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Retinal cell apoptosis occurs in many ocular neurodegenerative conditions including glaucoma—the major cause of irreversible

blindness worldwide. Using a new imaging technique that we have called DARC (detection of apoptosing retinal cells), which until

now has only been demonstrated in animal models, we assessed if annexin 5 labelled with fluorescent dye DY-776 (ANX776)

could be used safely in humans to identify retinal cell apoptosis. Eight patients with glaucomatous neurodegeneration and evidence

of progressive disease, and eight healthy subjects were randomly assigned to intravenous ANX776 doses of 0.1, 0.2, 0.4 and

0.5 mg in an open-label, phase 1 clinical trial. In addition to assessing the safety, tolerability and pharmacokinetics of ANX776, the

study aimed to explore whether DARC could successfully visualize individual retinal cell apoptosis in vivo in humans, with the

DARC count defined as the total number of unique ANX776-labelled spots. DARC enabled retinal cell apoptosis to be identified in

the human retina using ANX776. Single ANX776-labelled cells were visualized in a dose-dependent pattern (P5 0.001) up to 6 h

after injection. The DARC count was significantly higher (2.37-fold, 95% confidence interval: 1.4–4.03, P = 0.003) in glaucoma

patients compared to healthy controls, and was significantly (P = 0.045) greater in patients who later showed increasing rates of

disease progression, based on either optic disc, retinal nerve fibre layer or visual field parameters. Additionally, the DARC count

significantly correlated with decreased central corneal thickness (Spearman’s R = �0.68, P = 0.006) and increased cup-disc ratios

(Spearman’s R = 0.47, P = 0.038) in glaucoma patients and with increased age (Spearman’s R = 0.77, P = 0.001) in healthy con-

trols. Finally, ANX776 was found to be safe and well-tolerated with no serious adverse events, and a short half-life (10–36 min).

This proof-of-concept study demonstrates that retinal cell apoptosis can be identified in the human retina with increased levels of

activity in glaucomatous neurodegenerative disease. To our knowledge, this is the first time individual neuronal apoptosis has been

visualized in vivo in humans and is the first demonstration of detection of individual apoptotic cells in a neurodegenerative disease.

Furthermore, our results suggest the level of apoptosis (‘DARC count’) is predictive of disease activity, indicating the potential of

DARC as a surrogate marker. Although further trials are clearly needed, this study validates experimental findings supporting the

use of DARC as a method of detection and monitoring of patients with glaucomatous neurodegeneration, where retinal ganglion

cell apoptosis is an established process and where there is a real need for tools to non-invasively assess treatment efficacy.
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Introduction
Glaucoma is the leading cause of irreversible blindness

worldwide attributed to the death of retinal nerve cells,

specifically, retinal ganglion cells (RGC) (Cordeiro et al.,

2004; Tham et al., 2014). It is considered a multifactorial

neurodegenerative disorder of which the exact pathophysi-

ology is unclear, but is characterized as a chronic progres-

sive optic neuropathy associated with cupping of the

optic-nerve head and classically, loss of peripheral vision

(Kwon et al., 2009). It is an age-dependent disease that

has an increasing worldwide prevalence estimated at

3.54% in the over-40s (Tham et al., 2014) and affects

over 60 million people of whom more than 10% are bilat-

erally blind (Kyari et al., 2013). The high rate of sight loss

is due to the late presentation of patients with glaucoma as

the disease is asymptomatic, and is often diagnosed late

when significant vision loss has already occurred (Varma

et al., 2011).

One potential process that has been highlighted as an

early marker of glaucomatous disease, is RGC apoptosis

(Garcia-Valenzuela et al., 1995; Quigley et al., 1995;

Kerrigan et al., 1997; Kerrigan-Baumrind et al., 2000;

Cordeiro et al., 2004; Quigley, 2011). Until now, it

has not been possible to assess individual neuronal cell

apoptosis in patients, despite advances in its detection.

Annexin 5 (ANX, encoded by ANXA5) is an endogenous

36 kDa protein ubiquitously expressed in humans, which in

the presence of calcium, has a high affinity for phosphati-

dylserine exposed on apoptotic cell membranes. ANX is

used in in vitro assays to measure apoptosis, and when

radiolabelled has been used to identify apoptosis clinically,

but not at single cell resolution (Vangestel et al., 2011;

Smith and Smith, 2012). The eye, compared to any other

organ in the body, provides a distinct and unique oppor-

tunity to directly observe microscopic processes through

clear optical media. Furthermore, due to the non-invasive

nature of retinal imaging, these processes may be imaged

repeatedly and longitudinally over time (Cordeiro et al.,

2004). Fluorescence imaging is routinely used in ophthal-

mology for the assessment of retinal disorders using the

intravenous dyes fluorescein sodium and indocyanine

green for angiography (Keane and Sadda, 2010).

