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Dynamic analysis and optimal 
control considering 
cross transmission and variation 
of information
Sida Kang1, Xilin Hou1*, Yuhan Hu2 & Hongyu Liu3

Cross-transmission of information has a profound influence on the progress of science and technology 
and the discipline integration in the field of education. In this work, knowledge gained from the viral 
recombination and variation in COVID-19 transmission is applied to information transmission. Virus 
recombination and virus variation are similar to the crossing and information fusion phenomena in 
information transmission. An S2I4MR model with information crossing and variation is constructed. 
Then, the local and global asymptotic stabilities of the information-free equilibrium and information-
existence equilibrium are analyzed. Additionally, the basic reproduction number R

0
 of the model is 

calculated. As such, an optimal control strategy is hereby proposed to promote the cross-transmission 
of information and generate variant information. The numerical simulations support the results of the 
theoretical analysis and the sensitivity of the system towards certain control parameters. In particular, 
the results show that strengthening information crossing promotes the generation of variant 
information. Furthermore, encouraging information exchange and enhancing education improve the 
generation of information crossing and information variation.

Information allows individuals to comprehend their surroundings and is critical in the development of human 
society. The concept of information is described in Cybernetics by Norbert Wiener, where he states, “Information 
is the content and name that human beings exchange with the external world in the process of adapting to and 
reacting to the external world.” Furthermore, he adds, “Including social systems, it adjusts and determines its 
own movements according to certain changes in the surrounding environment”1. The entry of new information 
in the social system causes fluctuations. People need to estimate the impact of information on human society to 
formulate strategies for promoting the information transmission that is beneficial for social development2,3, and 
at the same time suppress the information transmission that is harmful for social development4,5.

The ownership and transmission mode of information are the main factors that affect its process of trans-
mission. An open social system contains a plethora of homogeneous or heterogeneous information. In addi-
tion, different types of information diffuse together and generate new information. In principle, the transmis-
sion of information is very similar to the transmission of infectious diseases6,7. Several literature works have 
adopted the classical model of infectious diseases8–10 to the research of rumor transmission11 and information 
transmission12,13. Based on this, the process of studying information transmission in the present work is inspired 
by the spread of SARS-COV-2. It is found that the mutated virus, such as the Omicron variation (B.1.1.529)14 has 
changed the transmissibility and pathogenicity of the original strain15. Moreover, it has also changed the way 
the virus impacts human society. This phenomenon of virus recombination and variation can also be applied 
to information cross-transmission and variation, as information also deviates from its original path during its 
transmission. Therefore, the model of virus recombination and variation can be employed to construct and 
describe the social phenomenon of information cross-transmission and variation.

The aforementioned works have presented extensive research on the cross-transmission of information. The 
results showed that the cross-transmission expands the scope of information transmission, and also enhances 
the intensity of information transmission. However, after the cross-transmission of information, new variants of 
information are formed, in a manner similar to a viral strain, and the mutated information generally changes the 
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content of the original information. The natural variation of information has also been considered27, but so far, a 
limited amount of works that consider the variations caused by the cross-transmission of such information exists.

Various works presented in literature focus on the cross-transmission of information. Zan16 proposed DSIR 
and C-DSIR models and analyzed the interaction mechanism of dual rumor transmission in the BA network. 
The results showed that after an old rumor has been spreading for a certain period, releasing a new rumor is 
more favorable for the co-transmission of the two rumors. Yin et al.17 showed that in real social networks, mul-
tiple pieces of information exist for collaborative transmission. Based on this, a CT-FSI model was constructed 
to analyze the cross-transmission behavior of multiple pieces of information on Chinese microblogs and the 
continuous attraction index was presented. The results showed that cross-transmission of multiple pieces of 
information continues to spread in a cyclic manner. Yin et al.18 analyzed the hot topics of Chinese microblogs 
and observed that forwarding the information multiple times deepens the impression and spread of the topic. 
Therefore, the authors proposed the MR-SFI model which showed that the greater the number and intensity 
of re-forwarding, the wider the spread of hot topics is in microblogs. Huo et al.19 constructed the IK IUSKSUR 
model by considering two groups with and without scientific knowledge and analyzed the behavior of rumors 
spreading in each group. The results show that the group with scientific knowledge showed higher immunity to 
rumors. At the same time, the positive reinforcement of publicity can also resist the spread of rumors. Recently, 
the information transmission of COVID-19 has attracted the focus of the research community. Yin et al.20 dis-
cussed that part of epidemic information is unable to reach the public in an effective and timely manner. The 
authors constructed the S1S2F1F2I1+I1−I2 model, which showed that cross-transmission of information makes 
the transmission scope wider. In fact, information cross-transmission is pivotal in spreading rumors in a multi-
lingual environment. By analyzing the process of rumor spreading in multiple languages in the homogeneous, 
heterogeneous and scale-free networks, the authors constructed the SIR21, I2S2R22, IE2S2R23, 2I2SR24, IS2R225, 
ILSR26, and S(1)S(2)IR12 models by considering two groups. The results obtained using these models showed a 
common feature, i.e., that rumors spread more widely due to the cross-transmission of multiple languages, while 
increasing the cross-contact rate and enhancing the intensity of rumor spread.

The aforementioned works have conducted extensive research on the cross transmission of information. The 
results show that the cross transmission expands the scope of information transmission, and also enhances the 
intensity of information transmission. However, after the cross transmission of information, new variants of 
information are formed similar to a viral strain, and the mutated information generally changes the content of 
the original information. Currently, some scholars have also considered the natural variation of information27, but 
there are very few works that consider the variations caused due to the cross transmission of such information.

The modeling of cross-transmission and variation in information transmission is inspired by the phenom-
enon of virus recombination and variation in the COVID-19 transmission. However, information crossing and 
variation are desirable in certain situations. For instance, academics encourage the global integration of multi-
disciplinary information and employ the new cross-disciplines in various applications. Interdisciplinary fields, 
such as biomathematics, physical chemistry and biochemistry, are important in the development of a wide range 
of applications. Therefore, the aim of this work is to propose a model that considers the cross-transmission of 
multiple information and the resulting variant information to determine the impact of cross-transmission of 
information on the resulting variant information. Furthermore, the control strategies used to enhance the inten-
sity of information crossing and the promotion of the generation of information variants are also discussed. A 
system of ordinary differential equations is created to describe the problem in question. The spreading scope of 
information crossing on the social system is obtained by calculating the basic regeneration number. The validity 
of the proposed model is obtained by analyzing the equilibrium point and the stability. Finally, the basic theorem 
of the model and the effectiveness of the control strategy are verified by selecting appropriate parameters as the 
control variables and numerical simulations. In contrast to previous literature, the existence of virus recombina-
tion and variation in COVID-19 transmission is hereby compared to information transmission. Meanwhile, an 
information transmission model is constructed considering cross-transmission and variation, which includes 
multi-information and multi-transmittable groups. In addition, the optimal control strategy of information 
transmission is quantified by scientific methods.

