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Abstract: Growing interest in the biological activity of aminobisphosphonates has stimulated the
development of methods for their synthesis. Although several general procedures were previously
elaborated to reach this goal, aminobisphosphonate chemistry is still developing quite substantially.
Thus, innovative modifications of the existing commonly used reactions, as well as development of
new procedures, are presented in this review, concentrating on recent achievements. Additionally,
selected examples of aminobisphosphonate derivatization illustrate their usefulness for obtaining
new diagnostic and therapeutic agents.
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1. Introduction

Bisphosphonates are a class of compounds that are currently receiving significant attention.
Over 50 new papers are seen each week when searching the literature with the keyword
“bisphosphonate” via Web of Science. More than 17,000 various bisphosphonate structures have been
synthesized and described in the literature [1]. Most papers concern their important subclass, namely
aminobisphosphonates. This strong interest results from these compounds acting as strong inhibitors
of bone resorption, with several representatives of this class already commercialized as drugs of choice
for the treatment of osteoporosis, skeletal complications of malignancy, Paget’s disease, multiple
myeloma, hypercalcemia and fibrous dysplasia [2–7] Consequently, most of the papers are devoted
to various clinical aspects of the anti-resorptive effects that bisphosphonates exert towards bone
tissues; however, there is also a growing interest in their applications as anticancer and antibacterial
agents [5–7]. Additionally, aminobisphosphonic acids have found important industrial applications,
largely as inhibitors of scale formation and as corrosion inhibitors, actions which result from their
ability to complex metal ions [8–10].

Thus, simple and effective procedures for their synthesis are becoming increasingly important.
However, only a few general reactions leading to these compounds have been described to date and are
only partially reviewed in the literature [11,12]. Novel reports are mostly concentrated on modifications
and improvement of these procedures, and there are only a few papers aiming at new reactions, which
results from the commonly applied procedures being simple, economical and effective.

In this paper, we comprehensively review the recent studies (supplemented by older papers
if necessary) on reactions applied to synthesize the most important class of bisphosphonates—
aminobisphosphonates—and discuss their scope and limitations.
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2. Overview of Synthetic Procedures

There are contradictory reports of the origin of bisphosphonates [13]. Most likely, the first one
was obtained in the 19th century by Nikolay Menschutkin and/or Theodor Saltzer as an impurity in
reactions designed to obtain different compounds. It was further identified by Hans von Baeyer and
Wilhelm Heideprim as 1-hydroxyethanebisphosphonic acid.

There are only a few general methods for the synthesis of aminobisphosphonates. However, there
are many individual procedures described for their preparation [11,12]. In this review, the following
general reactions are presented: (i) starting from carboxylic acids and (ii) their amides; (iii) reactions
using nitriles and (iv) isonitriles as substrates; (v) syntheses based on addition of phosphites to
oxophosphonates; (vi) three-component condensation of amines, trialkyl orthoformates and dialkyl
phosphites; (vii) addition of amines to vinylidenebisphosphonates; and (viii) functionalization of
simple bisphosphonates treated as building blocks for the preparation of more complex structures.
Additionally, some specific and non-conventional procedures that have been elucidated will be
presented in this review.

