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Abstract

Genome-scale metabolic models bridge the gap between genome-derived bio-

chemical information and metabolic phenotypes in a principled manner, provid-

ing a solid interpretative framework for experimental data related to metabolic

states, and enabling simple in silico experiments with whole-cell metabolism.

Models have been reconstructed for almost 20 bacterial species, so far mainly

through expert curation efforts integrating information from the literature with

genome annotation. A wide variety of computational methods exploiting meta-

bolic models have been developed and applied to bacteria, yielding valuable

insights into bacterial metabolism and evolution, and providing a sound basis for

computer-assisted design in metabolic engineering. Recent advances in computa-

tional systems biology and high-throughput experimental technologies pave the

way for the systematic reconstruction of metabolic models from genomes of new

species, and a corresponding expansion of the scope of their applications. In this

review, we provide an introduction to the key ideas of metabolic modeling, survey

the methods, and resources that enable model reconstruction and refinement, and

chart applications to the investigation of global properties of metabolic systems,

the interpretation of experimental results, and the re-engineering of their

biochemical capabilities.

Introduction

The flow of genome sequencing, metagenome sequencing

and other high-throughput experimental efforts aimed at

exploring the space of microbial biochemical capabilities has

been steadily growing in recent years. At the time of writing,

more than 1800 bacterial genome-sequencing projects

have been initiated and nearly 650 have been completed

(http://www.genomesonline.org, http://www.ebi.ac.uk/integr8).

Combined with increasingly efficient annotation methods,

these set the stage for the systematic identification of most

enzymes encoded in the genomes of the corresponding

bacterial species. A variety of so-called ‘-omics’ technologies

now routinely provide large-scale functional clues on mole-

cular interactions and cellular states, offering snapshots of

the dynamic operation of metabolism under specified con-

ditions, and adding to the store of accumulated knowledge

on microbial biochemistry and physiology.

Simultaneously, the expected wealth of new biochemical

activities, the progress of metabolic engineering techniques

aimed at harnessing these activities, and the perspective of

applications to white and green biotechnology have triggered

a strong renewed interest in the exploration of bacterial

metabolism. In addition to charting the range of naturally

evolved chemical transformations, relevant research ques-

tions include the following: How does the global metabolism

of a bacterium react to changes in its environment? What

kind of joint metabolic operation of distinct species can help

sustain a bacterial community? How can genomic and

biochemical information be best exploited to gain insights

into the relationship between an organism’s genotype and its

phenotype? For instance, can we predict changes in metabo-

lism-related phenotypic traits caused by simple or complex

genotype modifications? How did metabolic processes

evolve? How can metabolic networks be efficiently repro-

grammed for a variety of utilitarian purposes?

Investigations of a bacterium’s metabolism are typically fed

by knowledge (ultimately from observations) at two different

scales of description of the chemistry at work within cells. The

larger scale focuses on the physiology of the whole bacterial
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cell. For instance, which media is it able to grow on? What are

the relative quantities of chemical nutrients it requires for

growth? How efficient is the cell at converting chemicals from

the environment into its own components? Such metabolic

capabilities result from the coordinated action of the enzymes

expressed in the respective species, the knowledge of which

belongs to the finer, molecular scale. Each of the correspond-

ing biochemical conversions can be identified either directly

by performing enzymatic assays, or indirectly, from the

genome sequence, through a homology relationship with

proteins whose function has been previously elucidated. To-

gether, the reactions that have been demonstrated to poten-

tially occur in the cell form the metabolic network of the

organism. Metabolic networks can thus be viewed as lists

of those molecular mechanisms (reactions) and associated

molecular components (enzymes, substrates, and products)

that are most directly related to the metabolic capabilities

mentioned above.

For a given bacterial species, confronting knowledge from

these two scales, molecular vs. cellular, can reveal inconsis-

tencies. For instance, it may happen that no sequence of

identified reactions is capable of producing one of the

essential cell components from the set of compounds avail-

able in a defined growth medium, even though the species is

known to grow on that medium. Furthermore, when the two

scales are consistent, their relationship can be investigated

further in order to enumerate the possible implementations

of the physiology that the metabolic network can achieve.

Biochemists have traditionally performed such investigations

by modularizing the set of reactions into metabolic pathways,

typically grouping together reactions that allow the conver-

sion of one or more ‘input’ metabolites into ‘output’ meta-

bolites. Pathways boundaries are somewhat arbitrary, even

though inputs and outputs tend to be metabolites involved in

several reactions. Pathway-based analyses are thus focused on

the possible fates of a restricted number of compounds, and

are amenable to manual expertise thanks to the simplification

brought by the modularized view (Huang et al., 1999; Teusink

et al., 2005; Risso et al., 2008).

Yet, metabolic pathways typically involve a large number

of ‘side metabolites’ such as cofactors and byproducts of

chemical reactions, and metabolism is as much about

converting nutrient into cell components as it is about

regenerating cofactors and recycling (or secreting) ulti-

mately unused byproducts. The latter transformations typi-

cally involve several pathways, and are dependent on the

stoichiometry and rates of the reactions. Manual approaches

are insufficient to assess their feasibility by a given network

for at least two reasons: metabolic networks are too large,

and the question requires a quantitative analysis.

Bridging that gap between knowledge of the metabolic

network structure and observed metabolic phenotypes is

precisely where metabolic models come into play. Generally

speaking, a model of a natural system is one of many

possible mathematical representation of that system,

explicitly describing some of its features and supporting

predictions on some other features, the latter being typically

time- or environment dependent. In this particular case,

knowledge of the metabolic network alone is not quite

sufficient to predict the metabolic capabilities of a cell. Also

needed are a structured (mathematical) representation of

that network, together with a set of rules and possibly

quantitative parameters enabling simulations or predictions

on the joint operation of all network reactions in a given

environment, and in particular predictions on the values of

metabolite fluxes and/or concentrations (Papin et al., 2003).

The above, in short, constitutes a metabolic model.

Constraint-based genome-scale models of metabolism

(Palsson, 2006) are a category of models precisely aimed at

assessing the physiological states achievable by a given meta-

bolic network, and at uncovering their biochemical imple-

mentation in terms of metabolic fluxes. They offer an

idealized view of the cell as a set of ‘pipes,’ with metabolites

flowing through each pipe, and biochemical conversions

taking place at junctions between pipes. Some metabolites

can also be exchanged with the environment, flowing in or out

of the system through dedicated pipes that can be opened or

shut, and may have upper bounds on their throughput. The

cell is required to achieve balanced production and consump-

tion of all the intermediate substrates and products involved

in its metabolism: what flows in a junction must flow out.

Constraint-based models can help investigate in a sys-

tematic manner most of the research questions listed at the

start of this introduction, because they provide a way to

explore the consequences on the operation of the entire

metabolic network of the piecemeal information available

on each of its parts. They are especially well suited to ‘what

if ’ experiments involving genetic or environmental pertur-

bations, such as: how would the cell behave in an environ-

ment with a different chemistry than the ones that have been

experimented on? How would one or more deletions affect

its metabolic capabilities? Which deletions would maximize

the production of both metabolite x and biomass?

Before a model for a given species can be used to gain new

insights into its metabolic capabilities or evolutionary

history, it must first be built from the scattered genomic,

biochemical, and physiological information available on

that species up to a point where known physiology can be

predicted from biochemistry without major mistakes. This

process is sometimes known as ‘model reconstruction’; its

endpoint is a functional genome-scale model, i.e. a struc-

tured representation of the current state of knowledge

on the metabolism of the respective species (Reed et al.,

2006a). The model provides a framework to interpret new

experimental data gathered at the cellular or molecular scale.

That data may be incompatible with the current model, in
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which case either or both should be questioned, leading to

possible revisions or improvements. If, on the other hand,

data and model are compatible, the new evidence may still

narrow down the set of possible metabolic behaviors of the

cell, thus enriching the model (Covert et al., 2004).

This review article covers both the reconstruction of

genome-scale metabolic models and their applications

to basic and applied research in microbiology. Following a

primer on constraint-based models, we will review the state

of the art in model reconstruction. Next, we will survey the

main applications of metabolic models, from phenotype

predictions to data interpretation or metabolic engineering.

Practical aspects of direct relevance to the working micro-

biologist will be covered by a sketch of the main dedicated

database and software resources. We will conclude the

review with a discussion on future directions in the field.

Foundations of genome-scale metabolic
modeling

The metabolic state of a cell and its variation over time can

be described by metabolite concentrations and reaction

rates, which can be viewed as the ‘endpoints’ of metabolic

operation. These quantities are related by the law of con-

servation of matter, which states that the net production rate

of a metabolite equals the sum of the rates of the reactions

consuming or producing it, weighted by the associated

relative stoichiometric coefficients. Conversely, enzyme

kinetics express reaction rates as complex functions of

metabolite concentrations and enzymatic activities, which

vary over time as a result of transcriptional and metabolic

regulation (Smallbone et al., 2007). Deriving meaningful

predictions from these two types of equations for large

metabolic systems is a very challenging proposition, not

only because of the mathematics, but also because many of

the parameters are not known, difficult to measure, and

possibly context dependent. In practice, these pitfalls restrict

the use of kinetic modeling to metabolic systems much

smaller than ‘whole-cell’ metabolic networks, which typi-

cally include hundreds of reactions for a bacterium.

Constraint-based models bypass these difficulties by

focusing on the average reaction rates achievable by cells

grown in steady or slowly varying environmental condi-

tions. Rates are typically averaged over minutes, fitting with

the typical time scale of uptake or secretion rates measure-

ments. Such averages are not affected by transient states

because the characteristic relaxation time of metabolic

systems – i.e. the time it takes for chemical reactions within

the cell to reach a steady state – is much shorter than a

minute. Moreover, because environmental changes and

variations of enzyme concentrations occur on longer time

scales, one need not take into account regulatory changes to

assess average reaction rates over minutes. Turnover rates of

most intracellular metabolites are high in bacterial cells

(Stephanopoulos et al., 1998). At the time scale considered

here, their concentrations have therefore generally reached

steady levels, and remain constant as long as environmental

conditions do not change. As a consequence, the law of

conservation of matter constrains the production and con-

sumption rates of these metabolites to be balanced. These

assumptions are usually summarized under the expression

steady-state hypothesis and the corresponding constraint on

reaction rates as a mass balance (or stoichiometric) con-

straint (Stephanopoulos et al., 1998). Obviously, this rea-

soning applies only to metabolites that are neither taken in

from an external pool (e.g. nutrients) nor excreted from the

cell or accumulated in large quantities (e.g. cell components

such as nucleic acids, amino acids, or some lipids). For each

metabolite that can be ‘balanced,’ the mass balance con-

straint can be expressed mathematically by a linear equation

relating reaction rates of the form
P

sjnj = 0, where sj is the

stoichiometric coefficient of the metabolite in reaction j, and

nj the rate of reaction j.