The rest of this paper is organized as follows. The S2I4MR model that considers the information cross-trans-
mission on social media and the generated variations is presented in "The model " Section. The local and global 
stability of basic reproduction number R0 , information-free equilibrium, and information-existence equilibrium 
are presented in "Stabilityanalysisofthemodel" Section. The existence and strategy for controlling the information 
transmission and variation in an optimal manner are presented in "The optimalcontrolmodel" Section. The influ-
ence of parameter changes on information transmission and variation and the effect of optimal control strategy 
based on numerical simulations are illustrated in "Numericalsimulations " Section. The sensitivity analysis of 
control parameters in information transmission is presented in "Sensitivityanalysis" Section. Finally, "Conclu-
sions" Section provides the conclusion.

The model
In this work, an open virtual community is considered. The population size is variable at any time t, and the total 
population is expressed as N(t). The population can be divided into eight categories: (1) The easy adopters who 
are not exposed to information but easily adopt the information, denoted as S(t); (2) People who are exposed 
to both kinds of information but choose to spread the first kind of information, denoted as I1(t) ; (3) The group 
exposed to both kinds of information that chooses to spread the second kind of information, denoted as I2(t) ; 
(4) The transmitters who are exposed to both kinds of information but spread the first kind of information and 
ultimately choose the variation group that believes in the first kind of information, denoted as M1(t) ; (5) The 
transmitters who are exposed to both kinds of information but spread the first kind of information and finally 
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choose the variation group that integrates the two kinds of information, denoted as M2(t) ; (6) The transmitters 
who are exposed to both kinds of information but spread the second kind of information and finally choose 
the variation group that integrates the two kinds of information, denoted as M3(t) ; (7) The transmitters who 
are exposed to both kinds of information but spread the second kind of information and ultimately choose the 
variation group who believes in the second kind of information, denoted as M4(t) ; and (8) The fleeing crowd that 
is not interested in any kind of information as well as the corresponding variation information, denoted as R(t).

The model proposed in this work considers the common life phenomenon of “concept preconception”. This 
means that when some easy-to-adopt populations have preferential access to any information, then in their 
minds, the information will be transmitted first. Even if they are exposed to another kind of information, they 
will not transmit it immediately. This is the main differentiation between populations I1 and I2 . At the same 
time, when the transmitters that are already exposed to the first kind of information are exposed to the second 
kind of information, they fuse the two kinds of information after a period of analysis, thus forming the varia-
tion information group. However, since they prioritize the first type of information, they will use the second 
kind of information as a supplement to expand the content of the first kind of information. This is the main 
difference between populations M2 and M3 . Infectious disease variants generally remain transmissible. However, 
the information variant does not spread easily due to the uncertainty in the content of the information. This is 
precise because humans have subjective judgments, whereas viruses are generally a result of natural selection.

In order to reflect the phenomenon of cross transmission and information variation in information transmis-
sion, an S2I4MR model is constructed in this work. The model flow diagram is given in Fig. 1.

The parameters of S2I4MR model are interpreted as follows:

•	 In a social system, the number of individuals generally varies over time. Therefore, this work defines B as 
the number of immigrants in the social system. At the same time, it considers some individuals that may 
withdraw from the social system due to some force majeure factors. µ is defined as the emigration rate in 
this work;

•	 When information begins to spread in a social system, there is a certain progression rate that the easy adop-
ters will contact the transmitters of the information. When the easy adopters are first exposed to the first 
kind of information and then to the second kind, they prioritize spreading the first kind of information. The 
contact rate of the first information is defined as α1 , and the contact rate of the second information as α2 . 
In order to express the phenomenon of “concept preconception”, here, α1 ≥ α2 , and the group exposed to 
the first kind of information transmitters with the progression rate of α1 must include the group exposed to 
the second kind of information transmitters with progression rate of α2 . In the same way, for the group that 
preferentially transmits the second kind of information, the contact rate of the first kind of information is 

Figure 1.   The flow diagram of the model.
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β1 , and the contact rate of the second kind of information is β2 . In order to represent the phenomenon of 
“concept preconception”, β1 ≤ β2 , and the group exposed to the second kind of information transmitters 
with the progression rate of β2 must include the group exposed to the first transmitters with the progression 
rate of β1;

•	 When the transmitters of two kinds of information fuse the information, the information variation is gener-
ated. When the transmitters of both types of information believe in the original information, they are mutated 
into M1 and M4 groups with the progression rate of γ11 and γ22 , respectively. When the transmitters of the 
two kinds of information choose to fuse the information, they mutate with the progression rate of γ12 into 
the M2 group that regards the first kind of information as the main and the second kind of information as 
the auxiliary. The transmitters mutate with the progression rate of γ21 into the M3 group that considers the 
second kind of information as the main and the first kind of information as the auxiliary;

•	 After the information exists the social system after a certain period of time, it is often eliminated by the soci-
ety, or is no longer accepted by people. Therefore, the variation group chooses to escape with the progression 
rate of ε1 , ε2 , ε3 , and ε4.

Based on the aforementioned analysis, we constructed the S2I4MR model by considering the cross transmission 
and variation of information. In order to facilitate the understanding and analysis, a special case is considered 
where the easy-adopter populations are exposed to both kinds of information with equal progression rate, i.e., 
α1 = α2 = α and β1 = β2 = β . Therefore, the fraction of the population as proceeding form from S to I1 is α . In 
addition, the fraction of the population as proceeding form from S to I2 is β.

The parameters of S2I4MR model are summarized in Table 1.
The system dynamics are mathematically expressed as follows:

Where:

and
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dS
dt = B− α(I1 + I2)S − β(I1 + I2)S − µS,
dI1
dt = α(I1 + I2)S − γ11I1 − γ12I1 − µI1,
dI2
dt = β(I1 + I2)S − γ22I2 − γ21I2 − µI2,
dM1
dt = γ11I1 − ε1M1 − µM1,
dM2
dt = γ12I1 − ε2M2 − µM2,
dM3
dt = γ21I2 − ε3M3 − µM3,
dM4
dt = γ22I2 − ε4M4 − µM4,
dR
dt = ε1M1 + ε2M2 + ε3M3 + ε4M4 − µR.

(2)
B > 0,µ > 0, ε1 > 0, ε2 > 0, ε3 > 0, ε4 > 0,
α ∈ (0, 1],β ∈ (0, 1], γ11 ∈ (0, 1], γ12 ∈ (0, 1], �21 ∈ (0, 1], γ22 ∈ (0, 1],

Table 1.   The parameters description of S2I4MR model.