2.1. Synthesis from Carboxylic Acids

1-Hydroxyethylidene-1,1-bisphosphonic acids are perhaps the oldest group of bisphosphonates.
They are standardly prepared by a large-scale, one-step reaction of carboxylic acids with phosphorus
trichloride and phosphorous or phosphoric acids, followed by hydrolysis with water; the procedure
was optimized by Kieczykowski et al. [14]. The reaction is carried out in selected solvents
(phenylsulphonic acid, various phenols, chlorobenzene, diphenyl ether or ionic liquids) with sulfone
and methanesulphonic acid being preferred choices [11,15–20]. Despite many theories [19,21–23],
the exact mechanism of this reaction is not fully understood; however, the formation of acid chloride as
a first intermediate has been undoubtedly demonstrated (Scheme 1). This intermediate may react with
methanesulphonic acid (when used as a solvent), and the formed mixed anhydride is also considered
a potential intermediate for the next step [24], which is an Arbuzov-like reaction of phosphorus acid
or one of its several derivatives (including anhydrides of variable structure [17]) formed during the
reaction. The formed derivative of ketophosphonate is a substrate for the addition reaction of trivalent
P-OH species, and bisphosphonate is obtained (Scheme 1). It has also been documented that the
use of phosphorous acid could be omitted if water was added to the reaction medium, and thus this
compound was formed in situ.
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This reaction was commonly used for the preparation of a wide variety of anti-osteoporotic
bisphosphonic acids containing free amino groups (so called dronic acids, compound 1). In this case,
free unblocked amino acids are used as substrates, and the final neutralization of reaction mixtures to
a pH of approximately 4 causes precipitation of the desired products, which are formed in satisfactory
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yields and are of good purity [16,23–26]. Because of its technological importance, this reaction is
still quite intensively studied and optimized; however, most of the studies are done in industrial
laboratories, and their results are mostly disseminated as patents. Consequently, it is difficult, if not
impossible, to determine which conditions are optimal for the synthesis of individual drugs. It is
important because, as in the case of any multicomponent reaction, a synthetic course is strongly
dependent on applied conditions and molar ratios of reagents. For example, one of the patents reports
that the omission of phosphorus chloride in the reaction of 4-aminobutyric acid as the substrate
in methanesulphonic acid provides mixtures of anhydrides as final products (compounds 2 and 3,
Scheme 2) [11]. This corresponds well to the known tendency of phosphonic acids to cyclize.
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Among modifications of this procedure are (i) replacement of phosphorus trichloride with thionyl
chloride to generate acid chloride in the first reaction step [11]; (ii) replacement of acid by its chloride
or anhydride [11] or (iii) t-butyl ester [27]; (iv) blocking the amino moiety in the case of α-amino
acids [28]; and (v) application of microwave-assisted procedures [29].

2.2. Synthesis from Amides

Although studies on the biological activity of 1-amino-1,1-bisphosphonic acids are scarce,
a significant number of procedures for their preparation have been described. They have recently
been reviewed by Romanenko and Kukhar [12]. Amides, being highly stable and easily available
compounds, are substrates of choice, and the most commonly applied procedures are simple
modifications of those elaborated for carboxylic acids. The most straightforward are reactions of
N-acylamines and N-formylamines with phosphorus trichloride and phosphorous acid [30–32],
phosphorus tribromide [33], or triphosgene [34], which provide a wide structural variety of
1-amino-1,1-bisphosphonic acids (compound 4, Scheme 3). They are based on modification of the first
procedure elaborated by Plöger et al. with formamide as a substrate [35].
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The exact reaction mechanism in this case is also not fully known; however, a Vilsmayer-
Haack-like route via iminium ion is postulated here (Scheme 4).

Another possibility is using trialkyl or trimethylsilyl phosphites in reactions prompted by
phosphoryl chloride [36–39], trifluoromethanesulphonic anhydride (Tf2O) [40], zinc chloride [41]
or trimethylsilyl trifluoromethanesulfonate [42,43]. Unfortunately, primary amides are not suitable
substrates for this reaction [38]. The use of triethyl phosphite and phosphoryl chloride appeared to be
especially useful when lactams were used as substrates, resulting in high yields of aminomethylene-
gem-bisphosphonates (Scheme 5) [36–39]. They were readily hydrolyzed, yielding corresponding
bisphosphonic acids (representative example compound 5). On the other hand, this reaction is not suitable
for the conversion of benzoannulated lactams, and mixtures of the desired bisphosphonates and
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monophosphonates of variable structures were obtained (compounds 6, 7, 8 and 9, Scheme 5). In fact,
monophosphonates are usually major products, and the reaction course is dependent on the size of the
substrate aliphatic ring [44]. Additionally, these bisphosphonates and monophosphonates appeared to
be unstable upon acid hydrolysis and upon storage, and undergo degradation with cleavage of the
carbon-to-phosphorus bond (for example compound 10, Scheme 5). Thus, corresponding acids have
not yet been obtained.
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The formation of a Vilsmayer-Haack-like intermediate is also proposed in this case with the
further addition of a nucleophilic phosphorus reagent. This assumption is additionally supported
by studies on the use of structurally variable imine salts as substrates for synthesis of compounds 11
(Scheme 6) [41–45].