In addition to mass balance constraints, reactions that are

known to be thermodynamically irreversible in vivo are

constrained to have a non-negative reaction rate. Similarly,

upper bounds on the reaction rates can be known from

measurements or theory and included in the model as

additional constraints on the reaction fluxes (Reed &

Palsson, 2003).

Mass balance, irreversibility and upper-bound constraints

result from the application of simple laws of physics to

individual reactions or metabolites from the network. These

constraints propagate from reaction to reaction throughout

the metabolic network; the constraint-based modeling

framework is designed to automatically compute the result-

ing balance. To that end, it makes use of a succinct

mathematical representation of all reaction stoichiometries:

the stoichiometric matrix (see Fig. 1). In this matrix, columns

represent reactions and rows metabolites. The stoichio-

metric coefficient of a metabolite within a reaction is

included at the intersection of the corresponding row and

column (see Fig. 1). Reaction rates are represented in

constraint-based models by single numbers, the reaction

fluxes, which are normalized by the weight of the cells

harboring the reactions to account for the size of the colony

(a reaction flux is typically expressed with the Unit

mmol h�1 g�1 dry wt). Because the goal is to describe the

joint operation of many metabolic reactions, it is convenient

to define a flux distribution as a collection of reaction fluxes

covering the entire system. Under the steady-state approx-

imation, the concentrations of balanced metabolites being

constant, a flux distribution carries sufficient information to

completely describe a state of the system. Using the stoichio-

metric matrix, a simple matrix equation – summarizing all

mass balance equations shown above – can then be used to
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enforce the mass balance constraints on all reactions fluxes:

S.n= 0, where S is the stoichiometric matrix and n the flux

distribution represented as a vector.

A precise definition of the boundary of the system to be

modeled is also needed to formulate an explicit mathematical

representation. The system typically includes the whole cell

and its vicinity, in order to encompass all the exchanges of

matter between the cell and its environment. Transport

reactions that allow for exchange of specific metabolites with

the extracellular space through the membrane are also in-

cluded in the model. Environmental conditions are then

modeled by acting on the balance of the external metabolites:

metabolites that are available from the environment can be

taken up by transporters while the others can only be excreted.

A flux distribution that is compatible with all the con-

straints in a given environment is considered achievable (or

feasible) by the cell, whereas a distribution that violates at

least one of these constraints is not. The simplicity of the

system of linear equations that represent constraints is one

of the main strengths of the framework, because it permits

fast assessments of the feasibility of a flux distribution using

a computer and standard algorithms.

The simplicity of constraint-based models comes at the

expense of a number of limitations in their predictive

capabilities. Such models focus solely on reaction fluxes,

and completely ignore the influence of metabolites and

enzymes. In reality, however, enzyme kinetics, and tran-

scriptional or metabolic regulation may significantly influ-

ence reaction fluxes. Regulation can for instance limit the

use of a pathway by downregulating some of its enzymes

when particular environmental conditions are met. These

mechanisms, if they could somehow be taken into account,

Fig. 1. Genome-scale modeling of metabolism. A metabolic network (top left) is transformed into a model by defining the boundaries of the system, a

biomass assembly reaction, and exchange fluxes with the environment (top right). Using the corresponding stoichiometric matrix (bottom right), the

achievable flux distributions compatible with enforced constraints can be found (a particular one is depicted in the bottom left figure).
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would eliminate flux distributions otherwise allowed by con-

straint-based models. In other words, models may allow ‘false-

positive’ metabolic states, which respect the enforced meta-

bolic constraints but are inconsistent with other biological

processes. Several attempts have been made to extend the

constraint-based modeling framework, in order to account for

regulatory interactions (Covert et al., 2001), signaling pro-

cesses (Lee et al., 2008b), the first and second laws of

thermodynamics (Beard et al., 2002, 2004), or metabolite

concentrations (Kümmel et al., 2006b; Henry et al., 2007).

Nevertheless, these extensions require the inclusion of addi-

tional experimental data and may result in more complex

mathematical formulation hindering their practical use.

Some predictions of constraint-based models may be

wrong in cases where modeling assumptions do not hold.

For instance, some metabolites do accumulate in the cell, and

the mass balance assumption clearly does not hold for these.

In general, the concentration of specific metabolites may be

high enough relatively to the fluxes they are involved in for the

mass balance approximation to become clearly false.

In practice, many of the analytical methods that have

been developed for constraint-based models focus on defin-

ing and characterizing sets of feasible flux distributions.

Others focus on a single distribution. The diversity of flux

distributions compatible with constraints in a given envir-

onment can be viewed as reflecting the diversity of the

metabolic states the cell may find itself in. Nevertheless, the

space of feasible flux distributions features biologically

informative properties whose determination requires ade-

quate techniques; these will be introduced in the next

sections of this review.

Building the models

The level of detail necessary to build a constraint-based model

of a bacterium’s metabolism is relatively low; the only

information required is the precise reaction stoichiometries

and directions, in order to account for mass balance and

irreversibility constraints. To reflect the global biochemical

capabilities of the organism, the model also needs to encom-

pass the complete set of metabolic activities that can occur

within it – or a reasonable approximation thereof. This

comprehensiveness requirement and the high number of

metabolic reactions make the actual construction of such

models a challenging task in itself. In this section, we will

review the main methods and resources helping in this task.

We will first show how information from genome annotation

can be used to infer biochemical reactions at large scale, a task

commonly called metabolic network reconstruction. We will

then review the techniques commonly used to assess the

consistency of reconstructed models, and show how missing

biochemical activities can be identified to complete the model.

Initial reconstruction of metabolic models

The most reliable evidence from which the presence of a

metabolic reaction in a species can be inferred is experimental

proof of the respective biochemical activity. Such biochemical

results have been accumulated for several decades, mostly from

dedicated experiments targeting well-defined activities. As a

consequence, the corresponding reactions have often been

precisely and reliably characterized. Exploiting these results to

reconstruct the whole metabolism of an organism is a labor-

intensive task, however, as it requires processing a high volume

of literature. Most existing metabolic models have been recon-

structed in this manner and for extensively studied organisms.

For instance, the most complete bacterial model available to

date – namely iAF1260, the latest model of Escherichia coli

metabolism – includes references to more than 320 articles

(Feist et al., 2007). Two types of databases centralize biochem-

ical knowledge: enzyme-centric ones, which collect functional

information acquired on enzymes, for example BRENDA

(Barthelmes et al., 2007) or SwissProt (Boutet et al., 2007);

and pathway databases, aimed at describing the biochemistry

of metabolic processes, for example EcoCyc for E. coli

metabolism (Karp et al., 2007) or UM-BDD for microbial

biodegradation pathways (Ellis et al., 2006) (see Table 1).

These biochemical clues are typically incomplete rela-

tively to the set of all possible activities, especially for less

studied organisms. In addition, while technologies aiming at

high-throughput characterization of biochemical activities

are improving, they are not yet mature enough to provide

reasonably good coverage. Genes corresponding to enzymes

that have been experimentally characterized have never-

theless been identified. Their homologues in the genome of

such species can be identified using comparative genomics

methods, thereby indicating the presence of the associated

biochemical activities.

The traditional path to inferring metabolic reactions from

the genome of an organism is gene-centric, at least in its first

steps. Nearly all available genome sequences are now system-

atically processed through automated annotation pipelines,

which identify coding sequences and infer functional annota-

tions. Covering all relevant methods would be beyond the

scope of this article, but thorough reviews can be found else-

where (Médigue & Moszer, 2007). Basically, coding sequences

are first identified using highly efficient gene-finding algo-

rithms [such as GENEMARK (Besemer et al., 2001), GLIMMER

(Delcher et al., 1999), or AMIGENE (Bocs et al., 2003)], which

discard the ORFs that are not likely to be coding for a protein.

Functional annotations are then sought for each gene using

complementary approaches: sequence homology with pro-

teins of known function [stored for instance in UniprotKB

(UniProt, 2008)], conservation of genomic structure with

annotated species (e.g. synteny), and prediction of functional

domains (Apweiler et al., 2000; Claudel-Renard et al., 2003).
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Combining the above methods and information sources

increases the reliability of the annotation transfers from

proteins of known function to new genes. Current annotation

pipelines succeed at assigning a function to 50–80% of the

genes (Serres et al., 2004). A number of databases provide such

automatically generated annotations for most sequenced

bacterial genomes (see Table 1).

In order to build a metabolic model, it is necessary to

identify the specific chemical conversions catalyzed by each

enzyme, together with the corresponding stoichiometries.

Functional annotations of enzymes therefore need to be

translated into appropriate chemical equations. The Enzyme

Commission (EC) numbers classification offers an unam-

biguous way to identify enzyme-catalyzed reactions. When

provided by the enzyme annotations, these numbers directly

specify which reactions they catalyze. Several enzyme and

metabolic databases provide the correspondence between

EC numbers and reactions (see Tables 1 and 2). These

Table 1. Data sources for metabolic model reconstruction and refinement

DNA sequence and genome annotation databases

DDBJ http://www.ddbj.nig.ac.jp/ General nucleotide sequence database

EMBL http://www.ebi.ac.uk/embl/ General nucleotide sequence database

GenBank http://www.ncbi.nlm.nih.gov/Genbank/ General nucleotide sequence database

Integr8 http://www.ebi.ac.uk/integr8/ Integrated information on complete genomes

CMR http://cmr.jcvi.org/ Integrated information on complete prokaryotic genomes

IMG http://img.jgi.doe.gov/ Integrated system for analysis and annotation of microbial genomes

SEED http://seed-viewer.theseed.org/ Integrated system for analysis and annotation of genomes using functional

subsystems

Protein and enzyme databases

BRENDA http://www.brenda-enzymes.info/ Comprehensive enzyme information system gathering data collected from the

literature by curators

ENZYME http://www.expasy.ch/enzyme/ Enzyme nomenclature database providing extensive information on all enzymes

with an associated EC number

UniProt http://www.ebi.ac.uk/uniprot/ Universal Protein Resource gathering protein sequences and annotations from

SwissProt (manually reviewed), trEMBL (computer annotated), and PIR

TransportDB http://www.membranetransport.org/ Predictions of membrane transport proteins for fully sequenced genomes

PSORTdb http://db.psort.org/ Repository of experimentally determined and predicted protein localizations

Prolinks http://prolinks.mbi.ucla.edu/ Database of predicted functional links between proteins

STRING http://string.embl.de/ Database of known and predicted protein–protein interactions

Metabolic databases

CheBI http://www.ebi.ac.uk/chebi/ Database on small molecules of biological interest

