5 regions
of 16S rRNA. Supplementary Figure S19. Heatmap of the relative abundance of bacterial families
with significant difference in abundance between highly contaminated and control samples of Albic
Luvisols (pot experiment). The V4V5 data are shown. Supplementary Figure S20. Heatmap of
the relative abundance of bacterial families with significant differences in abundance between the
highly contaminated and control samples of Dystric Arenosols (pot experiment). The V3V4 data are
shown. Supplementary Figure S21. Heatmap of the relative abundance of bacterial families with
significant differences in abundance between highly contaminated and control samples of Dystric
Arenosols (pot experiment). The V4V5 data are shown. Supplementary Figure S22. Heatmap of
the relative abundance of bacterial families with significant difference in abundance between highly
contaminated and control samples of Albic Luvisols, (field experiment). The V4V5 data are shown.
Supplementary Figure S23. Heatmap of the relative abundance of bacterial families with significant
differences in abundance between the highly contaminated and control samples of Fibric Histosols,
(field experiment). The V4V5 data are shown.
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