The reaction of dibutoxyphosphine or bis(trimethylsiloxy)phosphine with dimethylformamides
in the presence of trimethylsilyl trifluoromethanesulfonate affords the corresponding
aminomethylenebisphosphonites 12 in high yields (Scheme 7) [41–43]. Similar products were
obtained by reacting diethyl pivaloylphosphonite with dialkylformamides in the presence of excess
ethanol and catalytic amounts of zinc chloride (Scheme 7). Pivaloylphosphonite decomposes in these
reaction conditions, yielding diethoxyphosphine, which is the real substrate of the reaction [41].

N-Octylpyrrolidinone treated with LDA, followed by the addition of diethyl phosphorochloridite
and oxidation of the reaction mixture with 30% hydrogen peroxide resulted in bisphosphonylated
lactam 13 with excellent yield (Scheme 8). This reaction was then applied for the synthesis
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of N-geranylated lactams 14 and 15 and linear amides, potential inhibitors of farnesyl:protein
transferase [46]. In the case of cyclic imides, in which two equivalent positions for enolate formation
are present on the imide rings, and thus two carbon atoms may be phosphonylated, the structure
of the product was dependent on the mode of reaction. If phosphonylation was carried out in one
step, two carbon atoms were phosphonylated and vicinal bisphosphonate was obtained. Step-by-step
reaction resulted in the predomination of the phosphonylation of one carbon atom, and the desired
gem-bisphophonate was the major product.
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2.3. Synthesis from Nitriles

1-Aminoalkylidene-1,1-bisphosphonic acids could also be prepared from nitriles by applying the
same procedures as in syntheses starting from amides. Despite being readily available substrates, there
is limited literature on their use for that purpose. The most popular route is the reaction of nitriles
with phosphorous acid, in some cases prompted by phosphorus trichloride and phenylsulphonic or
methylsulphonic acids [12,31,47,48]. The conditions of this reaction are sufficiently delicate to use
peptidyl nitriles as substrates, which was demonstrated using cyanoethyl derivatives of dipeptides
(for example, peptide 16, Scheme 9) [49].
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Isonitriles, which are quite common substrates, especially in multicomponent reactions [51], have 
been seldom used for the preparation of aminobisphosphonates 18. Their reactions with H-phosphine 
oxides carried out in the presence of typical palladium catalysts (Pd2dba3) afforded the product 19  
of monophosphonylation, whereas the use of various rhodium catalysts afforded products of 
diphosphonylation (Scheme 11) [52]. 
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Scheme 9. Representative example of the synthesis of peptidylbisphosphonates from nitriles.

Recently, elegant, mild, and atom economical double phosphonylation of nitriles in the presence
of titanocene has been described. This procedure used induced phosphorus-centered radicals
mediated by titanocene dichloride (Cp2TiCl2) (Scheme 10) and provided a wide structural variety of
aminobisphosphonates 17 [50]. This is a double radical transfer reaction initiated by the reaction of
titanocene with zinc dust and the transfer of the obtained radical to epoxypropane by cleavage of its
oxirane ring, followed by transfer of this radical to diethyl phosphite, which in turn reacts with nitrile
(Scheme 10). The reaction carried out without epoxide, under microwave stimulation, also results in
the desired bisphosphonates, although it is accompanied by formation of many side products.
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2.4. Synthesis from Isonitriles

Isonitriles, which are quite common substrates, especially in multicomponent reactions [51], have
been seldom used for the preparation of aminobisphosphonates 18. Their reactions with H-phosphine
oxides carried out in the presence of typical palladium catalysts (Pd2dba3) afforded the product
19 of monophosphonylation, whereas the use of various rhodium catalysts afforded products of
diphosphonylation (Scheme 11) [52].

Far simpler is the addition of diethyl phosphite to isonitriles. This reaction is carried out with
an excess of hydrogen chloride in aprotic solvents. Under these conditions, nitrile is converted to
an onium salt, and after addition of the first phosphite molecule, iminium salt is formed, a substrate
for the addition of a second phosphite molecule (Scheme 12) [53]. Using this procedure, two distinct
libraries of bisphosphonates 20 and 21 have been prepared [54–56].
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prepare a wide variety of 1-hydroxy-1,1-bisphosphonates containing amino groups [19,23,61–63]. 
Additionally, the use of bis((trimethylsilyl)oxy)phosphine generated from ammonium hypophosphite 
was applied to prepare hydroxybisphosphinic acids (also presented in Scheme 13) [64]. Another 
modification was the use of acyl phosphonamidates readily prepared from phosphoramidite type 
reagents and a range of acid chlorides, followed by reaction with trimethyl phosphite in the presence 
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2.5. Synthesis via Ketophosphonates