Pubchem http://pubchem.ncbi.nlm.nih.gov/ Database on small molecules

LipidMaps http://www.lipidmaps.org/ Database on lipid metabolites

Reactome http://www.reactome.org/ Curated database of biological pathways

KEGG http://www.genome.jp/kegg/ Suite of databases comprising information on compounds, reactions, pathways,

genes/proteins

BioCyc http://www.biocyc.org/ Collection of organism-specific pathway/genome databases, including a curated

multiorganism pathway database: MetaCyc

UniPathway http://www.grenoble.prabi.fr/

obiwarehouse/unipathway/

Curated resource of metabolic pathways linked to UniProt enzyme database

UM-BBD http://umbbd.msi.umn.edu/ Database on microbial biocatalytic reactions and biodegradation pathways

Experimental data repositories

IntAct http://www.ebi.ac.uk/intact/ Repository of reported protein interactions

DIP http://dip.doe-mbi.ucla.edu/ Database of experimentally determined interactions between proteins

Array Express http://www.ebi.ac.uk/aerep/ Public repository of microarray data

GEO http://www.ncbi.nlm.nih.gov/geo/ Public repository of microarray data

ASAP http://asap.ahabs.wisc.edu/ Repository of results of functional genomics experiments for selected bacterial

species

E. coli multi-omics DB http://ecoli.iab.keio.ac.jp/ Comprehensive dataset of transcriptomic, proteomic, metabolomic, and fluxomic

experiments for E. coli K12

Systomonas http://www.systomonas.de/ Repository of ‘omics’ datasets and molecular networks for pseudomonads species

PubMed http://www.pubmed.org/ Database on biomedical literature

Metabolic model repositories

BiGG http://bigg.ucsd.edu/ Repository of reconstructed genome-scale metabolic models

BioModels http://www.ebi.ac.uk/biomodels/ Database of mathematical models of biological systems
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metabolic databases are often comprehensive catalogues of

known biochemical reactions with the associated chemical

information, including stoichiometry: they include most of

the reference knowledge needed to build metabolic models.

Several issues hinder this translation process. First, enzy-

matic activities that have been identified only recently are

usually not included in the EC classification. Furthermore, full

EC numbers are not always systematically assigned in the

annotation process. As a result, many annotations retrieved

from protein databases are only textual (as in UniProtKB) or

ontology based [as in Gene Ontology (Ashburner et al., 2000)]

and do not provide the required metabolic information

directly. To address this shortcoming, PATHOLOGIC, the meta-

bolic network reconstruction software tied to the BioCyc

metabolic databases, includes an algorithm performing the

identification of gene-reaction links from textual annotations

(Karp et al., 2002) (see Table 3). This procedure relies on a

dictionary of synonyms, however, and may fail at recognizing

an explicit reaction when uncommon terms are used. An

expert curation step is thus necessary, for which metabolic

pathway databases provide useful guidance. Recent initiatives

specifically aim at solving this issue: for instance, textual

annotations in UniProtKB/SwissProt are being progressively

replaced by direct references to reactions from UniPathway, a

metabolic database in which all reaction steps are specified up

to the chemical level (see Table 1).

The broad specificity of some enzymes may also signifi-

cantly increase the number of distinct reactions they can

catalyze. For instance, enzymes annotated with alcohol

dehydrogenase activity (EC 1.1.1.1) may catalyze the degra-

dation of several distinct alcohols. Similarly, enzymes acting

on lipids are often not specific to the length of their carbon

chain. In such cases, functional annotations often report the

activity using generic metabolites (e.g. ‘an alcohol’ or ‘a fatty

acid’) representing the entire set of possible substrates.

Instantiating reactions with specific metabolites is required

when building a metabolic model, however, as accounting

for the mass balance constraint requires that all metabolites

should be well defined. It is thus necessary to identify for

each generic compound the corresponding set of specific

compounds, as much for primary substrates as for cofactors.

This task is complicated by the combinatorial effect, because

the number of substrate combinations may significantly

increase the number of specific reactions. To address this

issue, databases of chemical species can be used to identify

all metabolites of a given chemical category (see Tables 1 and

2). In order to determine which metabolites are preferen-

tially recognized by enzymes, processing the literature or

browsing information collected in enzyme databases such as

BRENDA (Barthelmes et al., 2007) is often necessary.

Metabolites involved in metabolic pathways that have

already been inferred may also help in selecting the most

relevant substrates.Ta
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Alternative approaches to metabolic network reconstruc-

tion bypass the classical annotation step altogether, taking

instead advantage of the curated links between enzyme-

encoding gene sequences and reactions [or EC numbers, as

in the Genome-Based Modeling (GEM) system (Arakawa

et al., 2006)] provided by some metabolic databases. Orthol-

ogy relationships are sought between reference sequences

from these databases and the coding sequences from the new

genome. While these methods [e.g. AUTOGRAPH (Notebaart

et al., 2006), or IDENTICS (Sun & Zeng, 2004), see Table 3]

simplify the reconstruction process, they usually do not

benefit from advanced annotation techniques, such as those

derived from structural genomics or domains recognition,

and are more difficult to combine with expert annotation.

They are also conditioned on the availability of curated

gene-reaction associations for a set of reference organisms.

The reconstruction of the metabolism of a new organism

can also benefit from the knowledge of complete pathways

in related organisms. Metabolic databases often group

reactions into pathways or modules that indicate known

co-occurrence relationships between reactions that hold

across several organisms. Three main resources provide this

type of information: MetaCyc (Caspi et al., 2006), KEGG

Modules (Kanehisa et al., 2007), and SEED (Overbeek et al.,

2005) (see Tables 1 and 2). Metabolic model reconstruction

procedures tied to such databases can exploit the known co-

occurrences of reactions across reference organisms whose

metabolism has been extensively studied (Arakawa et al.,

2006). An instance of a reconstruction procedure taking

advantage of this notion of metabolic context is again

PATHOLOGIC, which infers the presence of pathways rather

than that of single reactions when possible. A reconstruction

procedure based on the SEED database was also proposed

recently (DeJongh et al., 2007); it includes a check that the

inferred pathways can be properly connected to form a

‘working’ model. By leveraging a specific form of ‘guilt-by-

association,’ approaches of this type may be able to retrieve

reactions catalyzed by enzymes that cannot be correctly

identified using current methods. In addition, the presence

of spontaneous reactions in the organism may be identified

by the occurrence of neighboring reactions in reference

metabolic pathways.

In addition to their equations, the reversibility and

localization of reactions need to be determined for meta-

bolic models. Few metabolic or enzyme databases report on

the reversibility of reactions in in vivo conditions (see Table

2). When not found in the literature, reversibility is there-

fore often determined using simple thermodynamic con-

siderations based on the reaction Gibbs energy, if it is

known, or on basic rules depending on the energy equiva-

lents (e.g. NADH or ATP) involved in the reactions (Ma &

Zeng, 2003; Kümmel et al., 2006a). Even though very few

compartments divide bacterial cells (with periplasm and

cytoplasm as the only main compartments in gram-negative

bacteria), the presence of such physical separation between

metabolites need to be included in their metabolic models.

Enzymes present in one compartment cannot interact with

metabolites present in another one. To properly model the

effect of compartments, the localization of enzymes and the

transport of metabolites need to be determined. Informa-

tion on the localization of enzymes and reactions is seldom

included in metabolic databases. Curated versions of BioCyc

databases, especially MetaCyc, are a welcome exception,

however (Caspi et al., 2006). When not found in the

literature, localization can be inferred using ab initio predic-

tions from enzyme sequences (Schneider & Fechner, 2004),

Table 3. Methods for model reconstruction

Metabolic model reconstruction (beyond the use of dedicated metabolic databases)

Identification of metabolic reactions from textual gene annotations Karp et al. (2002)

Direct inference of metabolic reactions from genome sequence Sun & Zeng (2004), Arakawa et al. (2006), Notebaart et al. (2006)

Use of metabolic context to complete pathways Karp et al. (2002), Arakawa et al. (2006), DeJongh et al. (2007)

Metabolic model consistency checks

Flux variability analysis: identification of reactions that are predicted to never

carry any flux

Mahadevan & Schilling (2003)

Identification of dead-end metabolites, which can never be produced or

consumed.

Segrè et al. (2003), Ebenhöh et al. (2004), Imielinski et al. (2005),

Kumar et al. (2007)

Assessment of thermodynamic consistency and assignment of reaction

directions.

Yang et al. (2005), Kümmel et al. (2006a, b)

Gap filling and model expansion

Graph-based metabolic network expansion using shortest metabolic paths Arita (2003), Boyer & Viari (2003)

GapFill: optimization-based network expansion and reaction reversibility

changes to solve dead-end metabolite inconsistencies

Kumar et al. (2007)

Optimization-based metabolic network expansion to resolve inconsistent

growth phenotypes

Reed et al. (2006a, b)

Network-based identification of candidate genes for orphan metabolic activities Osterman & Overbeek (2003), Green & Karp (2004), Chen & Vitkup

(2006), Kharchenko et al. (2006), Fuhrer et al. (2007)
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or determined experimentally, for example using fluores-

cence microscopy (Meyer & Dworkin, 2007). Transport of

metabolites can be inferred using comparative genomics

tools that identify transport enzymes [e.g. TransportDB

(Ren et al., 2004)]. Yet, such methods hardly determine the

specificity of transporters; knowledge of transported meta-

bolites is therefore often completed using direct information

on the microorganism’s physiology and the metabolites it

was shown to utilize in growth experiments.

Overall, reconstructing a constraint-based model for an

organism’s metabolism involves collecting various types of

information. A summary of the respective contributions of

each data source to the model construction is shown in Table 2.

Checking the consistency of reconstructed
models

Once a draft metabolic model is obtained, its consistency

can be checked using a set of simple tests (see Fig. 2): is the

model chemically and physically coherent? Are there re-

maining ‘dead-ends’ in metabolic pathways or reactions

bound to be inactive? Is the model able to produce essential

metabolites from a known growth medium?

Constraint-based metabolic models fundamentally rely

on reaction stoichiometries to properly account for the mass

balance in metabolism at steady state. It is therefore crucial

that all chemical equations are correctly balanced to avoid

unrealistic creation or destruction of matter. To control the

correctness of the reaction stoichiometries, the atom balance

of each reaction can be checked using the chemical formulae

of the metabolites, which are typically found in databases of

chemical compounds (see Table 1). For cases where the

formula is not available for all metabolites, a method was

recently introduced to detect such balance errors in meta-

bolic models by solely comparing chemical equations – for

instance, reactions A ! B and A ! B1C would be identi-

fied by this method as ‘stoichiometrically inconsistent,’

because balancing both equations would require that at

least one of the metabolites has a null or negative mass

(Gevorgyan et al., 2008).