Our group has investigated the real-time in vivo identifi-

cation of retinal cell apoptosis using fluorescently labelled

ANX and a technique we have termed DARC (detection of

apoptosing retinal cells) (Cordeiro et al., 2004). Using

DARC, we have successfully visualized individual RGC

apoptosis in different experimental models of neurodegen-

eration including Alzheimer’s and Parkinson’s disease, optic

neuropathy, retinal neurodegeneration and glaucoma, pre-

viously shown only at post-mortem (Kerrigan et al., 1997;

Okisaka et al., 1997), and demonstrated its ability to test

treatment efficacy (Cordeiro et al., 2004, 2010; Guo et al.,

2005, 2006, 2007, 2014; Maass et al., 2007; Schmitz-

Valckenberg et al., 2008, 2010; Galvao et al., 2014; Salt

et al., 2014; Normando et al., 2016). Based on the collect-

ive preclinical evidence of DARC effectivity in assessing

disease activity and therapeutic response (Supplementary

Table 1), this technology has now been taken forward to

the clinic, to investigate its potential application in humans.

Here, we report the results of a proof-of-concept

study that sets out to explore (i) whether DARC could

successfully identify individual retinal cell apoptosis in

humans; and (ii) whether there was a difference in activity

between healthy and glaucomatous eyes, while simultan-

eously establishing safety, tolerability and pharmacokinetics

of intravenously administered fluorescently-labelled annexin

5 (ANX776).

Materials and methods

Study participants

The trial was conducted at The Western Eye Hospital, Imperial
College Healthcare NHS Trust, as a single-centre, open-label
study with subjects each receiving a single intravenous injec-
tion of ANX776. Both healthy and progressing glaucoma sub-
jects were recruited to the trial (ClinicalTrials.gov number
NCT02394613), with informed consent being obtained
according to the Declaration of Helsinki after the study was
approved by the Brent Research Ethics Committee. Healthy
subjects were recruited through hospital advertisements.
Enrolment was performed once sequential participants were
considered eligible, according to the inclusion and exclusion
criteria detailed in Supplementary Table 2. Briefly, healthy sub-
jects were included if: there was no ocular or systemic disease,
as confirmed by their GP; there was no evidence of any glau-
comatous process either with optic disc, retinal nerve fibre
layer (RNFL) or visual field abnormalities and with normal
intraocular pressure; and they had repeatable and reliable ima-
ging and visual fields. All glaucoma subjects were already
under the care of the glaucoma department at the Western
Eye Hospital, and were considered for inclusion in the study
if they were found to have no ocular or systemic disease other
than glaucoma with a minimum of three recent, sequential
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assessments with optic disc tomography (Heidelberg Retina
Tomograph III), retinal optical coherence tomography (OCT)
(Spectralis SD OCT, software version 6.0.0.2; Heidelberg
Engineering) and standard automated perimetry (HFA 640i,
Humphrey Field Analyzer; Carl Zeiss Meditec) using the
Swedish interactive threshold algorithm standard 24-2.
Eligible glaucoma subjects were required to show evidence of
progressive disease in at least one eye of any parameter sum-
marized in Table 1. OCT parameters included RNFL measure-
ments at three different diameters from the optic disc (3.5, 4.1
and 4.7 mm) and Bruch’s membrane opening minimum rim
width, and used in-built instrument software to compute glau-
coma progression. Where this was not possible due to the
duration of the pre-intervention period of assessment as in
the case of Heidelberg retinal tomograph rim area, visual
field mean deviation and visual field index, ordinary least
squares regression was used to calculate linear rates of
change of each parameter with time (Pathak et al., 2013;
Wang et al., 2013). Glaucoma progression was defined by a
significant (*P50.05; **P5 0.01) negative slope in the rate of
progression of each parameter identified in Table 1 and
Supplementary Table 8.

Study design and randomization

The sequential, ascending, single-dose Storer study design
enabled assessment of separate ANX776 dosing cohorts, starting
with 0.1 mg, then 0.2 mg, 0.4 mg and finally 0.5 mg. Each cohort
comprised two patients with glaucoma and two healthy partici-
pants, and a further glaucoma and a healthy subject allocated in
reserve in case of adverse events. The design of the study is
shown in Supplementary Fig. 3 and Supplementary Table 4.

Following sequential enrolment, subjects were randomly
allocated to specific ANX776 dosing positions, as determined
by an electronic random allocation system (provided by Sealed
Envelopes Ltd, London), and by the time point at which they
joined the trial. Initially, six participants were recruited per
cohort dose [two patients with glaucoma and two healthy,
plus reserve glaucoma (one patient) and healthy (one subject)].
Escalation to the next incremental dose occurred in the absence
of adverse events, and on agreement of an Independent
Data Monitoring Committee (IDMC). Randomization was
performed by the study team, who entered the required data
in the system and retrieved an allocation number, which deter-
mined the dose to be administered and the patient order in each
dosing cohort. In accordance with random allocation, the dose
was subsequently administered by the study investigator, ac-
cording to the Storer design detailed in Supplementary Table
4. One subject was dosed per day with a minimum time period
between dosing of 72 h between positions 1 and 2 in a cohort
and also at dose escalation, and of 24 h between all other pos-
itions in the cohort.