Presumably, the addition of phosphites to ketophosphonates was the first procedure for
preparation of dialkyl 1-hydroxy-1,1-bisphosphonates [16,19,57]. Starting ketophosphonates are
obtained by the Arbuzov reaction of acyl chlorides with trialkyl phosphites and used as substrates in the
next step, namely, the addition of dialkyl phosphite to carbonyl double bonds (a representative example
for preparation of tetramethyl pamidronate 22 is shown in Scheme 13). Since ketophosphonates
are unstable species [58], the desired bisphosphonates are usually obtained via one-pot procedures
applying mixtures of trialkyl- and dialkylphosphonates at elevated temperature [59]. Additionally, in
situ generation of dialkyl- from trialkyl phosphites is possible by the addition of a protic solvent to
the reaction mixture. A useful modification of this procedure is the application of tris(trimethylsilyl)
phosphite, followed by the easy removal of ester groups by methanolysis [23,60,61]. This was used
to prepare a wide variety of 1-hydroxy-1,1-bisphosphonates containing amino groups [19,23,61–63].
Additionally, the use of bis((trimethylsilyl)oxy)phosphine generated from ammonium hypophosphite
was applied to prepare hydroxybisphosphinic acids (also presented in Scheme 13) [64]. Another
modification was the use of acyl phosphonamidates readily prepared from phosphoramidite type
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reagents and a range of acid chlorides, followed by reaction with trimethyl phosphite in the presence
of pyridinium perchlorate [65].Molecules 2016, 21, 1474 8 of 25 
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Recently, a one-pot synthesis was described reacting carboxylic acids with catecholborane,
followed by the treatment of the formed acyloxy-benzodioxaborolane with tris(trimethylsilyl)phosphite
(Scheme 13) [66]. The efficiency of that simple methodology was proved by the syntheses of alendronate
and N-methyl pamidronate (compound 23) without additional steps for the protection/deprotection
of their amine functions.

2.6. Three-Component Condensation of Amines with Triethyl Orthoformate and Diethylphosphite

Simple three-component condensation of stoichiometric ratios of amines, diethyl phosphite
and triethyl orthoformate, first reported in patent literature by Suzuki [67] and further extended
by Maier [68], is perhaps the most common procedure for the preparation of a wide variety of
aminomethylenebisphosphonic acids (Scheme 14). Since this reaction usually gives a complex mixture
of products [56] that are difficult to separate, the resulting esters are not isolated but rather, the crude
reaction mixtures are hydrolyzed, yielding bisphosphonic acids that are isolated after the hydrolytic
step. Some modifications of this classic procedure have also been reported. They include the use of a
solvent-free, microwave-assisted reaction [69–71] and reactions catalyzed by titanium dioxide [72] and
by crown ethers (increasing the selectivity of the process by 10%–20%) [73]. Additionally, a reaction
carried out in a micellar environment was described [74].
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of aminomethylenebisphosphonic acid (compound 27) is observed. Because this compound was 
previously prepared by acid hydrolysis of N-benzhydrylaminomethylenebisphosphonic acid [83,100], 
it may be that it is formed upon hydrolysis of N-aryl derivatives. 
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The three-component reaction was applied to synthesize a large series of physiologically active
compounds, in some cases of very complex chemical structures, including bone antiresorptive drug
candidates [75–82]; bone imaging [83,84], antiprotozoal [85–88], antibacterial [72,89–92], anti-HIV [93]
and anti-inflammatory [94] agents; herbicides [95–97]; and complex ones for various metals [10,98].

In some cases, this reaction appears to be quite capricious and affords unexpected side-products
along with the expected aminomethylenebisphosphonates (see representative examples in Scheme 15),
the compositions of which are dependent on the applied conditions (molar ratio of substrates,
temperature and reaction time). Most often, alkylation (for example, compounds 24 and 25) or
formylation (compound 26) of amine moieties is observed [71,99], while in selected cases the formation
of aminomethylenebisphosphonic acid (compound 27) is observed. Because this compound was
previously prepared by acid hydrolysis of N-benzhydrylaminomethylenebisphosphonic acid [83,100],
it may be that it is formed upon hydrolysis of N-aryl derivatives.
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aminomethylenebisphosphonic acids.