Parameter Description

S(t) The number of easy adopters at the time t

I1(t) The number of individuals choose to spread the first kind of information at the time t

I2(t) The number of individuals choose to spread the second kind of information at the time t

M1(t) The transmitters who ultimately choose the variation group that believes in the first kind of information

at the time t

M2(t) The transmitters who finally choose the variation group that integrates the two kinds of information at the time t

M3(t) The transmitters who finally choose the variation group that integrates the two kinds of information at the time t

M4(t) The transmitters who ultimately choose the variation group that believes in the second kind of information

at the time t

R(t) The number of individuals that not interested in both kinds of information as well as the corresponding

variation information at the time t

B The number of immigrants in the social system per unit time

α Progression rate from state S to I1
β Progression rate from state S to I2
γ11 Progression rate from state I1 to M1

γ12 Progression rate from state I1 to M2

γ21 Progression rate from state I2 to M3

γ22 Progression rate from state I2 to M4

ε1,ε2,ε3,ε4 Progression rate from state M1 , M2 , M3 , M4 to R

µ Removal rate per unit time
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It is easy to know that dN(t)
dt = B− µN  , so N(t) =

(

N0 −
B
µ

)

e−µt + B
µ

 , where N0 = N(0) , and then 

limt→∞N(t) = B
µ

 . The positive invariant set of System (1) is Ŵ =

{

(S, I1, I2,M1,M2,M3,M4,R) ∈ R
+
8
: S + I1 + I2

+M1 +M2 +M3 +M4 + R ≤ B

µ

}

.

Stability analysis of the model
Firstly, it is necessary to demonstrate the existence of equilibrium E = (S, I1, I2,M1,M2,M3,M4,R) of the 
system dynamics Eq. (1). The information-free equilibrium point of System (1) can be easily obtained as 
E0 = (B/µ, 0, 0, 0, 0, 0, 0, 0) , which means the number of information disseminators tend to zero in System (1).

Then, the basic reproduction number R0 of System (1) can be defined by the next generation matrix28. The 
basic reproduction number is important to intervene for a system, which represents the number of next genera-
tion from a single information disseminator produced.

Let X = (I1, I2, S,M1,M2,M3,M4,R)
T , then System (1) can be written as:

We can get:

where F and V represent the infection and transition matrices respectively29. Hence, the basic reproduction 
number R0 of System (1) is the spectral radius of the next generation matrix FV−1 . R0 can be computed as:

While the information will be spread if R0 > 1 . The information-existence equilibrium point of System (1) can 
be expressed as E∗ = (S∗, I∗1 , I

∗
2 ,M

∗
1 ,M

∗
2 ,M

∗
3 ,M

∗
4 ,R

∗) , which means the information will spread widely. The 
information-existence equilibrium E∗ should satisfy:

Let ϕ = I∗1 + I∗2  . The information-existence equilibrium E∗ can be deduced as the following equations by solv-
ing Eqs. (8):
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the other equilibrium points can be obtained as:

Theorem 1  If R0 < 1 , B(α + β) < µ(γ11 + γ12 + µ)(γ22 + γ21 + µ) and (γ11 + γ12 + µ) = (γ22 + γ21 + µ) , 
the information-free equilibrium point E0 = (B/µ, 0, 0, 0, 0, 0, 0, 0) of System (1) is locally asymptotically stable.

Proof 1  The Jacobin matrix of System (1) at information-free equilibrium point E0 = (B/µ, 0, 0, 0, 0, 0, 0, 0) can 
be written as:

The negative eigenvalues of J(E0) can be easily obtained as �01 = �02 = −µ < 0,�03 = −ε1 − µ < 0,�04 =

−ε2 − µ < 0,�05 = −ε3 − µ < 0,�06 = −ε4 − µ < 0 , and the other eigenvalues are the characteristic roots 
of 
∣

∣hE − J(E0)
∣

∣ , where:

The eigenvalues of Eq. (15) can be obviously obtained as:

and

If B(α + β) < µ(γ11 + γ12 + µ)(γ22 + γ21 + µ) and (γ11 + γ12 + µ) = (γ22 + γ21 + µ) , so �07 < 0 and 
�08 < 0 . Hence, the information-free equilibrium point E0 = (B/µ, 0, 0, 0, 0, 0, 0, 0) of System (1) is locally 
asymptotically stable based on the Routh–Hurwitz criterion. 	�  �

Theorem 2  If R0 < 1 and B(α + β) ≤ µ2 , the information-free equilibrium point E0 = (B/µ, 0, 0, 0, 0, 0, 0, 0) of 
System (1) is globally asymptotically stable.

Proof 2  It is easy to know that S(t)+ I1(t)+ I2(t)+M1(t)+M2(t)+M3(t)+M4(t)+ R(t) = N(t) and satisfy 
dN(t)
dt ≤ B− µS(t) . It illustrates that:

For t ≥ 0 , the positive invariant set of System (1) can be written as:
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Then, the Lyapunov function L(t) = I1(t)+ I2(t)+M1(t)+M2(t)+M3(t)+M4(t)+ R(t) can be constructed 
and L′(t) can be computed as:

it is easy to know that L′(t) ≤ 0 if S ≤ B
µ

 and B(α + β) ≤ µ2.
In addition, L′(t) = 0 holds if and only if S(t) = S0, I1 = I2 = M1 = M2 = M3 = M4 = R = 0 . From System 

(1), it is known that E0 is the only solution in T when L′(t) = 0 . Therefore, based on the Lyapunov-LaSalle Invari-
ance Principle30, it is shown that every solution of System (1) approach E0 for t → ∞ . Hence, the information-
free equilibrium point E0 = (B/µ, 0, 0, 0, 0, 0, 0, 0) of System (1) is globally asymptotically stable. 	�  �

Theorem  3  If R0 > 1 and µ2R0(R0 − 1) > B(α + β) , the information-existence equilibrium point 
E∗ = (S∗, I∗1 , I

∗
2 ,M

∗
1 ,M

∗
2 ,M

∗
3 ,M

∗
4 ,R

∗) of system (1) is locally asymptotically stable.

Proof  3  The Jacobin matrix of System (1) at information-existence equilibrium point 
E∗ = (S∗, I∗1 , I

∗
2 ,M

∗
1 ,M

∗
2 ,M

∗
3 ,M

∗
4 ,R

∗) can be written as:

The negative eigenvalues of J(E∗) can be easily obtained as �11 = −µ < 0,�12 = −ε1 − µ < 0,�13 = −ε2
−µ < 0,�14 = −ε3 − µ < 0,�15 = −ε4 − µ < 0 , and the other eigenvalues are the characteristic roots of 
|hE − J(E∗)| , where:

The eigenvalues of Eq. (22) can be obviously obtained as:

Then we construct a cubic polynomial and replace the coefficient with a3, a2, a1, a0 to determine the other eigen-
values of System (21). Hence, Eq. (23) can be rewritten as:

where:

(19)
T = {(S(t), I1(t), I2(t),M1(t),M2(t),M3(t),M4(t),R(t)) ∈ R+

8 :

S(t)+ I1(t)+ I2(t)+M1(t)+M2(t)+M3(t)+M4(t)+ R(t) ≤ B
µ
}.