ANX776 structure and
characterization

The chemical structure of ANX776 is shown in Supplementary
Fig. 6. ANX776 consists of a variant of human annexin 5
(ANX) named rhAnnexin V128 (Anx V128), which allows a
single covalent bond to be made between the maleimide form
of the fluorescent dye Dy776-maleimide (Dy-776-mal), and the
cysteine residue of Anx V128. The fluorescent properties of
ANX776 are due to the conjugated dye, which has an excita-
tion/emission of 771/793 nm, in the near infrared region. This

Table 1 Glaucoma progression parameters

Glaucoma baseline rate of progression parameters (P5 0.05)

Subject Eye HRT OCT SAP

HRT rim area

mm2/year

RNFL 3.5

km/year

RNFL 4.1

km/year

RNFL 4.7

km/year

MRW

km/year

MD

dB/year

VFI

%/year

5 R + +

L +

6 R + +

L

7 R + +

L +

8 R + + + +

L +

9 R + +

L

11 L + +

13 R +
L

14 R + +

L

Glaucoma progression parameters: In-built instrument software was used to compute rates of progression with OCT using RNFL measurements at three different diameters from

the optic disc (3.5, 4.1 and 4.7 mm), and Bruch’s membrane opening minimum rim width (MRW). For Heidelberg Retina Tomograph III (HRT) and standard automated perimetry

(SAP; HFA 640i, Humphrey Field Analyzer) due to the short pre-intervention assessment period, ordinary least squares regression was used to calculate statistically significant linear

rates of progression (Pathak et al., 2013; Wang et al., 2013) of mean deviation (MD), visual field index (VFI) and rim area, defined by a negative slope and P5 0.05. R = right; L = left.
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is similar to the absorption and emission spectrum of indocya-
nine green, a dye that is used frequently in retinal angiography
in ophthalmology (Keane and Sadda, 2010). The biological
activity of ANX776 has been confirmed using in vitro assays
(Supplementary Fig. 6), a GLP red blood cell displacement
assay (Tait et al., 2004) and several preclinical in vivo studies
(Supplementary Table 1).

Intervention

A single injection of one dose of ANX776 was administered
intravenously to each subject, following which retinal imaging
was performed to visualize ANX776-positive fluorescent cells.
ANX776 was formulated at a single strength (0.2 mg/ml) so
that the cohort dosage was varied by volume; hence 0.5, 1.0,
2.0 and 2.5 ml were injected from the ANX776 vial to give the
0.1, 0.2, 0.4 and 0.5 mg cohorts, respectively. Assessments of
safety and clinical effects/efficacy (secondary outcome) were
made at regular intervals (pre-dose, at 5, 15, 30, 60, 120,
240 and 300 min and 30 days after administration).

Images were acquired from all subjects with a confocal scan-
ning laser ophthalmoscope (HRA + OCT Spectralis, Heidelberg
Engineering) set to ICGA infrared fluorescence settings (diode
laser 786 nm excitation; photodetector with 800 nm barrier
filter), after pupillary dilatation (1% tropicamide and 2.5%
phenylephrine). Baseline reflective (to ensure focusing on the
level of the RNFL was achieved) and infrared autofluorescent
images were acquired prior to ANX776 administration, and
then during and after ANX776 injection at 15, 30, 60, 120,
240 and 360 min, with fovea-centred images including the
whole macula and the optic disc per eye per time point
(Supplementary Video 1).

For each time point, sequences of 100 frames were averaged
using the manufacturer’s eye tracking system to obtain the
highest signal-to-noise ratio, with an image resolution of
1536 � 1536 pixels (30� field of view, at 10 mm/pixel with
an OCT axial resolution of 3.9 mm), corresponding to an aver-
age width of 8.87 � 0.28 mm per image, depending on pa-
tients’ refraction. The photodetector sensitivity was adjusted
to an absolute value of 107 for all images to maintain com-
parability. Imaging was not possible in one eye of one of the
glaucoma patients due to corneal disease; this eye was
excluded from the analysis.

Clinical assessments

All subjects underwent a complete eye examination at each
study visit, including best-corrected visual acuity, slit-lamp bio-
microscopy, intraocular pressure measurement with Goldmann
applanation tonometry, gonioscopy, dilated funduscopic exam-
ination with a 78-diopter (D) lens, Heidelberg Retina
Tomograph III, OCT and standard automated perimetry.
Other assessments included adverse medical event queries,
medical and ophthalmic histories and fundus examination
with auto-fluorescence (488 and infrared).

All subjects were required to attend three visits when all
above tests were repeated: a qualification (after screening), a
procedural and follow-up (at 30 days); glaucoma subjects were
in addition subsequently reviewed at further follow-up visits,
as part of the standard of care, up to 16 months after DARC.

Safety and tolerability

Only one subject was dosed with ANX776 per day, with a
minimum of 72 h between dosing of the first and second par-
ticipant in any dose cohort. Subjects were required to stay in
the hospital and were carefully monitored for adverse events
using the Common Terminology Criteria for Adverse Events
(CTCAE v4.0), with vital signs being taken at regular inter-
vals, for a period until 6 h after ANX776 administration.
Further safety was monitored by a 24-h post-treatment tele-
phone call and finally at 30 days (Visit 3).