The mechanism of this useful reaction had been thoroughly studied by using 31P-NMR and by
isolation of all intermediates [71,72,99] and identifying interrelations between them (Scheme 16) [99].
The mechanism appeared to be quite complex because the intermediates exist in thermodynamic
equilibrium. Thus, its course is strongly dependent on the properties of the used amine and applied
reaction conditions.
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Modification of this procedure and the use of ethyl diethoxymethyl-H-phosphinate instead
of diethyl phosphite allowed obtaining structurally variable bisphosphinates 28 (Scheme 17) [101].
Better results were obtained if the reaction was carried out under nitrogen (air oxidizes substrates and
products). Notably, aromatic amines provided the desired bisphosphinates in high yields (78%–92%),
whereas the reaction yields when using cyclic and aliphatic derivatives were lower. Interestingly, of
many methods for the synthesis of corresponding acids 29, acidolysis of the obtained esters 28 appeared
to be optimal. The use of other conditions, including mild transesterification with trimethylsilyl
bromide followed by methanolysis, resulted in the formation of side products 30 and 31.
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2.7. Addition of Amines to Vinylidenebisphosphonates 

Tetraethyl vinylidenebisphosphonate 32 is a versatile synthon useful for preparation of a wide 
variety of bisphosphonates. Its usefulness is a subject of recent comprehensive review [102]. As an 
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undergo a retro-Michael reaction [103,104]. Fortunately, free acids 34 are substantially more stable. 
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The reactivity of vinylidenebisphosphonates has been used for the synthesis of derivatives of 
various analogues of fluoroquinolone antibacterial agents [105,106], heteroaromatics with potential 
pharmaceutical applications [107,108], simple antiplasmodial agents [103,104], HIV reverse transcriptase 
inhibitors [59,93], potential anti-osteoporotic agents [109,110], and N-alkylated antitumor pyridines 
[111]. Some representatives of these compounds (35–39) are shown in Scheme 19. 

Another example, albeit far less developed, is the addition of organometallic amines to 
vinylidenebisphosphonate 22 (Scheme 20) [112]. Huisgen copper-catalyzed 1,3-dipolar cycloaddition of 
this bisphosphonate to azides was used to obtain substrate 40 for a “click reaction”. This reaction 
yielded compounds that may be considered aza-analogues 41 of zoledronate (Scheme 20) [113]. 
Similar substrates could also be obtained by addition of propargylamine to the double bond of 
vinylidenebisphosphonate [114]. 

Scheme 17. Three-component synthesis of aminobisphosphonates.

2.7. Addition of Amines to Vinylidenebisphosphonates

Tetraethyl vinylidenebisphosphonate 32 is a versatile synthon useful for preparation of a wide
variety of bisphosphonates. Its usefulness is a subject of recent comprehensive review [102]. As an
electron-deficient alkene, it can undergo conjugate addition of strong and mild nucleophiles, with
amines belonging to the latter class. Primary amines undergo smooth Michael addition (Scheme 18),
however, the obtained compounds 33 must be quickly purified and hydrolyzed since they tend to
undergo a retro-Michael reaction [103,104]. Fortunately, free acids 34 are substantially more stable.
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The reactivity of vinylidenebisphosphonates has been used for the synthesis of derivatives
of various analogues of fluoroquinolone antibacterial agents [105,106], heteroaromatics with
potential pharmaceutical applications [107,108], simple antiplasmodial agents [103,104], HIV reverse
transcriptase inhibitors [59,93], potential anti-osteoporotic agents [109,110], and N-alkylated antitumor
pyridines [111]. Some representatives of these compounds (35–39) are shown in Scheme 19.

Another example, albeit far less developed, is the addition of organometallic amines to
vinylidenebisphosphonate 22 (Scheme 20) [112]. Huisgen copper-catalyzed 1,3-dipolar cycloaddition
of this bisphosphonate to azides was used to obtain substrate 40 for a “click reaction”. This reaction
yielded compounds that may be considered aza-analogues 41 of zoledronate (Scheme 20) [113].
Similar substrates could also be obtained by addition of propargylamine to the double bond of
vinylidenebisphosphonate [114].
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designed to prepare specific scaffolds or are applicable only to specific, if not unusual, substrates. 
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triethyl phosphite failed; however, they readily reacted with triphenylphosphine (Scheme 22) [116]. 
The resulting diethyl 1-(N-acetylamino)-1-triphenylphosphoniumalkylphosphonate tetrafluoroborates 

Scheme 19. Representatives of useful bisphosphonates obtained via addition of amines to
vinylidenebisphosphonate.