(20)

L′(t) = α(I1 + I2)S − γ11I1 − γ12I1 − µI1 + β(I1 + I2)S − γ22I2 − γ21I2

− µI2 + γ11I1 − ε1M1 − µM1 + γ12I1 − ε2M2 − µM2 + γ21I2 − ε3M3

− µM3 + γ22I1 − ε4M4 − µM4 + ε1M1 + ε2M2 + ε3M3 + ε4M4 − µR

= (−µ+ αS + βS)(I1 + I2)− µM1 − µM2 − µM3 − µM4 − µR

≤

(

−µ+
Bα

µ
+

Bβ

µ

)

(I1 + I2)− µ(M1 +M2 +M3 +M4 + R),

(21)

J(E∗) =





















−αϕ∗−βϕ∗−µ −αS∗−βS∗ −αS∗−βS∗ 0 0 0 0 0
αϕ∗ αS∗−(γ11+γ12+µ) αS∗ 0 0 0 0 0
βϕ∗ βS∗ βS∗−(γ22+γ21+µ) 0 0 0 0 0
0 γ11 0 −ε1−µ 0 0 0 0
0 γ12 0 0 −ε2−µ 0 0 0
0 0 γ21 0 0 −ε3−µ 0 0
0 0 γ22 0 0 0 −ε4−µ 0
0 0 0 0 0 0 0 −µ





















.

(22)
∣

∣hE − J(E∗)
∣

∣ =

∣

∣

∣

∣

∣

h+ αϕ∗ + βϕ∗ + µ αS∗ + βS∗ αS∗ + βS∗

−αϕ∗ h− αS∗ − (γ11 + γ12 + µ) −αS∗

−βϕ∗ −βS∗ h− βS∗ − (γ22 + γ21 + µ)

∣

∣

∣

∣

∣

.

(23)

∣

∣hE − J(E∗)
∣

∣ = h3 +

[

µ+ (γ11 + γ12 + µ)+ (γ22 + γ21 + µ)+ α(ϕ∗ − S∗)

+ β(ϕ∗ − S∗)

]

h2 +

{

µ(γ11 + γ12 + µ+ γ22 + γ21 + µ)

+ (γ11 + γ12 + µ)(γ22 + γ21 + µ)+ α(γ22 + γ21 + µ)(ϕ∗ − S∗)

+ β(γ11 + γ12 + µ)(ϕ∗ − S∗)+ α

[

(γ11 + γ12 + µ)ϕ∗ − µS∗
]

+ β

[

(γ22 + γ21 + µ)ϕ∗ − µS∗
]}

h+

{

µ(γ11 + γ12 + µ)(γ22

+ γ21 + µ)+ α(γ22 + γ21 + µ)

[

(γ11 + γ12 + µ)ϕ∗ − µS∗
]

+ β(γ11 + γ12 + µ)

[

(γ22 + γ21 + µ)ϕ∗ − µS∗
]}

.

(24)a3h
3 + a2h

2 + a1h+ a0 = 0,
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then, let

and

The condition of information-existence equilibrium point E∗ = (S∗, I∗1 , I
∗
2 ,M

∗
1 ,M

∗
2 ,M

∗
3 ,M

∗
4 ,R

∗) is locally asymp-
totically stable and the conditions: (i) a3, a2, a1, a0 > 0 and (ii) a2a1 − a3a0 > 0 based on the Routh–Hurwitz 
criterion. It is easy to know that a3 > 0.

If µ2R0(R0 − 1) > B(α + β) and R0 > 1 , then a2, a1, a0 > 0 and a2a1 − a3a0 > 0 . In this case, 
the Routh–Hurwitz criterion are satisfied. Hence, the information-existence equilibrium point 
E∗ = (S∗, I∗1 , I

∗
2 ,M

∗
1 ,M

∗
2 ,M

∗
3 ,M

∗
4 ,R

∗) of System (1) is locally asymptotically stable. 	�  �

Theorem 4  If R0 > 1 , the information-existence equilibrium point E∗ = (S∗, I∗1 , I
∗
2 ,M

∗
1 ,M

∗
2 ,M

∗
3 ,M

∗
4 ,R

∗) of System 
(1) is globally asymptotically stable.

Proof 4  We construct the Lyapunov function as:

and 

Because of the existence of E∗ = (S∗, I∗1 , I
∗
2 ,M

∗
1 ,M

∗
2 ,M

∗
3 ,M

∗
4 ,R

∗) , we can know that B− µS∗ − µI∗
1
− µI∗

2

−µM∗
1
− µM∗

2
− µM∗

3
− µM∗

4
− µR∗=0 , i.e., B=µS∗ + µI∗1 + µI∗2 + µM∗

1 + µM∗
2 + µM∗

3 + µM∗
4 + µR∗.

Then, Eq. (32) can be computed as:

(25)a3 = 1,

(26)a2 = [µ+ (γ11 + γ12 + µ)+ (γ22 + γ21 + µ)+ α(ϕ∗ − S∗)+ β(ϕ∗ − S∗)],

(27)
a1 = µ(γ11 + γ12 + µ+ γ22 + γ21 + µ)+ (γ11 + γ12 + µ)(γ22 + γ21 + µ)

+ α(γ22 + γ21 + µ)(ϕ∗ − S∗)+ β(γ11 + γ12 + µ)(ϕ∗ − S∗)

+ α[(γ11 + γ12 + µ)ϕ∗ − µS∗] + β[(γ22 + γ21 + µ)ϕ∗ − µS∗],

(28)
a0 = µ(γ11 + γ12 + µ)(γ22 + γ21 + µ)+ α(γ22 + γ21 + µ)[(γ11 + γ12

+ µ)ϕ∗ − µS∗] + β(γ11 + γ12 + µ)[(γ22 + γ21 + µ)ϕ∗ − µS∗],

(29)



























ω1 = µ+ (γ11 + γ12 + µ)+ (γ22 + γ21 + µ),

ω2 = α(ϕ∗ − S
∗),

ω3 = β(ϕ∗ − S
∗),

ω4 = µ(γ11 + γ12 + µ+ γ22 + γ21 + µ)+ (γ11 + γ12 + µ)(γ22 + γ21 + µ),

ω5 = α[(γ11 + γ12 + µ)ϕ∗ − µS∗],

ω6 = β[(γ22 + γ21 + µ)ϕ∗ − µS∗],

(30)

a2a1 − a3a0 = ω1ω4 + (γ22 + γ21 + µ)ω1ω2 + (γ11 + γ12 + µ)ω1ω3

+ ω2ω4 + (γ22 + γ21 + µ)ω2
2 + (γ11 + γ12 + µ)ω2ω3

+ ω3ω4 + (γ22 + γ21 + µ)ω2ω3 + (γ11 + γ12 + µ)ω2
3

− µ(γ11 + γ12 + µ)(γ22 + γ21 + µ)+ [ω1 + ω2 + ω3

− (γ22 + γ21 + µ)]ω5 + [ω1 + ω2 + ω3 − (γ11 + γ12 + µ)]ω6.