Pharmacokinetic assessments

Serum samples were taken pre-dose, and 5, 15, 30, 60, 120 and
300 min after administration of ANX776 and processed for de-
tailed pharmacokinetic analyses that were performed with the
use of a validated sandwich ELISA assay in a GCLP-accredited
laboratory. The assay uses a captive antibody specific for human
annexin V-128 and a rabbit anti-DY776 secondary antibody.
Samples were processed and analysed in a masked fashion.

DARC analysis

Anonymized retinal images, grouped per subject, were then
processed and analysed with blinding to both dosage and sub-
ject’s glaucoma status. For each subject, baseline retinal images
were aligned to subsequent images per time point using an
affine transformation (Modat et al., 2014), followed by a
non-rigid transformation (Modat et al., 2010) to compensate
for the presence of non-linear optical distortions. Images were
then illumination-matched to each other by estimating the dif-
ferential intensity inhomogeneity to the mean intensity over all
time points (Lewis and Fox, 2004). The illumination-corrected
baseline image was subtracted from each subsequent image to
remove large non-enhancing features such as the retinal vessels
and the optic disc (Supplementary Fig. 5).

Fluorescent ANX776-positive spots were automatically com-
puted for each image, at all time points for each subject. To
detect these spots in the processed images, a template matching
approach was used with a Gaussian kernel with seven pixels
standard deviation as a DARC spot template, convolved with
each image (Brunelli, 2009). A positive, definite spot was iden-
tified by any pixel location with a template matching response
above 0.5 in at least two time points. To avoid repeated count-
ing of the same spot at different time points, the DARC count
was defined as the first appearance of new, unique individual
ANX776-labelled spots. The DARC count was used to assess
the efficacy of the technique and in the comparison of healthy
controls to glaucoma patients.

Statistical analysis

All the safety and tolerability and PK analyses included subjects
who received ANX776. One eye of one glaucoma patient could
not be imaged due to corneal disease, so was excluded from the
efficacy analysis. One healthy subject on review of all patients
and ahead of the retinal imaging analysis, was found to have
bilateral suspicious baseline glaucomatous visual fields and both
eyes were excluded from the efficacy analysis. Descriptive statis-
tics were used to summarize the baseline characteristics findings.
DARC counts and pharmacokinetics data were determined by
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means of a one-way ANOVA, with two-way ANOVA being
applied to assess the influence of glaucoma status, dose of
ANX776 and time. To ascertain whether DARC counts were
higher in the eyes of patients with glaucoma, the total counts
were compared allowing for the effect of different ANX776
doses, using Stata/IC 11.2 for Windows. The DARC counts
were log transformed after adding 1; a log transformation (i.e.
a multiplicative model) was used because of the increase in
standard deviations of counts with the count size and the recog-
nition that counts cannot be negative. Dose was entered into this
analysis as a blocking factor. Spearman’s correlation was used to
compare the DARC count to all parameters listed in Table 4.
P-values5 0.05 were considered statistically significant.

Results

Subject demographics

A total of 33 subjects were pre-screened according to the

inclusion/exclusion criteria in Supplementary Table 2, from

which eight healthy participants and eight patients with

progressing glaucoma underwent DARC (Supplementary

Figs. 3 and 4). Of note, although a separate group of

four patients with non-arteritic ischaemic optic neuropathy

had originally been planned as positive controls (one

per dosing cohort) none were successfully recruited and

since a positive signal was seen with DARC even at

low doses, the IDMC, Trial Management Group and spon-

sor decided to complete the study without them

(Supplementary Fig. 3).

Baseline characteristics of these 16 subjects are presented

in Table 2 and Supplementary Table 7. Glaucoma patients

had significantly increased cupping (P50.0001; mean cup-

to-disc ratio 0.53 � 0.12, range 0.3–0.7 in 15 eyes) and

elevated intraocular pressures (P = 0.033, mean intraocular

pressure 15.4 � 2.1, range 14–21 mmHg) compared to

healthy subjects (mean cup-to-disc ratio 0.30 � 0.06,

range 0.2–0.4 in 14 eyes, mean intraocular pressure

13.9 � 2.1, range 10–16 mmHg), and were diagnosed as

either glaucoma suspects or early glaucoma (mean devi-

ation �1.81 � 1.79 range �5.7–1.05 dB). Over a period

of pre-intervention assessment (mean 7.3 � 1.8 months),

structural (OCT and/or Heidelberg Retina Tomograph)

and visual field progression [where progression was defined

by a significant (P5 0.05) negative slope] was recorded in

at least one eye of each patient, as summarized in Table 1

and detailed in Supplementary Table 8.

Subjects were consecutively enrolled and randomized to

ANX776 dosing. As no serious adverse events were seen at

any dose, each ANX776 dose cohort consisted of two pa-

tients with glaucoma and two healthy participants.