Molecules 2016, 21, 1474 11 of 25 

 

N

HOOC

O

F

N

N

PO3H2

PO3H2

35, analog of Ciprofloxacin

H2N
H
N

N
H

N
H

PO3H2

PO3H2

37, potential antiosteoporotic agent

H
N

PO3H2

PO3H2

36, antiprotozoal agent

PO3H

PO3H2
N

F

38, anticancer agent

N N

N

HN

PO3H2

PO3H2

S

39, inhibitor of HIV reverse transcriptase  
Scheme 19. Representatives of useful bisphosphonates obtained via addition of amines to 
vinylidenebisphosphonate. 

(EtO)2(O)P P(O)(OEt)2 + H2N
(EtO)2(O)P P(O)(OEt)2

HN

N3

(EtO)2(O)P P(O)(OEt)2

HN

N
N N

22 40

41  
Scheme 20. An example of the synthesis of novel bisphosphonates via “click chemistry”. 

2.8. Miscellaneous Procedures 

The desire to obtain new aminobisphosphonate scaffolds for biological studies has stimulated 
numerous studies on general methods of their synthesis. The methods discussed here are mostly 
designed to prepare specific scaffolds or are applicable only to specific, if not unusual, substrates. 
Only some of them may be considered as novel, general procedures. 

Radical addition of sodium hypophosphite to terminal alkynes in the presence of triethylborane, 
which produced 1-alkyl-1,1-bis-H-phosphinates in moderate yields, gives access to a wide structural 
variety of bisphosphonates [115]. When using propargylamino acids, the corresponding bisphosphinates 
were obtained in satisfactory yields (a representative example is given in Scheme 21 for analogue 42 
of pamidronate). Bisphosphinates are easily converted to bisphosphonates by ozonolysis. 

NaH2PO2
H2N

Et3B H2N

P(O)(OH)(ONa)

P(O)(OH)(ONa)

42  
Scheme 21. Procedure for the synthesis of bisphosphinates and their conversion into bisphosphonates. 

1-(N-acylamino)alkylphosphonates, easily accessible from N-acyl-α-amino acids using a 
two-step transformation, underwent electrophilic activation at the α-carbon by electrochemical 
α-methoxylation in methanol in a process mediated by NaCl. Attempts to carry out a Michaelis- 
Arbuzov-like reaction of the obtained diethyl 1-(N-acetylamino)-1-methoxy-alkylphosphonates with 
triethyl phosphite failed; however, they readily reacted with triphenylphosphine (Scheme 22) [116]. 
The resulting diethyl 1-(N-acetylamino)-1-triphenylphosphoniumalkylphosphonate tetrafluoroborates 

Scheme 20. An example of the synthesis of novel bisphosphonates via “click chemistry”.

2.8. Miscellaneous Procedures

The desire to obtain new aminobisphosphonate scaffolds for biological studies has stimulated
numerous studies on general methods of their synthesis. The methods discussed here are mostly
designed to prepare specific scaffolds or are applicable only to specific, if not unusual, substrates.
Only some of them may be considered as novel, general procedures.