(31)
W(t) = [(S(t)− S∗)+ (I1(t)− I∗1 )+ (I2(t)− I∗2 )+ (M1(t)−M∗

1 )

+ (M2(t)−M∗
2 )+ (M3(t)−M∗

3 )+ (M4(t)−M∗
4 )+ (R(t)− R∗)]2,

(32)

W ′(t) = 2[(S(t)− S∗)+ (I1(t)− I∗1 )+ (I2(t)− I∗2 )+ (M1(t)−M∗
1 )

+ (M2(t)−M∗
2 )+ (M3(t)−M∗

3 )+ (M4(t)−M∗
4 )+ (R(t)

− R∗)][S′(t)+ I1
′(t)+ I2

′(t)+M1
′(t)+M2

′(t)+M3
′(t)+M4

′(t)+ R(t)]

= 2[(S(t)− S∗)+ (I1(t)− I∗1 )+ (I2(t)− I∗2 )+ (M1(t)−M∗
1 )

+ (M2(t)−M∗
2 )+ (M3(t)−M∗

3 )+ (M4(t)−M∗
4 )+ (R(t)

− R∗)][B− µS − µI1 − µI2 − µM1 − µM2 − µM3 − µM4 − µR].

(33)

W ′(t) = 2[(S(t)− S∗)+ (I1(t)− I∗1 )+ (I2(t)− I∗2 )+ (M1(t)−M∗
1 )

+ (M2(t)−M∗
2 )+ (M3(t)−M∗

3 )+ (M4(t)−M∗
4 )+ (R(t)

− R∗)][µS∗ + µI∗1 + µI∗2 + µM∗
1 + µM∗

2 + µM∗
3 + µM∗

4 + µR∗

− µS − µI1 − µI2 − µM1 − µM2 − µM3 − µM4 − µR]

= −2[(S − S∗)+ (I1 − I∗1 )+ (I2 − I∗2 )+ (M1 −M∗
1 )

+ (M2 −M∗
2 )+ (M3 −M∗

3 )+ (M4 −M∗
4 )+ (R − R∗)

2.
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Besides that, W ′(t) = 0 holds if and only if S(t) = S
∗
, I1(t) = I

∗
1
, I2(t) = I

∗
2
,M1(t) = M

∗
1
,M2(t) = M

∗
2
,M3(t)

= M
∗
3
,M4(t) = M

∗
4
,R(t) = R

∗  .  H e n c e ,  t h e  i n f o r m a t i o n - e x i s t e n c e  e q u i l i b r i u m  p o i n t 
E∗ = (S∗, I∗1 , I

∗
2 ,M

∗
1 ,M

∗
2 ,M

∗
3 ,M

∗
4 ,R

∗) of System (1) is globally asymptotically stable based on Lyapunov-LaSalle 
Invariance Principle30. 	�  �

The optimal control model
Based on the information transmission model established above, we consider the fact that the educational fields 
all over the world encourage interdisciplinary application. This is consistent with the information crossing we 
have constructed and the new variant information that has been generated. Therefore, in order to promote 
large-scale information crossing and strengthen the generation of variant information after crossing, two control 
objectives are accordingly proposed. On one hand, there are more and more people who are exposed to cross 
information, and on the other hand, there are more and more variations that fuse the two kinds of information. 
For this reason, the four proportionality constants α , β , γ12 , and γ21 in the model are transformed into control 
variables α(t) , β(t) , γ12(t) , and γ21(t) , respectively. The control variable α(t) is used to control the rate of exposure 
to the first kind of information and then to the second kind of information. Similarly, the control variable β(t) 
is used to control the rate of exposure to the second kind of information and then to the first kind of informa-
tion. Generally, the rate of exposure is improved by improving the flow of people or organizing the information 
exchange activities. The control variable γ12(t) is used to control the rate of variation that considers the first kind 
of information as the main and the second information as the auxiliary. Moreover, the control variable γ21(t) is 
used to control the rate of variation that considers the second kind of information as the main and the first kind 
of information as the auxiliary. Generally, the variation rate can be improved based on educational guidance or 
policy encouragement.

Hence, an objective function can be proposed as:

and satisfy the follow state system

The initial conditions for System (35) are satisfied:

where:

while U is the admissible control set. The time interval of control is between 0 and tf  . c1 , c2 , c3 , c4 are positive 
weight coefficients shown the control strength and importance of four control measures.

Theorem 5  An optimal control pair (α∗,β∗, γ12
∗, γ21

∗) ∈ U  exists so that the function is established below:

Proof 5  Let X(t) = (S(t), I1(t), I2(t),M1(t),M2(t),M3(t),M4(t),R(t))
T and

The existence of an optimal pair must satisfy: (i) the set of control variables and state variables is nonempty, (ii) 
the control set U is convex and closed, (iii) the right-hand side of the state system is bounded by a linear function 

(34)J(α,β , γ12, γ21) =
∫ tf
0 [I1(t)+ I2(t)+M2(t)+M3(t)− c1/2α

2(t)
− c2/2β

2(t)− c3/2γ
2
12(t)− c4/2γ

2
21(t)],

(35)



















































dS
dt = B− α(t)(I1 + I2)S − β(t)(I1 + I2)S − µS,
dI1
dt = α(t)(I1 + I2)S − γ11I1 − γ12(t)I1 − µI1,
dI2
dt = β(t)(I1 + I2)S − γ22I2 − γ21(t)I2 − µI2,
dM1
dt = γ11I1 − ε1M1 − µM1,

dM2
dt = γ12(t)I1 − ε2M2 − µM2,

dM3
dt = γ21(t)I2 − ε3M3 − µM3,

dM4
dt = γ22I2 − ε4M4 − µM4,

dR
dt = ε1M1 + ε2M2 + ε3M3 + ε4M4 − µR.

(36)
S(0) = S0, I1(0) = I1,0, I2(0) = I2,0,M1(0) = M1,0,M2(0) = M2,0,
M3(0) = M3,0,M4(0) = M4,0,R(0) = R0,

(37)
α(t),β(t), γ12(t), γ21(t) ∈ U

�
= {(α,β , γ12, γ21)|(α(t),β(t), γ12(t), γ21(t))

measurable, 0 ≤ α(t),β(t), γ12(t), γ21(t) ≤ 1,
∀t ∈ [0, tf ]},

(38)J(α∗,β∗, γ ∗
12, γ

∗
21) = max{J(α,β , γ12, γ21) : (α,β , γ12, γ21) ∈ U}.

(39)
L(t;X(t),α(t),β(t), γ12(t), γ21(t)) = I1(t)+ I2(t)+M2(t)+M3(t)− c1/2α

2(t)
− c2/2β

2(t)− c3/2γ
2
12(t)− c4/2γ

2
21(t).
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in the state and control variables, (iv) the integrand of the objective functional is convex on U, (v) there exist 
constants d1, d2 > 0 and ρ > 1 such that the integrand of the objective functional satisfies:

Conditions (i)-(iii) are clearly established, we just prove the condition (iv) and (v). One can easily obtain 
inequality:

Hence, condition (iv) is established. Then, for any t ≥ 0 , there is a positive constant M which is satisfied 
|X(t)| ≤ M , therefore

Let d1 = min
{

c1
2 ,

c2
2 ,

c3
2 ,

c4
2

}

, d2 = 2M and ρ = 2 , then condition (v) is established. Hence, the optimal control 
can be realized. 	�  �

Theorem 6  For the optimal control pair (α∗,β∗, γ ∗
12, γ

∗
21) of state System (35), there exist adjoint variables 

δ1, δ2, δ3, δ4, δ5, δ6,

δ7, δ8 that satisfy:

With boundary conditions:

In addition, the optimal control pair (α∗,β∗, γ ∗
12, γ

∗
21) of state System (35) can be given by:

Proof 6  Define a Hamiltonian function enlarged with penalty term to obtain the expression of optimal control 
system and optimal control pair. The Hamiltonian function enlarged can be written as:

(40)−L(t;X(t),α;β; γ12; γ21) ≥ d1(|α|
2 + |β|2 + |γ12|

2 + |γ21|
2)ρ/2 − d2.