The assumptions on which constraint-based models are

founded do not enforce thermodynamic consistency on the

fluxes. Flux distributions obeying conservation of mass can

still include internal cycles that violate thermodynamic laws,

allowing for instance the artificial generation of high-energy

cofactors. To prevent models from predicting such unrealis-

tic metabolic modes, extensions of the modeling framework

were proposed that directly enforce these laws (Beard et al.,

2002). Their nonlinear nature entails costly computations,

however, which hinder the use of such modeling extensions

in practice. In order to provide thermodynamically consis-

tent models without including such extensions, methods

have been developed to detect inconsistent cyclic modes in

draft metabolic models, and propose changes in reaction

reversibility that would avoid those modes from being

predicted (Yang et al., 2005; Kümmel et al., 2006a).

Before one can reap the benefits of having a model, the

model should be functional, i.e. it should be checked that

non-null fluxes can actually be predicted. This relates to the

completeness of the model, because for instance a missing

Fig. 2. Pipeline for model reconstruction and

refinement. An initial model is reconstructed

from genome annotations and from preexisting

knowledge on the species’ biochemistry and

physiology. Besides collecting the biochemical

activities, this task includes several additional key

steps. The resulting model is then iteratively

corrected and refined, according to internal

consistency criteria and by comparing its

predictions to experimental data.
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reaction in a linear pathway would prevent any non-null flux

from being predicted in it at steady state, thereby inactivat-

ing all other reactions in the pathway. Metabolites that are

never consumed or never produced, so-called ‘dead-ends,’

typically reveal that reactions are missing. In order to help

investigate and correct these so-called ‘metabolic gaps,’

methods have been developed that assess whether reactions

can be active in the model (Reed & Palsson, 2004), identify

dead-end metabolites (Kumar et al., 2007) or directly track

the producibility of metabolites from source metabolites

(Segrè et al., 2003; Ebenhöh et al., 2004). In case the model is

later used to predict growth phenotypes (see Applications of

metabolic models), the producibility of biomass precursors

and the completeness of their biosynthetic pathways should be

especially checked beforehand. Dedicated procedures have

been designed to systematically perform these checks for

newly reconstructed models (Segrè et al., 2003; Imielinski

et al., 2005; Senger & Papoutsakis, 2008). Solving such

inconsistencies often involves filling metabolic gaps or com-

pleting the network with additional metabolic pathways.

The methods presented in this section check the consistency

of the reconstructed model with respect to a set of basic rules

(see Table 3). We will review in the section on model applica-

tions how model predictions can also be confronted with

experimental data, providing consistency checks of the model

with respect to diverse additional experimental evidence.

Interpreting and solving identified inconsistencies of either

type are key to improving the quality of the metabolic model.

Targeted searches for missing metabolic
activities

Consistency checks (either internal to the model or relative to

experimental datasets) may show that the reconstructed model

is incomplete and lacks some metabolic reactions. Resolving

these metabolic gaps entails expanding the model by identify-

ing and including missing biochemical activities. This process

basically consists of two steps: (1) identifying plausible candi-

date reactions that could complete the model and (2) finding

genes that could catalyze the hypothesized activities.

Reactions contained in metabolic databases are the pri-

mary source of information for completing the metabolic

model (see Table 1). The search for candidate reactions

within these databases can be facilitated using knowledge of

existing pathways (as in MetaCyc, SEED, or UM-BBD, see

Table 1) or computational methods (Arita, 2003; Boyer &

Viari, 2003; Kumar et al., 2007) (see Table 3). In the latter

category, the GapFill method was specifically developed to

identify dead-ends in models, and correct them by adding

reaction from a global repository of reactions, changing the

reversibility status of reactions, or adding transporters

(Kumar et al., 2007). The addition of reactions to the model

is guided by an optimization step minimizing the number of

reactions. Similarly, Reed et al. (2006b) proposed a method

which drives the expansion of the metabolic model to

account for the utilization of additional external com-

pounds. For metabolites experimentally shown to be used

by the organism but not predicted as such by the model (see

Applications of metabolic models on growth phenotype

predictions for methods to perform these predictions), their

method automatically proposes minimal sets of reactions

from a repository of reactions that, if added, would allow the

model to exploit the external metabolites.

The set of reactions referenced in metabolic databases is far

from being comprehensive: the right candidates for complet-

ing the model may not yet be known. Computational and

experimental approaches have been proposed to extend this

‘universe of possible reactions.’ On the computational side,

several methods originating from the field of chemo-infor-

matics have been designed to infer chemical transformations

(Gasteiger, 2005). Some of them have been more specifically

adapted to biochemical transformations, using rules on enzy-

matic conversions to infer new conversions for biologically

relevant metabolites (Klopman et al., 1994; Arita, 2000;

Hatzimanikatis et al., 2005; Ellis et al., 2008).

Numerous experimental methods are also being devel-

oped to explore the range of possible biochemical reactions.

MS and nuclear magnetic resonance (NMR) techniques are

able to identify and quantify large sets of metabolites at high

throughput (Dunn et al., 2005; Dettmer et al., 2007).

Computational methods have been proposed to infer reac-

tions from MS data, by analyzing mass differences between

related metabolites (Breitling et al., 2006) or correlations

between metabolite concentrations across distinct conditions

(Steuer, 2006). They do not provide direct evidence for bio-

chemical transformations, however: their predictions should be

treated as clues to be confirmed by additional information.

Although mostly used to determine metabolic fluxes, atom-

labeling experiments could also become powerful tools to

elucidate novel metabolic pathways (Sauer, 2006). They can

advantageously complement computational ab initio pathway

inference methods by selecting candidate pathways that are

compatible with observed isotopic patterns. Finally, untargeted

enzyme activity screenings have recently been performed to

identify the substrates of enzymes of unknown function and

discover novel activities (Saghatelian et al., 2004; Saito et al.,

2006). The availability of large-scale libraries of ORF clones

(Kitagawa et al., 2005) should increase the likelihood of such

methods expanding the store of known reactions.

The search for candidate genes for orphan metabolic

activities is in some ways the reverse of the classical genome

annotation problem (i.e. searching the function of identified

genes). Yet, many of the tools developed to determine gene

functions can be adapted for this purpose. Sequence homol-

ogy to already characterized genes is central to most

methods for candidate gene detection, but combining it
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with additional types of evidence can significantly improve

performance. For instance, several approaches exploit func-

tional links, such as gene neighborhood, gene co-expression,

protein interaction, or phylogenetic co-occurrence, to relate

candidate genes with genes involved in the same metabolic

pathways or close in the metabolic network (Osterman &

Overbeek, 2003; Green & Karp, 2004; Chen & Vitkup, 2006;

Kharchenko et al., 2006; Fuhrer et al., 2007). Databases such

as STRING (von Mering et al., 2007) or Prolinks (Bowers

et al., 2004) compile large sets of functional links across a

wide range of organisms. On the experimental side, enzyme

activity screenings are used to validate the generated candi-

dates. Furthermore, when the orphan activity is associated

to a specific phenotype, screens of systematic knockout

mutant phenotypes can help in identifying candidates

(Aghaie et al., 2008).

The two types of methods – finding candidate reactions

or candidate genes – benefit from being used in combina-

tion, as identifying genes for putative reactions can help in

selecting the proper reactions to include.

Applications of metabolic models

A wealth of computational methods has been developed to

help analyze biological properties revealed by reconstructed

metabolic models. Not only would a comprehensive and

technical description exceed the scope of this review, but

these methods have been extensively covered elsewhere,

either on the technical side (Price et al., 2004) or for

applications on a specific organism, i.e. E. coli (Feist &

Palsson, 2008). We will provide here the reader with a review

on the main applications for which constraint-based models

have been most successful and are mostly promising for

bacterial species. We will distinguish four main types of

applications: (1) analysis of network properties of metabo-

lism, (2) prediction and analysis of bacterial growth pheno-

types, (3) model-based interpretation of experimental data,

and (4) metabolic engineering.

Analysis of network properties

The principle of constraint-based modeling consists in study-

ing the set of reaction fluxes – namely flux distributions – that

are achievable at steady state given the constraints imposed on

the system. Reaction fluxes can vary inside a continuous set of

possible values. This set can encompass significant variability

at the level of individual pathway or reaction fluxes. A wide

range of methods have been designed to explore that varia-

bility and analyze specific properties of metabolites and

reactions which emerge from the flux constraints.

One approach consists in sampling the set of achievable

flux distributions (Almaas et al., 2004; Reed & Palsson, 2004;

Wiback et al., 2004). Methods that provide a uniform

sampling of the possible states have been proposed (Almaas

et al., 2004; Wiback et al., 2004). By sampling a significant

number of metabolic states, these approaches offer an over-

view of the range of flux distributions that can occur in the

metabolic network at steady state. The ‘uniform’ nature of

the sampling is based only on the mathematical description

of the set of possible flux distributions, avoiding any prior

assumption on which metabolic states are most likely to be

selected in vivo. For instance, these sampling methods have

been used to evaluate the relative occurrence of reactions

within the set of possible flux distributions and across

several environmental conditions (Almaas et al., 2004). This

analysis showed that a few reactions are active in many

sampled flux distributions and carry high fluxes – forming a

so-called high-flux metabolic backbone – while many others

are active in few sampled flux distributions and carry low

fluxes. Similar methods were also used to evaluate the

correlation of flux values between pairs of reactions across

sampled metabolic states (Reed & Palsson, 2004; Becker

et al., 2007) and thereby determine metabolic dependencies

between reactions. From a more theoretical angle, sampling

was also used to evaluate the size of the set of possible flux

distributions (Wiback et al., 2004; Braunstein et al., 2008).

When computed for distinct (genetic perturbation� environ-

mental condition) pairs, the relative sizes of the corresponding

flux distribution sets were interpreted as indicators of the

respective diversity of metabolic states in the tested conditions

(Wiback et al., 2004).

The diversity of achievable metabolic fluxes can also be

evaluated locally for each reaction. Flux variability analysis

was designed for this purpose: an optimization procedure

computes the minimal and maximal allowed flux of each

reaction independently (Mahadevan & Schilling, 2003). This

procedure identifies reactions that do not carry any flux, or

conversely those that carry non-null flux in all possible

metabolic states. Flux variability analysis has been broadly

used to predict the activity of reactions for specific sets of

metabolic constraints (Mahadevan & Schilling, 2003; Reed

& Palsson, 2004; Teusink et al., 2006; Feist et al., 2007; Henry

et al., 2007; Shlomi et al., 2007a).

Flux sampling or flux variability approaches only provide

partial description of the set of possible flux distributions.