Visualization of individual retinal cell
apoptosis with DARC

DARC spots, identified as ANX776 positive-labelled

cells, were visualized with fluorescent imaging as

hyperfluorescent spots on the retina measuring between

12 and 16 mm diameter (Supplementary Video 1 and

Fig. 1). The retinal area visualized in each image was

78.73 � 5.04 mm2. Figure 1A–F shows the typical appear-

ance of DARC spots at different concentrations of

ANX776, with a significant increase in DARC activity at

the 0.4 mg dose (P5 0.01, Fig. 1G). Individual DARC

spots had different fluorescent signal profiles over time, as

illustrated in Fig. 1H–P. DARC spots were at the level of

the retinal ganglion cell layer, as judged by focusing in the

reflective mode of the confocal scanning laser ophthalmo-

scope, with visualization of hyper-reflective nerve fibre

bundles (Supplementary Figs 9 and 10).

Table 2 Baseline demographic characteristics of

subjects

Glaucoma Normal P-value

Sample size 8 7

Age (years) 53.5 � 4.9 49.1 � 8.39 NS

Gender

Male 5 (62.5%) 5 (75%)

Female 3 (37.5%) 2 (25%)

Ethnicity

Caucasian 5 (62.5%) 3 (40%)

Black 3 (37.5%) 0

Asian 0 4 (60%)

Weight (kg) 76.9 � 13.0 85.1 � 16.2 NS

Body

mass index

25.7 � 2.5 28.8 � 4.0 NS

Systolic

blood pressure

(mmHg)

127.3 � 9.2 140.8 � 13 NS

Diastolic

blood pressure

(mmHg)

81.0 � 13.4 85.8 � 7.8 NS

Heart

rate (beat/min)

70.5 � 10.6 73.1 � 9.9 NS

Respiration rate

(breaths/min)

20.5 � 1.5 20.8 � 2.1 NS

Visual acuity

Right 0.03 � 0.07 0.01 � 0.07 NS

Left 0.04 � 0.07 0.04 � 0.07 NS

Corneal pachymetry

Right 542.8 � 39.5 561 � 29 NS

Left 548.5 � 36.5 557 � 29 NS

Cup/disc ratio

Right 0.53 � 0.09 0.30 � 0.06 _0.05

Left 0.54 � 0.14 0.30 � 0.06 _0.05

Mean intraocular pressure (mmHg)a

Right 15.54 � 2.02 13.90 � 2.17 _0.05

Left 15.08 � 1.53 14.05 � 1.89 _0.05

Mean deviation visual fields (MD)

Right �1.48 � 1.49 0.06 � 2.77 _0.05

Left �2.10 � 2.09 �0.45 � 1.12 _0.05

Values are mean � SD.
aFive subjects in the glaucoma group were on intraocular pressure lowering

medication.
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Comparison of DARC in patients with
glaucoma and healthy subjects

All doses showed a higher DARC count in glaucoma pa-

tients compared to healthy controls with two-way ANOVA

across the doses showing a significant effect of glaucoma

status (P = 0.0033) and time point (P = 0.0011).

Multivariable analysis indicated that the total DARC

count across 6 h was 2.37-fold higher in patients with glau-

coma [95% confidence interval (CI): 1.4–4.03, P = 0.003],

at any dose. The ‘-fold’ changes were 2.36, 1.68, 1.50,

1.37, 1.84 and 1.87, respectively, at 15, 30, 60, 120, 240

and 360 min, with upper 95% CIs of 5 2.34 and P-values

of 0.009, 0.051, 0.09, 0.23, 0.01 and 0.02, respectively for

glaucoma versus healthy participants.

The DARC count was found to be significantly correlated

with decreased central corneal thickness (Spearman’s

R = �0.68, P = 0.006) and increased cup–disc ratios

(Spearman’s R = 0.47, P = 0.038) in glaucoma patients. It

was also positively correlated with age (Spearman’s

R = 0.77, P = 0.001) in healthy control subjects.

Correlation of DARC with disease
activity

To be eligible for the study, glaucoma patients had to show

evidence of progression of disease in at least one of the

parameters summarized in Table 1, defined by a significant

negative slope in the rate of progression. In addition to

calculating rate of progressions at baseline, a post hoc

assessment was performed at follow-up to obtain

final rate of progressions, as shown in Supplementary

Table 8. Patients were identified who showed a higher

rate of progression at follow-up than at baseline in at

Figure 1 DARC counts are increased in affected glaucoma patients compared to healthy controls. ANX776 injections revealed

single neuronal cell apoptosis in the retina of study subjects. Representative retinal images are shown from glaucoma patients following

intravenous injections of 0.4 (A and B), 0.2 (C and D) and 0.5 (E and F) mg ANX776 at 240 minutes. Panels show unmarked (A, C and E) and

marked (B, D and F) ANX776-positive spots with yellow rings highlighting individual spots. DARC counts were defined as new, unique individual

ANX776-labelled spots, at their first appearance in the retina. Analysis of DARC counts in glaucoma and healthy controls for each ANX776

dosing cohort showed that at each dose, the number of DARC spot counts was consistently higher in glaucoma patients compared to healthy

controls, and this reached significance at the 0.4 mg (P5 0.005) dose (G). The spread of the individual data points is shown in Tukey’s box plots