(41)S′ ≤ B, I1
′ ≤ α(t)(I1 + I2)S, I2

′ ≤ β(t)(I1 + I2)S,M1
′ ≤ γ11I1,M2

′ ≤ γ12(t)I1,
M3

′ ≤ γ21(t)I2,M4
′ ≤ γ22I1,R

′ ≤ ε1M1 + ε2M2 + ε3M3 + ε4M4.

(42)

−L(t;X(t),α;β; γ12; γ21) =(c1α
2(t)+ c2β

2(t)+ c3γ
2
12(t)+ c4γ

2
21(t))/2

− I1(t)− I2(t)−M2(t)−M3(t)

≥ d1(|α|
2 + |β|2 + |γ12|

2 + |γ21|
2)

ρ/2
− 2M.

(43)



















































dδ1
dt = (δ1 − δ2)α(t)(I1 + I2)+ (δ1 − δ3)β(t)(I1 + I2)+ δ1µ,
dδ2
dt = 1+ (δ1 − δ2)α(t)S + (δ1 − δ3)β(t)S + (δ2 − δ4)γ11 + (δ2 − δ5)γ12(t)+ δ2µ,
dδ3
dt = 1+ (δ1 − δ2)α(t)S + (δ1 − δ3)β(t)S + (δ3 − δ7)γ22 + (δ3 − δ6)γ21(t)+ δ3µ,
dδ4
dt = (δ4 − δ8)ε1 + ε4µ,
dδ5
dt = 1+ (δ5 − δ8)ε2 + ε5µ,
dδ6
dt = 1+ (δ6 − δ8)ε3 + ε6µ,
dδ7
dt = (δ7 − δ8)ε4 + ε7µ,
dδ8
dt = δ8µ.

(44)δ1(tf ) = δ2(tf ) = δ3(tf ) = δ4(tf ) = δ5(tf ) = δ6(tf ) = δ7(tf ) = δ8(tf ) = 0.

(45)α∗(t) = min

{

1,max

{

0,
(δ1 − δ2)(I1 + I2)S

c1

}}

,

(46)β∗(t) = min

{

1,max

{

0,
(δ1 − δ3)(I1 + I2)S

c2

}}

,

(47)γ ∗
12(t) = min

{

1,max

{

0,
(δ2 − δ5)I1

c3

}}

,

(48)γ ∗
21(t) = min

{

1,max

{

0,
(δ3 − δ6)I2

c4

}}

.

(49)

H =−I1(t)− I2(t)−M2(t)−M3(t)+ c1/2α
2(t)+ c2/2β

2(t)+ c3/2γ
2
12(t)+ c4/2γ

2
21(t)

+ δ1[B− α(t)(I1 + I2)S − β(t)(I1 + I2)S − µS] + δ2[α(t)(I1 + I2)S − γ11I1

− γ12(t)I1 − µI1] + δ3[β(t)(I1 + I2)S − γ22I2 − γ21(t)I2 − µI2] + δ4[γ11I1 − ε1M1

− µM1] + δ5[γ12(t)I1 − ε2M2 − µM2] + δ6[γ21(t)I2 − ε3M3 − µM3] + δ7[γ22I1

− ε4M4 − µM4] + δ8[ε1M1 + ε2M2 + ε3M3 + ε4M4−µR]−�11α(t)−�12(1−α(t))

− �21β(t)− �22(1− β(t))− �31γ12(t)−�32(1−γ12(t))−�41γ21(t)−�42(1−γ21(t)),
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which the penalty term is �ij(t) ≥ 0 , and it is satisfied that �11(t)α(t) = �12(t)(1− α(t)) = 0 at optimal control 
α∗ , �21(t)β(t) = �22(t)(1− β(t)) = 0 at optimal control β∗ , �31(t)γ12(t) = �32(t)(1− γ12(t)) = 0 at optimal 
control γ ∗

12 and �41(t)γ21(t) = �42(t)(1− γ21(t)) = 0 at optimal control γ ∗
21.

Based on the Pontyragin maximum principle, the adjoint system can be written as:

and the boundary conditions of adjoint system are

Let α∗ as an example to give the optimality conditions. One have

and the optimal control formulae can be written as:

To obtain the final optimal control formulae without �11 and �12 need to consider the following three situations.
The first situation is that �11(t) = �12(t) = 0 in set { t|0 < α∗(t) < 1} , then the optimal control formulae 

can be written as:

The second situation is that �11(t) = 0 in set { t|α∗(t) = 1} , then the optimal control formulae can be written as:

Due to �12(t) ≥ 0 , it is shown that 1c1 (δ1 − δ2)(I1 + I2)S ≥ 1.
The third situation is that �12(t) = 0 in set { t|α∗(t) = 0} , then the optimal control formulae can be written as:

Based on the above situation, the final optimal control formulae of α∗(t) can be written as
α∗(t) = min

{

1,max
{

0, (δ1−δ2)(I1+I2)S
c1

}}

 . Similarly, the final optimal control formulae of β∗(t) can be writ-
ten as

β∗(t) = min
{

1,max
{

0, (δ1−δ3)(I1+I2)S
c2

}}

 , the final optimal control formulae of γ ∗
12(t) can be written as

γ ∗
12(t) = min

{

1,max
{

0, (δ2−δ5)I1
c3

}}

 , the final optimal control formulae of γ ∗
21(t) can be written as

γ ∗
21(t) = min

{

1,max
{

0, (δ3−δ6)I2
c4

}}

.
So far, we get the optimal control system includes state System (35) with the initial conditions 

S(0), I1(0), I2(0),M1(0),M2(0),M3(0),M4(0),R(0) and the adjoint System (43) with boundary conditions with 
the optimization conditions. The optimal control system can be written as:

(50)
dδ1
dt = − ∂H

∂S ,
dδ2
dt = − ∂H

∂I1
, dδ3dt = − ∂H

∂I2
, dδ4dt = − ∂H

∂M1
,

dδ5
dt = − ∂H

∂M2
, dδ6dt = − ∂H

∂M3
, dδ7dt = − ∂H

∂M4
, dδ8dt = − ∂H

∂R ,

(51)δ1(tf ) = δ2(tf ) = δ3(tf ) = δ4(tf ) = δ5(tf ) = δ6(tf ) = δ7(tf ) = δ8(tf ) = 0.