To get a comprehensive picture of the possibilities, methods

which compute elementary modes (Schuster et al., 2000)

and extreme pathways (Schilling et al., 2000) have been

developed. These notions differ only slightly in their math-

ematical formulation (Klamt & Stelling, 2003; Papin et al.,

2004): the main idea is to determine the set of elementary

and independent metabolic routes that can occur in the

metabolic model. These elementary routes are flux distribu-

tions that (1) respect all assumed constraints, including

steady state and irreversibility, and (2) are elementary in

the sense that they are composed of a minimal set of active

reactions. This second condition ensures that the flux
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distribution is not decomposable into a combination of

smaller elementary routes. It can be shown that any achiev-

able flux distribution can be expressed as a combination of

such elementary routes. This property, together with the fact

that the set of elementary routes is unique, independently of

the method used to compute it (Klamt & Stelling, 2003), has

inspired numerous applications. This subfield is also known

as metabolic pathway analysis. For instance, elementary

modes and extreme pathways have been used to exhaustively

describe the independent metabolic routes occurring in

newly reconstructed models, often sorted by metabolic

function (Schilling & Palsson, 2000; Van Dien & Lidstrom,

2002; Papin et al., 2002). The redundancy of routes can be

assessed and the respective yields of routes of conversion can

be compared (Papin et al., 2002). Conversely, the relative

importance of reactions in metabolism was scored using

elementary routes, reactions involved in many routes being

likely to be key players in metabolism (Stelling et al., 2002).

Finally, metabolic dependencies between reactions which are

stronger than those determined only by analyzing the correla-

tion of fluxes in sampled distributions can be deduced from

knowing elementary routes. Reactions that always appear

jointly in elementary routes are bound to operate together

(Pfeiffer et al., 1999). The main obstacle in metabolic pathway

analysis is the size and complexity of the metabolic models, as

the number of elementary routes dramatically increases with

the size of the model (Yeung et al., 2007). The computation of

all routes is currently only tractable for medium-size models,

although significant progresses have been made recently

(Terzer & Stelling, 2008).

Alternative approaches have been developed in order to

explore metabolic dependencies in models of larger size.

One of them, flux coupling analysis, has become a popular

analytical tool (Burgard et al., 2004). Flux coupling analysis

identifies all pairs of reactions whose fluxes are always

coupled at steady state. It has been used in a wide range of

studies, and the resulting sets of coupled reactions were for

instance compared with correlations observed in the tran-

scriptional states of enzymes (Reed & Palsson, 2004;

Notebaart et al., 2008), interpreted with respect to the

structure of the metabolic regulation (Notebaart et al.,

2008), and used to study the horizontal transfer of genes

during bacterial evolution (Pál et al., 2005a, b). Similar

methods were developed to study metabolic relationships

between metabolites, either by simply examining the

co-occurrence of metabolites in reactions (Becker et al.,

2006) or by determining conservation relations between

metabolites (Nikolaev et al., 2005; Imielinski et al., 2006).

This last type of method was applied to determine coupling

relationships between metabolite concentrations, identify

metabolite pools sharing conserved chemical moieties

(Nikolaev et al., 2005), and exhaustively predict distinct

minimal growth media for E. coli (Imielinski et al., 2006).

Prediction of growth phenotypes

One of the primary uses of genome-scale metabolic models

is the prediction of growth phenotypes (Price et al., 2004;

Palsson, 2006). Because these models aim at comprehen-

siveness, they are able to account for all main metabolic

processes contributing to growth, i.e. the production of

energy and biomass precursors from external metabolites.

Growth phenotypes can therefore be predicted by examining

to which extent metabolic requirements for growth, in terms

of energy generation and biomass precursors synthesis, can

be fulfilled by flux distributions from the model. Growth

phenotypes can be predicted either in a qualitative manner

(prediction of the mere ability to grow) by checking

piecemeal for the producibility of each biomass precursor

metabolite (Imielinski et al., 2005), or in a quantitative

manner (prediction of growth performance) by including a

biomass reaction consuming them in proportion to their

ratio in biomass composition and studying the flux values it

can attain (Price et al., 2004). Determining biomass compo-

sition is therefore a necessary prerequisite to growth pheno-

type predictions. This is often achieved by examining the

relevant literature or adapting known biomass compositions

of related organisms. The Flux Balance Analysis (FBA)

method was specifically designed to predict quantitative

growth phenotypes (Varma & Palsson, 1994b; Price et al.,

2004). It computes the maximal growth yield achievable in

the metabolic model by maximizing the biomass reaction

flux (representing the growth rate) given a set of bounded

intake rates for external substrates. FBA relies on the strong

assumption that bacteria have optimized their growth

performance in a subset of possible environments during

their evolution, thereby making the maximization of bio-

mass production a driving principle for metabolic operation

(Varma & Palsson, 1994b). This assumption has been

confirmed by experiments in several cases (Edwards et al.,

2001). Using FBA, global quantitative relationships can be

predicted between the input rates of nutrients, the output

rates of byproducts, and the growth rate (Stephanopoulos

et al., 1998; Edwards et al., 2002; Price et al., 2004).

The global energy consumption of the cell can signifi-

cantly influence the outcome of quantitative growth pheno-

type predictions. Two ATP hydrolysis fluxes are added to the

models in order to properly account for it. One is constant

and models the non-growth-associated maintenance, which

represents the fraction of the energy demand necessary for

the cell survival that is independent from its growth rate, for

example to maintain the right ionic strength (Stouthamer &

Bettenhaussen, 1973). The second flux is proportional to the

growth rate and corresponds to the energy demand asso-

ciated with growth beyond the mere requirements of meta-

bolic pathways – which are already directly accounted for in

the model – for example energy for cell division or assembly
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of higher order cell structures. These two parameters are

usually determined by fitting growth yield predictions

derived using FBA to measured growth yields provided by

growth monitoring experiments (Reed et al., 2006a).

Measurements of growth yields for distinct growth rates are

sufficient to fit both growth-associated and non-growth-

associated maintenance parameters (Varma & Palsson,

1994a). The values of these parameters were determined

using experimental growth measurements for a significant

proportion of reconstructed models (see Table 4).

Once fitted, and assuming these parameters remain con-

stant across environments, the model can be used to predict

growth rates on different media (Edwards et al., 2001).

Predicted growth yields revealed to be consistent with

observed ones on a significant number of media for E. coli

(Edwards et al., 2001). Inconsistencies between predicted

and observed growth yields can have multiple interpreta-

tions. First, the assumption of optimal substrate utilization

can be questionable for growth predictions on environments

that are not commonly encountered by the organism (Ibarra

et al., 2002; Schuster et al., 2008). Using an adaptive

evolution experiment on E. coli cells grown in glycerol

minimal medium, Ibarra and colleagues actually observed

that, while the initial growth yield was suboptimal, it

progressively evolved to reach the optimal value predicted

by the model. Other biological constraints, such as regula-

tion or capacity constraints, may also prevent the organism

from using optimal flux distributions (Oliveira et al., 2005;

Feist et al., 2007). Comparing predictions of growth pheno-

types with experimental measures may also help in refining

the model. A model component that is often refined using

quantitative growth predictions is the stoichiometry of

proton translocation that occurs in reactions of electron

transport systems, such as the respiratory chain. These stoi-

chiometries are often hard to determine a priori, yet they

impact directly the P/O ratio and the efficiency of energy

generation (Reed et al., 2006a). With the help of a metabolic

model and growth yield measurements on several distinct

media, Feist et al. (2006) studied the unknown proton translo-

cation stoichiometry of such a reaction in Methano-

sarcina barkeri by determining for each media the model

maintenance parameters that provided the best growth yield

Table 4. Existing genome-scale metabolic models for bacterial organisms

Organism Reference Genes Reactions� Metabolitesw

Experimental assessment

Wild-type

growth

phenotypes

Knockout mutant

growth phenotypes

Quantitative

growth

measures

Acinetobacter baylyi Durot et al. (2008) 774 875 701 173/190 (91%) 1138/1208 (94%) –

Bacillus subtilis Oh et al. (2007) 844 1020 988 200/271 (74%) 720/766 (94%) –

Clostridium acetobutylicum Lee et al. (2008a) 432 502 479 10/11 (91%) – X

Clostridium acetobutylicum Senger & Papoutsakis (2008) 474 552 422 – – –

Escherichia coliz Feist et al. (2007) 1260 2077 1039 129/170 (74%) 1152/1260 (92%) X

Geobacter sulfurreducens Mahadevan et al. (2006) 588 523 541 – – X

Haemophilus influenza Schilling & Palsson (2000) 412 461 367 – – –

Helicobacter pylori‰ Thiele et al. (2005) 341 476 485 – 54/72 (75%) –

Lactobacillus plantarum Teusink et al. (2006) 721 643 531 – – X

Lactococcus lactis Oliveira et al. (2005) 358 621 422 – – X

Mannheimia succiniciproducens Hong et al. (2004) 335 373 332 – – –

Mycobacterium tuberculosis Beste et al. (2007) 726 849 739 – 547/705 (78%) X

Mycobacterium tuberculosis Jamshidi & Palsson (2007) 661 939 828 – 132/237 (56%) X

Neisseria meningitidis Baart et al. (2007) 555 496 471 – – X

Pseudomonas aeruginosa Oberhardt et al. (2008) 1056 883 760 78/95 (82%) 893/1056 (85%) –

Pseudomonas putida Nogales et al. (2008) 746 950 710 84/90 (93%) 665/746 (89%)z X

Rhizobium etli Resendis-Antonio et al. (2007) 363 387 371 – – –

Staphylococcus aureus Becker & Palsson (2005) 619 641 571 – – –

Staphylococcus aureus Heinemann et al. (2005) 551 774 712 – 8/14 (57%) –

Streptomyces coelicolor Borodina et al. (2005) 700 700 500 54/58 (93%) 11/12 (92%) X

First two columns of experimental assessment show the number of correct predictions among all experimentally determined qualitative growth

phenotypes. Last column specifies whether the model has been assessed against quantitative growth rate measurements.
�Number of distinct reactions including transport processes.
wNumber of biochemically distinct metabolites.
zThis model is an update of two earlier models for E. coli (Edwards & Palsson, 2000; Reed et al., 2003).
‰This model is an update of an earlier model for H. pylori (Schilling et al., 2002).
zUsing gene essentiality data for Pseudomonas aeruginosa.
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predictions for different hypothesized values of the stoichiome-

try. Assuming that maintenance should not significantly change

across media, they selected the stoichiometry that triggered the

smallest variation among the determined maintenance para-

meters across the environments. Other studies investigated the

stoichiometry of proton translocation in the respiratory chain

by directly exploiting measured ratios of electron acceptor (e.g.

oxygen, or Fe(III) in Geobacter sulfurreducens) consumption

rate vs. carbon source consumption rate and growth rate

(Heinemann et al., 2005; Mahadevan et al., 2006).