(G). Horizontal lines indicate medians and interquartile ranges with the continuous line across doses showing the means. Asterisks indicate the

level of significance by Bonferroni multiple comparison test between groups (P5 0.01) with two-way ANOVA across the doses showing a

significant effect of glaucoma status (P = 0.0033) and time point (P = 0.0011). Multivariable analysis indicated that the total DARC count across 6 h

was 2.37-fold higher in patients with glaucoma (95% CI: 1.4–4.03, P = 0.003) at any dose. Different fluorescent intensity profiles were seen for

individual labelled spots (H–P). Low (I, K, M and O) and high (J, L, N and P) magnification (scale bars indicated) retinal images at different

time points are shown from the same patient as in A at baseline (I and J, 0 min), 60 (K and L), 120 (M and N) and 240 (O and P) min. Marked,

colour-coded spots are shown in adjacent panels (J, L, N and P) with fluorescent intensity profiles illustrated in H, identified by corresponding

coloured lines.
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least one parameter, as highlighted in red text in

Supplementary Table 8 and summarized in Table 3

(increasing rate of progression). Analysis of the DARC

count in these patients showed it to be significantly

(P = 0.028) increased compared to healthy controls (Fig. 2

and Table 3).

Safety, tolerability and
pharmacokinetics

No patients withdrew from the study, and no serious

adverse events were reported. Six separate adverse events

were described as detailed in Table 4, all of which were

mild, self-limiting and probably unrelated to ANX776.

There were single cases of: discomfort during phlebotomy,

haematoma at cannulation site, influenza, metatarsal in-

flammation, dizziness and headaches.

ANX776 was rapidly absorbed and eliminated after

intravenous administration (Fig. 3 and Table 5).

Pharmacokinetic results showed that exposure to

ANX776 was dose-dependent with no accumulation.

Cmax (maximum serum concentration) increased propor-

tionally with increasing doses as did the AUC (area under

the serum concentration time curve to the 5-h collection

time). Mean (and median) Cmax were 5.5 (5.6), 21.6

(19.2), 25.8 (25.6) and 40.9 (39.4) ng/ml, for the 0.1,

0.2, 0.4 and 0.5 ANX776 mg cohorts, respectively. The

mean Tmax (time to Cmax) was 6.875 min, and median

5 min, consistent with the short half-life (T) which was

36.4, 18.8, 20.7 and 20 min for the 0.1, 0.2, 0.4 and

0.5 mg cohorts, respectively. ANX776 clearance was cor-

respondingly high (mean 354.75, median 372.5 ml/min).

Analysis of any differences between subject groups

showed that except at the lowest 0.1 mg dose, there

was no significant difference between glaucoma and healthy

subjects in any of the pharmacokinetic parameters

measured.

Discussion
This proof-of-concept study demonstrates that visualization

of individual retinal cell apoptosis is possible in the human

retina. Using DARC technology with a fluorescent apop-

tosis marker, ANX776, we have identified a significantly

increased level of retinal cell apoptosis in glaucoma patients

compared to healthy controls. The DARC count was sig-

nificantly greater in patients with progressing glaucomatous

disease. Finally, we found ANX776 to be safe and well-

tolerated, with a short half-life.

As far as we are aware, this is the first time individual

apoptosing neuronal cells have been visualized in vivo

in humans. Previous use of annexin 5 in patients has

been when it was labelled with Technetium-99 m; however,

nuclear medicine techniques are unable to resolve micro-

scopic processes due to insufficient spatial resolution,

and show instead regional areas of apoptotic activity

(Supplementary Table 11) (Vangestel et al., 2011).

The visualization of distinct fluorescently-labelled neur-

onal cells is currently possible only in the eye, due to

its unique optical properties, providing a promising

opportunity to identify and assess neurodegenerative

disease.

RGC apoptosis occurs early in glaucomatous neurode-

generation (Garcia-Valenzuela et al., 1995; Quigley et al.,

1995; Kerrigan et al., 1997; Kerrigan-Baumrind et al.,

2000; Cordeiro et al., 2004; Guo et al., 2007; Quigley,

2011). Its presence has been clearly documented by differ-

ent methods and investigators (Garcia-Valenzuela et al.,

1995; Quigley et al., 1995; Kerrigan et al., 1997;

Okisaka et al., 1997; Nickells, 1999; Kerrigan-Baumrind

et al., 2000; Tatton et al., 2001; Reichstein et al., 2007),

with some even suggesting that ‘Annexin-V can be used to

specifically detect apoptotic RGCs . . . . in glaucomat-

ous . . . retina’ (Reichstein et al., 2007). Using DARC and

retrograde labelling in vivo, we have confirmed by histolo-

gical analysis (Cordeiro et al., 2004, 2010), that fluorescent

ANX labels apoptosing RGCs in different glaucoma experi-

mental models (Supplementary Table 1) (Cordeiro et al.,

2004; Guo et al., 2005, 2006). Building on our preclinical

data, we decided to investigate glaucoma clinically as the

neurodegenerative condition to be first assessed using

DARC, in a proof-of-concept study.