(52)
∂H

∂α
= c1α(t)+ δ1[−(I1 + I2)S] + δ2[(I1 + I2)S] − �11 + �12 = 0,

(53)α∗ =
1

c1
(δ1 − δ2)(I1 + I2)S + �11 − �12.

(54)α∗(t) =
1

c1
(δ1 − δ2)(I1 + I2)S.

(55)1 = α∗(t) =
1

c1
[(δ1 − δ2)(I1 + I2)S − �12].

(56)0 = α∗(t) =
1

c1
[(δ1 − δ2)(I1 + I2)S + �11].
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and

	�  �

Numerical simulations
In this section, the Rung-Kutta algorithm is adopted for performing numerical simulations to verify the rational-
ity of the theoretical results by MATLAB R2017b. It is noteworthy that the value range of parameters is not clearly 
defined in previous studies. Therefore, in this work, we combine the value of the basic regeneration number R0 
and the stability condition for obtaining and presenting the parameter values of the model.

In order to verify the locally and globally asymptotically stability of information-free equilibrium in Theo-
rem 1 and Theorem 2. Let B = 1,α = 0.01,β = 0.01,µ = 0.1, γ11 = 0.2, γ12 = 0.7, γ22 = 0.2, γ21 = 0.7, ε1 =

ε2 = ε3 = ε4 = 0.2 . It can be calculated that R0 = 0.2 < 1 . Figure 2 verifies the stability of the model and shows 
that variety groups eventually converge to 0 change over time.

In order to verify the locally and globally asymptotically stability of information-existence equilibrium in 
Theorem 3 and Theorem 4. Let B = 3,α = 0.7,β = 0.6,µ = 0.1, γ11 = 0.2, γ12 = 0.5, γ22 = 0.2, γ21 = 0.5, ε1 =

ε2 = ε3 = ε4 = 0.2 . It can be calculated that R0 = 48.75 > 1 . Figure 3 verifies the stability of the model and 
shows that variety groups eventually converge to E∗ change over time.

In order to analyze the effect of optimal control pair (α∗,β∗, γ ∗
12, γ

∗
21) on variety groups when adopt the 

optimal control strategy. One give the image of “optimal control (α = α∗(t),β = β∗(t), γ ∗
12(t), γ

∗
21(t)) ”, “middle 

control measure”, “single control measure” and “constant control measure” respectively.
First, different control strategies are adopted to increase the number of transmission groups I1 and 

I2 . α∗ and β∗ are controlled, respectively. Then, let β = 0.55,µ = 0.07, γ11 = 0.2, γ12 = 0.6, γ22 = 0.2,

γ21 = 0.7, ε1 = 0.16, ε2 = 0.22, ε3 = 0.18, ε4 = 0.23 to control α∗ and α = 0.65,µ = 0.09, γ11 = 0.2, γ12 = 0.6,

γ22 = 0.2, γ21 = 0.7, ε1 = 0.21, ε2 = 0.16, ε3 = 0.23, ε4 = 0.17 to control β∗ . Figure 4a,b show the variation 
trends in the density of I1(t) and I2(t) over time under different control strategies, respectively. As presented 
in Fig. 4, the populations of I1 and I2 reach the maximum when the optimal control strategy is adopted for the 
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dS

dt
= B−min

�

1,max

�

0,
(δ1−δ2)(I1+I2)S

c1

��

(t)(I1 + I2)S

− min

�

1,max

�

0,
(δ1−δ3)(I1+I2)S

c2

��

(t)(I1 + I2)S − µS,

dI1
dt

= min

�

1,max

�

0,
(δ1−δ2)(I1+I2)S

c1

��

(t)(I1 + I2)S − γ11I1

− min

�

1,max

�

0,
(δ2−δ5)I1

c3

��

(t)I1 − µI1,

dI2
dt

= min

�

1,max

�

0,
(δ1−δ3)(I1+I2)S

c2

��

(t)(I1 + I2)S − γ22I2

− min

�

1,max

�

0,
(δ3−δ6)I2

c4

��

(t)I2 − µI2,

dM1

dt
= γ11I1 − ε1M1 − µM1,

dM2

dt
= min

�

1,max

�

0,
(δ2−δ5)I1

c3

��

(t)I1 − ε2M2 − µM2,

dM3

dt
= min

�

1,max

�

0,
(δ3−δ6)I2

c4

��

(t)I2 − ε3M3 − µM3,

dM4

dt
= γ22I2 − ε4M4 − µM4,

dR

dt
= ε1M1 + ε2M2 + ε3M3 + ε4M4 − µR,

dδ1
dt

= (δ1 − δ2)min

�

1,max

�

0,
(δ1−δ2)(I1+I2)S

c1

��

(t)(I1 + I2)

+ (δ1 − δ3)min

�

1,max

�

0,
(δ1−δ3)(I1+I2)S

c2

��

(t)(I1 + I2)+ δ1µ,

dδ2
dt

= 1+ (δ1 − δ2)min

�

1,max

�

0,
(δ1−δ2)(I1+I2)S

c1

��

(t)S

+ (δ1 − δ3)min

�

1,max

�

0,
(δ1−δ3)(I1+I2)S

c2

��

(t)S

+ (δ2 − δ4)γ11 + (δ2 − δ5)min

�

1,max

�

0,
(δ2−δ5)I1

c3

��

(t)+ δ2µ,

dδ3
dt

= 1+ (δ1 − δ2)min

�

1,max

�

0,
(δ1−δ2)(I1+I2)S

c1

��

(t)S

+ (δ1 − δ3)min

�

1,max

�

0,
(δ1−δ3)(I1+I2)S

c2

��

(t)S

+ (δ3 − δ7)γ22 + (δ3 − δ6)min

�

1,max

�

0,
(δ3−δ6)I2

c4

��

(t)+ δ3µ,

dδ4
dt

= (δ4 − δ8)ε1 + ε4µ,
dδ5
dt

= 1+ (δ5 − δ8)ε2 + ε5µ,
dδ6
dt

= 1+ (δ6 − δ8)ε3 + ε6µ,
dδ7
dt

= (δ7 − δ8)ε4 + ε7µ,
dδ8
dt

= δ8µ,

(58)
S(0) = S0, I1(0) = I1,0, I2(0) = I2,0,M1(0) = M1,0,M2(0) = M2,0,
M3(0) = M3,0,M4(0) = M4,0,R(0) = R0,

(59)δ1(tf ) = δ2(tf ) = δ3(tf ) = δ4(tf ) = δ5(tf ) = δ6(tf ) = δ7(tf ) = δ8(tf ) = 0.
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control variables α∗ and β∗ . This shows that improving the mobility and contact rate of people enlarges the 
spreading scope of information.