Models can readily predict the effect of gene deletion on

growth phenotypes. To that end, a layer of Gene Protein

Reaction associations – usually called GPR (Reed et al.,

2003) – is added to the model to predict the effect of gene

deletion on reaction activity. Each reaction is associated to

its enzyme-encoding genes by a Boolean rule: genes encod-

ing for subunits of an enzymatic complex are linked with an

AND rule, while genes encoding for alternative enzymes are

linked with an OR rule. Using GPR rules, gene deletions are

translated into ‘blocked’ reactions, which are then inacti-

vated in the model by constraining their fluxes to zero. FBA

can be applied to predict growth phenotypes of gene knock-

out mutants. Nevertheless, the hypothesis of optimal growth

is largely debatable for such genetically engineered mutants,

as their metabolism was not exposed to evolutionary

pressure. Basing on the assumption that metabolism in a

knockout mutant operates as closely as possible to metabo-

lism in the wild-type strain, two specific methods were

introduced. They predict knockout mutant growth pheno-

types by minimizing either the overall flux change [MoMA

(Segrè et al., 2002)] or the number of regulatory changes

[ROOM (Shlomi et al., 2005)] between the wild-type strain

and the mutant strain (see Table 5). Both methods were

shown to provide slightly better predictions than FBA.

The throughput of experiments evaluating qualitative

growth phenotypes – i.e. described simply as viable or lethal

– has increased dramatically in the last few years. Phenotype

Microarrays from Biolog Inc. typically report growth phe-

notypes for several hundreds of media in a single experi-

ment (Bochner et al., 2001). In parallel to this, collections of

knockout mutants are being built for a growing number of

bacteria (Akerley et al., 2002; Jacobs et al., 2003; Kobayashi

et al., 2003; Baba et al., 2006; Liberati et al., 2006; Suzuki

et al., 2006; de Berardinis et al., 2008). The systematic

assessment of growth phenotypes of knockout mutants

provides a significant resource for exploring the metabolic

capabilities of organisms and investigating their gene func-

tions (Carpenter & Sabatini, 2004), but their direct inter-

pretation is made difficult by the complexity and size of

metabolic networks (Gerdes et al., 2006). These results can

be readily compared with model predictions, however,

providing a way to interpret them and assess the model

correctness. Given the qualitative nature of these growth

phenotypes, two types of inconsistencies may arise: false

viable predictions – growth was predicted yet not observed

experimentally – and false lethal predictions – growth was

not predicted yet observed experimentally. On the one hand,

these inconsistencies may be caused by limitations of the

model or cases where the modeling assumptions do not

hold. Regulation may for instance trigger a lethal phenotype

by blocking an alternate pathway, which would not be

predicted as blocked in the merely metabolic model. On

the other hand, examining the inconsistencies may identify

errors in the model and lead to its refinement. All model

components may comprise errors, including the GPR asso-

ciations, the metabolic network itself, and the stated bio-

mass requirements. False lethal predictions are often clues

that some biomass component is actually not essential, or

that the model lacks an alternative gene or pathway that

would allow it to survive in the given experimental condi-

tions. Conversely, false viable predictions can help detect

missing essential biomass components, genes falsely anno-

tated as encoding isozymes or reactions that were wrongly

assigned or are inactive in the experimental conditions

(Duarte et al., 2004; Joyce et al., 2006). Growth phenotype

predictions have been evaluated for a significant proportion

of reconstructed models, whenever experimental data were

available (see Table 4). Interpretation of inconsistent cases

by expert examination led to several annotation and model

refinements, some of which were supported by the results of

targeted experiments (Covert et al., 2004; Duarte et al., 2004;

Joyce et al., 2006; Reed et al., 2006b). Automated methods

were recently introduced to systematically look for inter-

pretations of inconsistencies and possible modifications in

the model. Corrections of the GPR associations can be

systematically proposed that match the gene essentiality

observation with predicted reaction essentiality (M. Durot

et al., unpublished data). With regard to the metabolic

network itself, metabolic gap filling approaches have been

adapted to propose network corrections that resolve wrongly

predicted growth phenotypes (Reed et al., 2006b). Finally,

valuable insights into the determination of essential biomass

precursors can be provided by methods that analyze correla-

tions between lethality and metabolite production (Imielinski

et al., 2005; Kim et al., 2007). All these methods act indepen-

dently on distinct components of the model. A unifying

method integrating all types of corrections, which is yet to

come, could lead to an integrated platform for the systematic

interpretation of upcoming growth phenotyping results.

Models can actually predict growth phenotypes for any

environmental condition and any combination of gene dele-

tions, which is beyond reach of experiments. Given the

combinatorial complexity of mixing several gene deletions,

dedicated methods have been designed to analyze the effects of

multiple deletions and applied to identify epistatic interac-

tions between genes (Klamt & Gilles, 2004; Deutscher et al.,
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2006, 2008; Imielinski & Belta, 2008). Prediction of growth

phenotypes have also been used to automatically assign

condition-dependent roles to genes (Shlomi et al., 2007b),

investigate the causes of gene dispensability (Papp et al., 2004;

Kuepfer et al., 2005), or study bacterial evolution (Pál et al.,

2005a, 2006). These two latter studies on bacterial evolution

used an E. coli model to analyze the effect of changing growth

environments on the acquisition of new metabolic capabilities

by horizontal gene transfer (Pál et al., 2005a) and to simulate

the reductive evolution of metabolism in specific environ-

mental conditions (Pál et al., 2006).

Model-based interpretation of experimental
data

The recent development of experimental techniques has

enabled measurements at genome-scale of several types of

quantities, generating so-called ‘omics’ datasets. These data-

sets provide partial yet comprehensive snapshots of cellular

mechanisms (Ishii et al., 2007a), but their interpretation is

made difficult by the volume of data. Computational

methods are thus needed if meaningful biological results

are to be extracted (Joyce & Palsson, 2006). A variety of

Table 5. Main analytical methods for genome-scale models sorted by type of application

Analysis of network properties

Flux sampling: random sampling of flux distribution among the set of possible

metabolic states

Almaas et al. (2004), Reed & Palsson (2004), Wiback et al. (2004)

Flux variability analysis: examination of flux variability for each reaction Mahadevan & Schilling (2003)

Metabolic pathway analysis, elementary modes/extreme pathways: comprehensive

description of all independent metabolic modes achievable in the metabolic network

Schilling et al. (2000), Schuster et al. (2000), Klamt & Stelling

(2003)

Flux coupling: identification of reaction pairs whose fluxes are coupled Burgard et al. (2004)

Metabolite coupling/evaluation of conserved metabolite pools Nikolaev et al. (2005), Becker et al. (2006), Imielinski et al. (2006)

Prediction and interpretation of bacterial growth phenotypes

Producibility analysis of biomass precursors Imielinski et al. (2005)

FBA: quantitative prediction of growth yield by maximization of growth rate given

bounded nutrient input rates

Varma & Palsson (1994a, b)

MOMA: prediction of gene deletion mutant flux distribution by minimizing overall

flux changes with wild type

Segrè et al. (2002)

ROOM: prediction of gene deletion mutant growth by minimizing regulatory

changes with wild type

Shlomi et al. (2005)

Identification of multiple gene deletion essentialities Klamt & Gilles (2004), Deutscher et al. (2006), Imielinski & Belta

(2008)

Model-based interpretation of experimental data

Metabolic flux measurements

Metabolic Flux Analysis using labeled metabolites: prediction of attainable reaction

fluxes given observed metabolite isotopic patterns

Wiechert (2001), Sauer (2006)

Global prediction of reaction activities using metabolic flux measurements on

subsets of reactions

Herrgård et al. (2006a, b)

Identification of metabolic objectives best describing observed fluxes Burgard & Maranas (2003), Schuetz et al. (2007)

Metabolite concentrations

Comparison of model coverage with experimentally detected metabolites Oh et al. (2007)

NET analysis and TMFA: application of thermodynamic constraints to reaction

directions using metabolite concentrations

Kümmel et al. (2006a, b), Henry et al. (2007)

Gene expression

Identification of metabolic pathways correlated with gene expression levels Schwartz et al. (2007)

Refinement of flux distribution predictions by blocking reactions corresponding

to unexpressed genes

Akesson et al. (2004)

Evaluation of consistency of gene expression levels with metabolic objectives Becker & Palsson (2008)

rFBA and SR-FBA: prediction of gene expression states using Boolean regulatory

rules

Covert et al. (2001), Barrett et al. (2005), Barrett & Palsson

(2006), Shlomi et al. (2007a, b)

Metabolic engineering

Systematic identification of gene deletions enhancing metabolite production yield Burgard et al. (2003), Patil et al. (2004), Alper et al. (2005a, b)

OptStrain: systematic identification of reaction additions enabling the production

of novel metabolites

Pharkya et al. (2004)

Prediction of adjustments of enzyme expression levels enhancing metabolite

production yield

Pharkya & Maranas (2006), Lee et al. (2007)
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methods have been developed to exploit experimental data

related to metabolic states, for example measurements of

metabolic fluxes, metabolite concentrations, enzyme levels,

or gene expression, in the light of genome-scale models. Two

cases generally arise: either experimental observations are

directly comparable to model predictions, or these observa-

tions lead to the imposition of additional constraints that

refine the set of predicted metabolic states. Observations

falling in the second category allow for instance the selection

of those metabolic routes that are compatible with the

experimental observations, or help predict quantitative values

for the fluxes. When directly comparable to model predic-

tions, experimental data may be used to assess model correct-

ness and assumptions, identify inconsistencies, and target

improvements, as illustrated above with growth phenotypes

(Reed et al., 2006b). We will review such integration methods

in the following sections for three types of experimental data:

measurement of (1) reaction fluxes, (2) metabolite concentra-

tions, and (3) gene expression levels.

Refining the model with experimental data increases its

correctness with respect to the observations but may

decrease its predictive power. Predictions performed with a

refined model should actually be interpreted with care to

avoid circular reasoning: data that have been directly used to

improve the model can no more be considered as predic-

tions, they are part of the evidences on which the model is

based to perform predictions. For instance, a model whose

maintenance parameters have been determined using

growth rate measurement can no more predict the growth

rate for the environmental condition. This problem can

become serious when models are extensively fitted with

experimental data, as they then become more descriptive

than predictive. Nevertheless, some refinement processes

applied to genome-scale models involve finding additional

biological evidence that supports the refinement, thereby

breaking the circular reasoning. For instance, corrections of

inconsistent growth phenotype predictions by additions of

alternate enzymes often involve finding additional proofs

that the introduced enzymes possess the right activity.