This study revealed significantly elevated DARC counts in

glaucoma patients compared to healthy subjects, suggesting

that DARC could be used to identify abnormal retinal neu-

rodegenerative activity. Glaucoma patients in this study had

early glaucoma (visual field mean deviation: �1.81 dB) but

with significant progression in any parameter in at least one

eye. These patients progressed in a short time, with mean

baseline and final follow-up of 7.3 and 13.0 months, re-

spectively. Few studies have looked at short follow-up

times, although reproducibility studies assessing test–retest

variability and coefficient of variations have been performed

in similar time frames (Wolf-Schnurrbusch et al., 2009;

Table 3 DARC counts are significantly increased in

glaucoma patients with increasing rates of progression

compared to healthy controls

Number of glaucoma eyes

with significant RoP

(P5 0.05; total n = 15)

Instrument Parameters Baseline Follow-up RoP

increasing

HRT Rim area 2 3 2

OCT RNFL 3.5 8 10 3

RNFL 4.1 4 3 2

RNFL 4.7 2 3 1

MRW 3 4 1

SAP MD 3 5 3

VFI 0 1 1

MD = mean deviation; MRW = Bruch’s membrane opening minimum rim width;

RoP = rate of progression; VFI = visual field index. See also Fig. 2.
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Wang et al., 2013). The rate of visual field progression

is used in glaucoma as a marker of neurodegeneration,

especially with respect to neuroprotective treatments

(Krupin et al., 2011), as it reflects the rate of RGC loss

(Harwerth and Quigley, 2006). The visual field index

trend analysis is normally based on five tests over 2 years

or more (Bengtsson et al., 2009), with early glaucoma

corresponding to a mean visual field index trend of �0.89

to �0.83% per year (Cho et al., 2012; Aptel et al., 2015).

Recently, however, the rate of RNFL loss in OCT has been

shown to be predictive of visual field loss (Yu et al., 2016).

An interesting post hoc finding in the present study has been

the significant relationship of a high DARC count being

predictive of increased rates of progression, suggesting that

DARC could potentially be prognostic of neurodegenerative

activity.

Figure 2 DARC counts are significantly increased in glaucoma patients with increasing rates of progression compared to

healthy controls. The rate of progression (RoP) was calculated for all parameters at baseline and follow-up for all glaucoma patients, where an

increasing rate of progression was computed from the difference between follow-up and baseline significant (P5 0.05) negative slopes. The

DARC count was significantly increased in glaucoma patients with increasing rate of progression in any one parameter, compared to healthy

controls, as shown in Tukey’s box plots illustrating individual data points in glaucoma patients with and without increasing rate of progression

compared to healthy controls. Asterisks indicate level of significance by Dunn’s multiple comparison test between groups (P5 0.05) with Kruskal

Wallis one-way ANOVA showing statistical significance across three groups (P = 0.0448). Horizontal lines indicate medians and interquartile

ranges with � ’ symbol showing the means, and all individual data points indicated. See also Table 3.

Table 4 Adverse events

Adverse event Patients, n (%) Severitya Relationship to IMPb Duration Glaucoma Previous

history

Discomfort during phlebotomy 1 (6.25) 1 4 51 min No Yes

Haematoma following cannulation 1 (6.25) 1 4 1 day Yes No

Influenza 1 (6.25) 1 4 3 days No Yes

Metatarsal inflammation 1 (6.25) 1 4 3 weeks Yes No

Dizziness 1 (6.25) 1 4 51 min No Yes

Headache 1 (6.25) 1 4 2 h No Yes

aSeverity: 1, mild; 2, moderate; 3, severe; 4, life threatening; 5, death.
bRelation to study drug: 0, definitely; 1, probably; 2, possibly; 3, unlikely; 4, not related; 5, not assessable.

IMP = investigational medicinal product.

Figure 3 ANX776 pharmacokinetics and pharmacodynam-

ics. The mean serum concentration of ANX776 over time after a single

intravenous administration of five different dose levels is shown with

standard error bars in healthy and glaucoma cohorts. See also Table 5.
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Based on glaucomatous RGC loss being on average 4%

(Zeyen, 1999; Hirooka et al., 2016) compared to that

attributed to normal ageing (0.4%), (Jonas et al., 1992;

Harman et al., 2000; Neufeld and Gachie, 2003;

Harwerth et al., 2008), the number of RGCs lost per

year in glaucomatous disease has been estimated to be be-

tween 28 000 (Hirooka et al., 2016) and 33 000 (Medeiros

et al., 2012), or between 77 and 90 per day in the whole

retina. Assuming the 30� lens of the OCT Spectralis used in

this study visualizes 30–52 % of the total RGC, and the

DARC count represents the daily RGC death within that

field of view (assuming all cell death occurs through apop-

tosis or necrosis, and therefore labelled as ANX776-posi-

tive), then our findings of the maximal DARC counts in the

glaucoma 0.4 mg ANX776 cohort would be in the pre-

dicted range. This will clearly need further study, as will

the correlation of DARC with reduced central corneal

thickness, controversially cited as a risk factor for develop-

ing glaucoma (Gordon et al., 2002; Brandt et al., 2012).