Subsequently, different control strategies are adopted to increase the number of variation groups M2 and M3 . 
The optimal control pairs (α∗, γ12

∗) and (β∗, γ21
∗) are controlled, respectively. Then, let β = 0.65,µ = 0.05,

γ11 = 0.2, γ22 = 0.2, γ21 = 0.7, ε1 = 0.17, ε2 = 0.22, ε3 = 0.28, ε4 = 0.21 to control optimal control pair (α∗, γ12
∗) 

and α = 0.76,µ = 0.09, γ11 = 0.2, γ12 = 0.75, γ22 = 0.2, ε1 = 0.23, ε2 = 0.19,ε3 = 0.25, ε4 = 0.18 to control 
optimal control pair (β∗, γ21

∗) . Figure 5a,b show the variation trends in the densities of M2(t) and M3(t) over time 
under different control strategies, respectively. As presented in Fig. 5, M2(t) and M3(t) populations reach the 
maximum when the optimal control strategy is adopted for the optimal control pairs (α∗, γ12

∗) and (β∗, γ21
∗) . 

This shows that enhancing the education intensity and increasing the variation rate improves the variation of 
information.

Next, controlling the optimal control pairs (α∗,β∗) and (γ 12∗, γ 21∗) is adopted to increase 
the number of transmission groups I1 and I2 and variation groups M2 and M3 simultaneously. Let 
µ = 0.09, γ11 = 0.2, γ22 = 0.2, ε1 = 0.23, ε2 = 0.19, ε3 = 0.25, ε4 = 0.18 . Figure 6a,b show the variation trends 
in the density of transmission groups I1(t) and I2(t) over time, respectively. When a single control α∗ and β∗ is 
adopted, the population of I1 and I2 reaches the maximum. Figure 6c,d show the variation trends in the density 
of variation groups M2(t) and M3(t) over time, respectively. When an optimal control strategy is adopted, the 
populations of M2 and M3 reach the maximum.

Lastly, α∗ , β∗ , γ12∗ , and γ21∗ are controlled to increase the number of transmission groups I1 and I2 as well 
as the variation groups M2 and M3 , respectively. Let µ = 0.09, γ11 = 0.2, γ22 = 0.2, ε1 = 0.23, ε2 = 0.19,

ε3 = 0.25, ε4 = 0.18 . Figure 7a,b show the variation trends in the density of transmission groups I1(t) and I2(t) 

Figure 2.   The stability of information-free equilibrium E0 of system 1 with R0 < 1.

Figure 3.   The stability of information-existence equilibrium E∗ of system 1 with R0 > 1.
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over time, respectively. The I1 population reaches its maximum when a single control α∗ is used. The I2 popula-
tion reaches its maximum when a single control β∗ is used. Figure 7c,d show the variation trends in the density 
of variation groups M2(t) and M3(t) over time, respectively. When the optimal control strategy is adopted, the 
populations of M2 and M3 reach the maximum.

Based on the aforementioned analysis, no matter what control method is chosen, the variation group reaches 
the maximum when an optimal control strategy is adopted. When the transmission group is in a single control, 
it reaches the maximum population size under the optimal control strategy. However, when the transmission 
group and variation group are controlled at the same time, the populations reach the maximum only under the 
single control of (α∗,β∗).

Finally, the choice of parameters values has no established principle in the illustrations of the numerical simu-
lations. In relevant literature on information transmission, the choice of these parameters values does not have 
a fixed range. Most of them are limited to positive numbers and satisfy the stability condition. In the numerical 
simulation, the values in other relevant literature are mentioned and the requirements of stability conditions are 
combined to give the numerical values of the parameters in the model. As for practical problems, determination 
of the specific numerical parameters is proposed, referring to the relevant professional background knowledge 
and investigating the actual background with reference to relevant existing literature.

Sensitivity analysis
In order to analyze the effect of the above control variables α and β on the basic reproductive number R0 , one 
need to perform the sensitivity analysis of R0 . It has been figure out above R0 = Bα(γ22+γ21+µ)+Bβ(γ11+γ12+µ)

µ(γ11+γ12+µ)(γ22+γ21+µ)
 , 

thereby calculating:

(60)
∂R0

∂α
=

B(γ22 + γ21 + µ)

µ(γ11 + γ12 + µ)(γ22 + γ21 + µ)
> 0,

Figure 4.   The densities of (a) I1(t) , (b) I2(t) change over time under different control strategies.

Figure 5.   The densities of (a) M2(t) , (b) M3(t) change over time under different control strategies.
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Thus it can be seen, R0 is positively correlated with α and β . This indicates that improving the flow and contact 
between people can promote the transmission of information. In addition, the more information transmitters, 
the more information mutants.

The sensitivity analysis of R0 is simulated with MATLAB R2017b in Fig. 8.

Conclusions
In this work, we consider the influence of information cross transmission and information variation on infor-
mation transmission. We construct the S2I4MR model of information crossing and variation, calculated the 
basic regeneration number of the model, analyzed the equilibrium point and stability of the model, verified the 
existence of the optimal control of model, and proposed the optimal control strategy of the model. Based on 
numerical simulations, we verify the basic theorem of the model and the effectiveness of the optimal control 
strategy. Finally, we analyze the sensitivity of the optimal control parameters.

The main conclusions of this work are presented below.

•	 The phenomenon of cross-infection and variation has been a focus of research community due to Omicron, 
which is the variant of SARS-CoV-2. It can still be applied by analogy in information transmission. As com-
pared to previous works, the presented optimal control strategy is based on the optimal value calculated by 
control variables;

•	 By promoting the flow of people or organizing information exchange activities, it effectively improves the 
exchange rate of information and promotes the large-scale integration of information. Therefore, improving 
the natural contact rate of the two kinds of information in the crowd effectively expands the communication 
and fusion of information;

•	 By strengthening the educational guidance or putting forward encouraging multi-information application 
policies, it effectively promotes the cross information to evolve into new usable information by combining 
common advantages and ensures that the people exposed to multiple information can integrate informa-

(61)
∂R0

∂β
=

B(γ11 + γ12 + µ)

µ(γ11 + γ12 + µ)(γ22 + γ21 + µ)
> 0.

Figure 6.   The densities of (a) I1(t) , (b) I2(t) , (c) M2(t) , (d) M3(t) change over time under different control 
strategies.
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tion from different fields into widely used new information. Therefore, increasing the variation rate in the 
population effectively enhances the generation of new information.

The phenomenon of information crossing and variation is universal in society. On one hand, in terms of positive 
information, we should strengthen the information crossing and variation, so that the information after such 
variation can be applied in additional fields. On the other hand, in terms of negative information, we should 
reduce the information crossing and variation, in order to reduce its adverse impacts on the society. In the future 

Figure 7.   The densities of (a) I1(t) , (b) I2(t) , (c) M2(t) , (d) M3(t) change over time under different control 
strategies.

Figure 8.   The sensitivity analysis of the basic reproduction number R0.



17

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18104  | https://doi.org/10.1038/s41598-022-21774-4

www.nature.com/scientificreports/

study, we will focus on the influence of random perturbation of parameters on information transmission. In 
addition, as the memory effect is the most important to control and disseminating information, we will construct 
an information transmission model considering memory effect in the subsequent research. And extend it to the 
fractional derivative with a non-local kernel in future research.

Data and code availability
All data analysed during this study are included in this published article.
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