Metabolic flux measurements

One of the most direct experimental accesses to metabolic

fluxes is provided by atom-labeling experiments (Wiechert,

2001; Sauer, 2006). By analyzing the fate of labeled metabo-

lites, valuable information can be deduced about the reactions

that are actually taking place. The most common technique

for this consists in analyzing the stable isotope patterns

(mostly using 13C) found in products of metabolism given

known isotope patterns in nutrient metabolites (Wiechert,

2001; Sauer, 2006). These data can be properly interpreted

only using a metabolic model that includes information about

atom mappings for each reaction (Zupke & Stephanopoulos,

1994; Wiechert et al., 1999; Antoniewicz et al., 2007a). Such

models have been built for a few organisms, often using

existing constraint-based models as a basis (Antoniewicz

et al., 2007b; Suthers et al., 2007). While atom mappings for

reactions are currently mostly inferred using chemoinfor-

matics methods (Raymond et al., 2002; Arita, 2003; Hattori

et al., 2003), this information will likely be made accessible in

dedicated databases in the coming years.

By qualitatively examining isotope patterns in nutrients

and products, information can already be extracted about

the possible routes of conversion (van Winden et al., 2001;

Sauer, 2006; Kuchel & Philp, 2008). Patterns in products

actually depend on their biosynthetic pathways. Observed

patterns that are inconsistent with the predicted possible

patterns are clues that other pathways may occur in vivo.

This approach was for instance recently used to evaluate the

model of G. sulfurreducens: an inconsistent isotope pattern

for isoleucine led to the discovery of an isoleucine biosynth-

esis pathway previously uncharacterized in this bacteria

(Risso et al., 2008).

Quantitative interpretation of isotope patterns together

with measurement of extracellular metabolite fluxes can help

determine the value of intracellular reaction fluxes using

Metabolic Flux Analysis (Zupke & Stephanopoulos, 1994;

Stephanopoulos et al., 1998; Wiechert et al., 1999; Sauer,

2006; Antoniewicz et al., 2007a). Known flux values can then

be directly exploited in models to characterize which meta-

bolic pathways are operating and quantify their fluxes. As an

application, Herrgård et al. (2006a) introduced the optimal

metabolic network identification method, which combines

flux measurements for a fraction of the reactions with the

assumption of optimal growth from FBA to globally infer

which reactions are active. This method has been for instance

used to identify bottleneck reactions that limit the growth in

engineered strains, and discard putative reactions from newly

reconstructed models (Herrgård et al., 2006a).

Observed fluxes were also used to determine relevant

objective functions to choose when predicting metabolic

states with FBA (Burgard & Maranas, 2003). By evaluating

the match of predicted fluxes with observed ones, these

studies could identify those metabolic objectives that pro-

vided the best fit. Distinct objectives, including maximiza-

tion of ATP or biomass yields, were identified for instance in

E. coli depending on the environmental conditions (Schuetz

et al., 2007). Observed metabolic fluxes, however, often

show that metabolism does not necessarily operate accord-

ing to optimality principles (Fischer et al., 2004), especially

when regulatory constraints are overlooked.

Metabolite concentrations

High-throughput measurement of intracellular metabolite

concentrations is becoming common practice thanks to
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recent developments in MS and NMR technologies (Dunn

et al., 2005; Dettmer et al., 2007). Metabolite profiling experi-

ments commonly detect thousands of peaks, among which

hundreds can usually be exploited to identify metabolites and

determine their concentrations, using for instance known

spectra of reference metabolites (Dunn et al., 2005). These

datasets, while not fully comprehensive, provide significant

information on metabolites present in the cell.

Merely comparing the set of detected metabolites to the

set of metabolites present in the model already help in

assessing the comprehensiveness of the model. For example,

in the reconstruction process of Bacillus subtilis metabolic

model, Oh et al. (2007) evaluated the overlap between

model metabolites and intracellular metabolites identified

in a metabolomics dataset; among 350 intracellular metabo-

lites identified, only 160 were present in the model. No

previously known biochemical activities could be associated

with the remaining metabolites, illustrating the fact that a

large part of B. subtilis metabolism remains unknown. These

unaccounted metabolites can guide further investigations

on missing activities, leading to expansion of the model’s

metabolite scope consequently.

By extending the constraint-based modeling framework to

encompass thermodynamic constraints on Gibbs energies of

reactions, knowledge of absolute metabolite concentrations

can be translated into constraints on flux directions (Kümmel

et al., 2006b; Henry et al., 2007). A first application is

to check the consistency of metabolomic datasets with respect

to metabolic fluxes predicted by the model. Methods

and software have been developed to pinpoint inconsistent

concentration measures (Zamboni et al., 2008). Conversely,

metabolomic-derived constraints refine the characterization

of metabolic fluxes within the model; their integration has

allowed the prediction of ranges of concentrations for un-

measured metabolites, reaction directions, and ranges of

Gibbs energies of reactions, identifying thereby potentially

regulated reactions (Kümmel et al., 2006b).

Thermodynamic constraints merely enforce link between

the concentrations of metabolites and the directions of

reactions. Taking reaction kinetics into consideration could

reinforce that link and make it more quantitative. Extending

models to handle kinetics is still an open issue (Famili et al.,

2005; Yugi et al., 2005; Ishii et al., 2007b; Smallbone et al.,

2007; Covert et al., 2008; Jamshidi & Palsson, 2008), all the

more challenging because of the potential influence of

regulation, the scarcity of kinetic parameter values and the

lack of scalable analytical methods.

Gene expression data

Thanks to technological advances, gene expression levels are

among the most widely accessible type of ‘large-scale’ experi-

mental data. While such datasets provide a global overview of

the level of expression of enzymes, deriving information on

reaction fluxes from gene expression levels is hindered by the

numerous biological processes intervening between them.

Changes in rates of translation or mRNA and enzyme

degradation may significantly modify the quantity of enzymes

available from a given amount of transcript. In addition,

changes in substrate/product concentrations or metabolic

regulations can influence the reaction fluxes irrespective to

the enzyme quantities. As a consequence, no simple correla-

tions are necessarily observed between gene expression levels

and reaction fluxes (Gygi et al., 1999; ter Kuile & Westerhoff,

2001; Yang et al., 2002; Akesson et al., 2004).

Some approaches have nonetheless been developed to

exploit information from gene expression data using models.

In the vein of pathway- or module-based methods interpret-

ing changes of gene expressions at the level of pathways or

biological processes (Hanisch et al., 2002; Draghici et al.,

2003; Yang et al., 2004), methods relying on a graph repre-

sentation of metabolism (Patil & Nielsen, 2005) or on a

decomposition of metabolic models into elementary modes

(Schwartz et al., 2007) were introduced to correlate expres-

sion levels with possible metabolic states. These approaches

are merely descriptive: the model provides a suitable meta-

bolic context to interpret the experimental data. Gene expres-

sion data have also been used to refine the characterization of

metabolic fluxes in models. For instance, by blocking reac-

tions corresponding to unexpressed genes, metabolic fluxes

could be characterized more precisely in a yeast model

(Akesson et al., 2004). In the same spirit, a method was

recently introduced to evaluate the consistency of gene

expression datasets with metabolic objectives, and identify

subsets of active reactions that best correlate with expressed

genes and metabolic objectives (Becker & Palsson, 2008).

Even though these methods only rely on a limited depen-

dency between gene expression level and reaction flux –

reactions catalyzed by unexpressed genes should have low

fluxes – they succeed in somewhat improving the character-

ization of metabolic states, or in assessing the consistency of

the model with the experimental data.

As an attempt to account for transcriptional regulation,

regulatory interactions were introduced in models by trans-

lating them into Boolean rules (Covert et al., 2001). In such

joint regulatory-metabolic model, Boolean variables quali-

tatively describe the transcription state of genes, including

genes coding for enzymes and transcription factors, while

Boolean rules determine their regulatory dependencies.

Metabolic reactions are then allowed to have a nonzero flux

only if the transcriptional state of their enzymes is true.

Several methods have been developed to study these joint

models. Regulatory FBA (rFBA) simulates time courses of

gene expression states: at each time step, the new transcrip-

tional state is computed from the metabolic state predicted

at the previous time step, and is used to constrain FBA
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prediction of the current metabolic state (Covert et al.,

2001). A specific representation scheme was later developed

to encode the sequence of expression states predicted by

rFBA in a unified manner, in order to compare regulatory

responses across various environments (Barrett et al., 2005).

Another type of method has been recently developed to

determine joint steady states of gene expression and meta-

bolic fluxes. Examining these steady states contributed to

the identification of redundantly expressed enzymes and the

quantification of the effect of transcriptional regulation in

determining flux activity in E. coli (Shlomi et al., 2007a).

Finally, two studies compared experimental expression

levels with predicted expression states to assess the correct-

ness of joint regulatory-metabolic models of E. coli and yeast

(Covert et al., 2004; Herrgård et al., 2006b). A significant

proportion of inconsistent expression states could be cor-

rected in these models by searching for missing interactions

(Covert et al., 2004; Herrgård et al., 2006b). In the same

vein, a method was recently designed to automate the

identification of experiments that are likely to bring most

information on potentially missing regulatory interactions

(Barrett & Palsson, 2006).

Using genome-scale models for metabolic
engineering

The use of microbial organisms for industrial purposes has

grown considerably in the past few years, with potential

applications ranging from the production of valuable meta-

bolites to the degradation of pollutants and the generation

of renewable energy (Janssen et al., 2005; Ro et al., 2006;

Peng et al., 2008; Rittmann, 2008). The field of metabolic

engineering aims at designing and improving industrial

microorganisms through the rational design of genetic

manipulations leading to enhanced performance (Bailey,

1991; Stephanopoulos et al., 1998). With the advent of

genome-scale experimental technologies, the set of meta-

bolic engineering methods is progressively expanding to

include systems-wide analyses, enabling for instance to

study the operation of regulatory and metabolic networks

at large scale (Park et al., 2008). In this respect, genome-scale

metabolic models provide to engineers an effective toolbox

to investigate the metabolic behavior of their strain of

interest and target improvements (Kim et al., 2008).

As a first class of applications, all analytical methods

presented in the previous sections can be directly applied to

engineering purposes. Such methods may help for instance

to evaluate the maximum theoretical efficiencies of path-

ways or determine appropriate host strains by predicting

their metabolic capabilities from their reconstructed

models. More importantly, metabolic models can help in

characterizing the actual metabolism operation of engi-

neered strains, especially when experimental data have been

acquired on them. Metabolic Flux Analysis provides for

instance quantitative values for intracellular fluxes, which

may be used to determine the actual pathway utilization and

pinpoint bottleneck reactions (Stephanopoulos et al., 1998).

Such information is of high significance for the metabolic

engineers, as it may help them in designing further meta-

bolic modifications.