Another interesting finding in this study is the positive

correlation of age with the DARC count in healthy sub-

jects. Apoptosis has been associated with ageing (Kujoth

et al., 2005), but is also an established risk factor for inci-

dence and progression in glaucoma (Leske et al., 2007;

Chauhan et al., 2008). Again, larger trials are needed to

further investigate this, and to study its application to other

neurodegenerative diseases (Supplementary Table 1)

(Cordeiro et al., 2004, 2010; Normando et al., 2013).

The method of template matching is routinely used for

tracking cells in microscopy (Brunelli, 2009; Adanja et al.,

2010; Dewan et al., 2011), with the same principles applied

to allow us to analyse single cells in vivo longitudinally in

this study. This enabled the analysis of the DARC count to

be possible as it consisted purely of the appearance of new,

ANX776 positively labelled cells.

Our pharmacokinetic studies indicate that ANX776 is

rapidly absorbed and distributed, which limits the peak

plasma levels and the potential for acute adverse reactions.

The terminal elimination half-life (ranging from 10 to

36 min) is similar to that reported of radiolabelled Anx

V128 experimentally (Benali et al., 2014), which is

currently being assessed in patients (NCT02182609). The

optimal dosing concentration appears to be 0.4 mg, as this

was when the peak level of DARC counts was seen.

Interestingly, this is within the range of the radiolabelled

Anx A5 clinical trials, as summarized in Supplementary

Table 11. At 0.4 mg, the half-life of ANX776 is 20.7 min,

with a clearance of 29 ml/min. This again fits with pub-

lished literature, which suggests that the Anx V128 muta-

tion provides an 88% lower renal uptake than wild-type

Anx A5, with a faster clearance (Benali et al., 2014). In

addition, there is good evidence that the single-site labelling

of Anx V128 is associated with an increased sensitivity of

detection of apoptotic cells (Tait et al., 2006). The half-life

range in our study was dependent on dosage, with the

longest half-life at the lowest dose of 0.1 mg. Commonly,

half-life increases with concentration due to zero order kin-

etics; however, as with vitamin C, reductions in half-life

with increasing concentrations can be seen with second

order kinetics. This may also be explained by the hypoth-

esis that at the lowest doses, a greater proportion of

ANX776 may be binding to phosphatidylserine with little

left to be eliminated. At higher doses the effect would be

less, and elimination would reflect the unbound fraction of

ANX776.

Despite these promising results, it is important to recog-

nize that these are only preliminary. Like any new technol-

ogy, DARC will need robust testing if it is to be

successfully validated (Kenis et al., 2010; Henry and

Hayes, 2012). However, these results demonstrate transla-

tion from experimental studies where DARC has been used

to assess treatment efficacy in addition to disease activity,

opening the door for it to be considered as a companion

diagnostic endpoint in the indications already investigated

experimentally. Further studies will be needed to validate

these initial findings, but these encouraging data are useful

in the upcoming clinical studies, where DARC will be as-

sessed not only in glaucoma, but also in age-related macu-

lar degeneration, optic neuritis, and Alzheimer-related

disease.

Table 5 Pharmacokinetic parameters

Cohort 1

n = 4

Cohort 2

n = 4

Cohort 3

n = 4

Cohort 4

n = 4

Dose, mg 0.1 0.2 0.4 0.5

Cmax, ng/ml 5.5 (0.5) 21.6 (6.2) 25.8 (5.7) 40.9 (8.7)

Tmax, min 7.5 (2.5) 5.0 (0.0) 7.5 (2.5) 7.5 (2.5)

AUC0–300 min, ng/ml 290 (24) 886 (109) 909 (60) 1490 (520)

Cmin, ng/ml 0.6 (0.1) 1.0 (0.2) 0.7 (0.1) 0.7 (0.1)

T1/2, min 36.4 (14.8) 18.8 (7.2) 20.7 (9.7) 10.2 (4.9)

Ke, min�1 0.036 (0.015) 0.070 (0.031) 0.098 (0.064) 0.133 (0.050)

Clearance, ml/min 352 (30) 193 (66) 446 (29) 428 (88)

Data are shown as mean (standard error). Cmax = maximum serum ANX776 concentration after iv administration; Tmax = time to maximum serum concentration; AUC = area under

the serum concentration time curve to the last collection time (300 min); Cmin = minimum serum ANX776 concentration; T1/2 = terminal elimination phase half-life; Ke = elimination

rate constant. See also Fig. 3.
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In conclusion, this study demonstrates that using

ANX776 and DARC, retinal cell apoptosis can be identi-

fied in the human retina with increased levels of activity in

glaucomatous neurodegenerative disease. As far as we are

aware, this is the first time in humans that individual neur-

onal cell apoptosis has been visualized in vivo, in real time.

The DARC count appears predictive of progressive disease,

indicating its possible use as a surrogate marker in glau-

coma. Further studies will be needed to validate these initial

findings, but this encouraging data is useful in the upcom-

ing phase 2 studies where DARC will be assessed not only

in glaucoma, but also in age-related macular degeneration,

optic neuritis, and Alzheimer-related disease; this may pro-

vide additional information regarding the potential of

DARC in evaluating disease activity and treatment efficacy

in other neurodegenerative conditions.
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