Metabolic models also provide the ability to formulate

hypotheses and evaluate in silico the potential of genetic

modifications. A common cause of low production yields

lies in the presence of pathways that divert fluxes to the

production of undesirable byproducts or compete for the

utilization of precursors and cofactors. While such pathways

may be identified manually, their direct removal through

gene deletion may cause side effects, for example alter the

regeneration of cofactors, the redox balance, or the energy

balance (Kim et al., 2008). Genome-scale models can predict

the effect of gene deletions on metabolic phenotypes. Several

methods were designed with the aim of selecting those gene

deletions that would provide the greatest benefit for a given

metabolite production goal. Alper et al. (2005a) developed a

procedure that sequentially screen the effect of single and

multiple gene deletions in order to select those enabling the

best product yields while maintaining sufficient growth

rates. They successfully applied their method to enhance

the yield of a lycopene producing E. coli strain (Alper et al.,

2005b). Screening in silico the high number of combinations

of multiple gene deletions may turn out to be costly and

practically impossible. Optimization methods based on

genetic (Patil et al., 2005) or linear programming (Burgard

et al., 2003) algorithms were introduced to circumvent this

issue. The second optimization method, called OptKnock,

specifically searches gene deletions coupling the production

of a targeted metabolite with growth rate; the rationale being

that improving the growth rate by adaptive evolution would

jointly improve the metabolite production rate and that this

coupling would make the engineered strain more evolu-

tionary stable (Burgard et al., 2003). Gene deletions pro-

posed by this method were tested experimentally to enhance

lactic acid production in an E. coli strain (Fong et al., 2005).

Adaptive evolution experiments performed on the engi-

neered strains actually showed that lactic acid production

was coupled to growth and achieved increased secretion

rates of the product. In addition to gene deletions, metabolic

models can explore the effect of adding new pathways,

and help select the most appropriate ones. In this aim,

the OptStrain method was designed to systematically sug-

gest additions of reactions to produce novel metabolites

(Pharkya et al., 2004). OptStrain relies on a comprehensive

database of biochemical reactions and may propose alter-

native solutions. A last set of methods consists in designing

suitable up- or downregulations of metabolic enzymes.

Intervening on gene expression levels is indeed a powerful
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tool to tune metabolism operation, but the specific effects of

such interventions are often hardly predictable (Kim et al.,

2008). In a study involving a L-threonine producing strain of

E. coli, Lee et al. (2007) made use of its metabolic model to

predict gene expression changes enhancing the strain yield.

Specifically, they predicted flux values of key reactions

leading to optimal L-threonine production and compared

them with measured fluxes. They then used the relative

difference between them to guide the tuning of the expres-

sion of the corresponding genes. A more systematic

approach was introduced with the OptReg method, which

identifies at genome-scale the relative changes of flux values

with respect to the wild-type flux distribution that provide

the best production yield (Pharkya & Maranas, 2006).

Results of OptReg can be used to identify candidate enzymes

for up- or downregulation.

Yet, two main issues limit the predictive capabilities of

metabolic models. First, while regulation may play a central

role in controlling the efficiency of product synthesis, it is

completely overlooked in metabolic models. Studying regu-

latory interactions – using for instance models of regulatory

networks – may actually provide useful insights, for example

to remove feedback inhibitions or fine-tune transcriptional

regulatory circuits commanding the product biosynthesis

(Kim et al., 2008). Not accounting for enzyme quantities but

only reaction fluxes imposes a second limitation to genome-

scale models. Implementing changes in flux values – sug-

gested for instance by metabolic model optimization methods

– by altering the quantity of enzymes is a difficult task, as

enzyme kinetics and metabolite concentrations may signifi-

cantly influence the flux change. In order to determine the

effect of enzyme quantity changes on metabolic fluxes, more

detailed approaches are required, for example metabolic

control analysis (Fell, 1992).

Resources, databases, and tools

At the time of this review, genome-scale models have been

reconstructed for at least 17 bacteria (see Table 4). For all of

them, extensive manual curation was required in order to

integrate information from the literature on their biochem-

istry and physiology with functional information from

genome annotation. These models are therefore of high

quality on average, and mostly complete with respect to the

current knowledge of their metabolism. An increasing sub-

set is being assessed and corrected against large-scale experi-

mental data (see Table 4), and an impressive array of

analytical studies has been applied to the most popular ones,

for example E. coli (Feist & Palsson, 2008).

Models used to be made available independently by their

authors, under a variety of naming conventions and for-

mats. This is a significant obstacle to their reusability, as

significant effort is required to adapt them to modeling

software other than the ones they were constructed with.

Differences in reaction and metabolite names also hamper

direct comparisons between different models. Fortunately,

some attempts to address these issues are under way. The

general-purpose SBML format (Systems Biology Markup

Language) (Hucka et al., 2003) is often used to exchange

constraint-based models, thus playing the role of a ‘default’

standard for models. While SBML can be imported by many

modeling tools, it is not fully adapted to the specifics of

models; this may result in information or functionality loss

during exchange. In addition to providing a standard format,

SBML supports the association of model components with

external references, such as reaction and metabolite identifiers

in universal metabolic databases, using MIRIAM annotations

(Le Novère et al., 2005). If widely used, this feature should

facilitate model reuse and comparison.

In order to facilitate model reuse and comparison,

dedicated model repositories have been developed. Perhaps

the most widely adopted initiative of this type is the

Biomodels.net repository (Le Novère et al., 2006) which

stores biochemical models of any type in SBML format.

Because of its focus on more detailed dynamic models and

the related generic format choice, the repository is not fully

compatible with constraint-based models and qualitative

predictions, as illustrated by the current low number of such

models included. Agreements with several journals make it

mandatory for authors to deposit models mentioned in

their manuscripts in Biomodels.net, where they are checked

for syntactic correctness. On some models, a more elaborate

test on the compatibility between model predictions and

results presented in the associated paper is also performed.

Currently, the only freely accessible (to academic users)

repository dedicated to constraint-based models is the BiGG

database (http://bigg.ucsd.edu). Its unified dictionary of me-

tabolite and reaction names enables direct comparisons

between its metabolic models.

Relatively few software tools have been specifically devel-

oped to handle genome-scale constraint-based models,

compared with the number of tools developed for kinetic

modeling. As the modeling framework relies primarily on

linear algebra and linear programming, general purpose

mathematical software platforms, for example MATLAB

(http://www.mathworks.com/) and MATHEMATICA (http://

www.wolfram.com/), or optimization modeling packages,

for example GAMS (http://www.gams.com/), are well suited.

Specialized optimization packages can be added for greater

efficiency. In addition, modules dedicated to constraint-based

modeling have been developed for MATLAB: FLUXANALYZER

(Klamt et al., 2007), the COBRA TOOLBOX (Becker et al.,

2007), or METATOOL (von Kamp & Schuster, 2006) for

elementary mode analysis are good representatives. Libraries

for importing SBML models within these programs are also

provided by the SBML developer community (Bornstein
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et al., 2008). Among the software tools that are stand-alone,

one should mention the SYSTEMS BIOLOGY RESEARCH TOOLBOX

(Wright & Wagner, 2008), SCRUMPY (Poolman, 2006), META-

FLUXNET (Lee et al., 2003), or FLUXEXPLORER (Luo et al., 2006),

each with their own specific strengths. Interestingly, very few

programs focus or even support the model reconstruction

process by providing the analytical capabilities for consis-

tency checks: the commercial SYMPHENY platform (http://

www.genomatica.com/) associates a metabolic database

with several analytical methods, while YANASQUARE (Schwarz

et al., 2007) facilitates the reconstruction of models from

KEGG and performs selected structural analyses (e.g. ele-

mentary modes). Very recently, web-based tools have been

released to enable on-line analyses on specific metabolic

models (Beste et al., 2007; Durot et al., 2008). Given the

need for faster and better reconstruction, we expect more

progress in that direction.

Concluding remarks and future directions

Constraint-based genome-scale metabolic models can be

viewed as ‘systems-level’ analytical layers which enable com-

putation and reasoning on the consequences of the accumu-

lated knowledge on the biochemistry encoded in a given

genome, and confrontation of that knowledge with the known

physiology of the corresponding species or with additional

experimental evidence. These models thus bridge the gap

between genotype and phenotype and enable a wide spectrum

of analyses and in silico experiments, providing a solid

foundation for systems analyses and metabolic engineering.

The systematic and automated reconstruction of genome-

scale models from genomes and additional high-throughput

data may seem like a natural extension of genome annotation

(Reed et al., 2006a), but remains beyond the reach of current

methods. While genome-scale models can be reconstructed

using only sequence and qualitative functional information,

gaining the additional predictive and analytical power of

models still requires significant effort and expertise. Genome

annotations must first be translated into a network, which

must then be turned into a model with the help

of additional information, and systematically checked with

respect to biochemical consistency rules and experimental

observations. Only after a model is complete enough to

enable meaningful predictions at the phenotypic level can it

be used to predict phenotypes or other properties beyond

those that can be immediately verified.

Obstacles to automating this process include technical

difficulties in translating annotations into proper biochem-

ical activities, and also the fact that methods for model

refinement have been designed and applied separately for

each type of experimental data. There is increasing pressure

for this situation to evolve, however, as the boost in the

throughput of experimental techniques and the advent of

‘multi-omics’ datasets (Ishii et al., 2007a) promises a wealth

of information that will be exploitable only by computer-

assisted interpretation, with the help of models. At the same

time, the field of metabolic modeling is now approaching

the level of maturity necessary for several data integration

methods to be used together as components in integrated

model reconstruction and refinement strategies.

Significant benefits could result from the availability of a

wider spectrum of bacterial metabolic models. They would

provide an integrated view of metabolic pathways across the

tree of life, thereby enabling so-called transverse approaches

to annotation, and a variety of comparative metabolic

analysis. To that end, the notion of pathway – defined

unambiguously as the conversion between specified sets of

input compounds (reactants) and output compounds (pro-

ducts) – can bring a useful decomposition of metabolism

into basic biochemical functional units, in the spirit pio-

neered by SEED (Overbeek et al., 2005), KEGG Modules

(Kanehisa et al., 2007), or MetaCyc (Caspi et al., 2006). The

field of bacterial evolution is poised to benefit as well: for

instance, the availability of models for several bacteria along

the phylogenetic tree would allow more comprehensive

studies on the constraints implied by bacteria’s metabolic

capabilities and their evolution. While this type of study has

been pioneered with a few selected models (Pál et al., 2005a,

2006), working with a larger set of models will undoubtedly

bring different insights (see (Kreimer et al., 2008) for an

example with networks). Modeling can also help in studying

bacterial communities, as chemical interactions occurring

between bacteria often need to be understood within the

context of their metabolisms. Indeed, models have already

been reconstructed and analyzed for small communities

(Stolyar et al., 2007); progress on that front may prove very

useful in studying metabolic interactions in more complex

communities, assisting in the functional interpretation of

metagenome sequences. Last but not least, metabolic en-

gineering applications would clearly benefit from the avail-

ability of a large set of bacterial models, as these would

constitute a repository of characterized metabolic pathways,

facilitating the combinatorial design of new catalytic sys-

tems, providing solid bases to test hypothetical genetic

constructions, and helping with the selection of relevant

strains for specific engineering objectives.
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