Radical addition of sodium hypophosphite to terminal alkynes in the presence of triethylborane,
which produced 1-alkyl-1,1-bis-H-phosphinates in moderate yields, gives access to a wide
structural variety of bisphosphonates [115]. When using propargylamino acids, the corresponding
bisphosphinates were obtained in satisfactory yields (a representative example is given in Scheme 21 for
analogue 42 of pamidronate). Bisphosphinates are easily converted to bisphosphonates by ozonolysis.
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1-(N-acylamino)alkylphosphonates, easily accessible from N-acyl-α-amino acids using a two-step
transformation, underwent electrophilic activation at the α-carbon by electrochemical α-methoxylation
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in methanol in a process mediated by NaCl. Attempts to carry out a Michaelis-Arbuzov-like reaction
of the obtained diethyl 1-(N-acetylamino)-1-methoxy-alkylphosphonates with triethyl phosphite
failed; however, they readily reacted with triphenylphosphine (Scheme 22) [116]. The resulting
diethyl 1-(N-acetylamino)-1-triphenylphosphoniumalkylphosphonate tetrafluoroborates 43 reacted
smoothly with trialkyl phosphites, dialkyl phosphonites or alkyl phosphinites in the presence of
Hünig’s base and methyltriphenylphosphonium iodide as catalysts. This gave bisphosphonates 44,
1-phosphinylalkylphosphonates or 1-phosphinoylalkylphosphonates in good yields. This reaction has
potential to become a general procedure.
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Alkylation of tetraalkyl methylenebisphosphonate 45, a classical method for synthesizing variable
bisphosphonic acids, has been rarely used for the synthesis of amino derivatives. Thus, its direct
amination with the hydroxylamine ester of diphenylphosphinic acid, followed by its bromoacetylation
(Scheme 23), provided substrate 46 for functionalization into glycopeptide antibiotics, in the hope that
they will find an application as medication for osteomyelitis [117]. Another classical example is the
monoalkylation of tetraisopropyl methylenebisphosphonate with 1,6-dibromohexane, followed by
fluorination with Selectofluor and conversion of the remaining bromide into amine, which resulted in
compound 47 (Scheme 23) [118].
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An unusual procedure is metallacarbenoid insertion of aromatic amines into tetraethyl
diphosphonodiazomethane 48, which yields corresponding aminomethylenebisphosphonates 49
(Scheme 24) [119]. Among the tested catalysts, Rh2(NHCOCF3)4 was found to be the best.Molecules 2016, 21, 1474 13 of 25 
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A specific and unexpected reaction was the addition of silylated dialkyl phosphites to
4-phosphono-1-aza-1,3-dienes 50, which resulted in γ-phosphono-α–aminobisphosphonates 51
(Scheme 25) [120]. This reaction is interesting in that, depending on the steric demand of the substituent
present on nitrogen, double 1,2-addition or tandem 1,4-1,2-addition with formation of bisphosphonate
52 occurred (Scheme 25).
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Additionally, the addition of phosphites to iminophosphonate esters has been studied.
This reaction is limited to specific substrates, and usually the obtained bisphosphonates 53 are unstable,
and phosphoryl C-N transfer to compounds 54 is observed (Scheme 26), which may be considered an
example of an aza-Perkov reaction [121–123].
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Finally, syntheses of rare aminomethyltrisphosphonates are presented in a recent review
by Romanenko and Kukhar devoted to applications of methylidynetrisphosphonates [124].
Two procedures for the synthesis of bis- and trisphosphonates 55 and 56 taken from this review
and described in patent literature are depicted in Scheme 27.
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3. Functionalization of Aminobisphosphonates

Bisphosphonates are known for their affinity to bone tissue, and thus their conjugation to
various drugs has been quite intensively studied; they are expected to serve as system-targeting
drugs [6]. Because dronic acids are produced at industrial scale and are thus readily available and
inexpensive, they are most frequently used for that purpose. However, their extreme hydrophilic
character means that they are practically insoluble in most organic solvents, which limits the use
of aqueous media or requires their conversion into phosphonate esters prior to functionalization.
Unfortunately, the methods for direct esterification of phosphonate moieties are scarce and usually
give unsatisfactory results; these esters must generally be synthesized independently.

Methods for functionalizing aminobisphosphonic acids with structurally variable molecules
were recently reviewed [12]; therefore, in this review, the methods arbitrarily chosen as the most
representative are reported.

3.1. Direct Acylation of Aminobisphosphonic Acids

Direct acylation of aminobisphosphonic acids is difficult because this reaction is accompanied
by the possible competitive acylation of phosphonic groups [125,126] and hydroxylic groups when
amino-1-hydroxy-1,1-bisphosphonic acids are substrates [126,127]. A representative example of this
reaction is given in Scheme 28 for alendronic acid 57.
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Scheme 28. Direct acylation of alendronic acid with indication of possible side-products.

Acylation of dronic acid salts with acyl chlorides in sodium hydroxide in water or in water/propanol
solutions is the simple Schotten-Baumann variant [127,128]. Acidification of the solution results in the
precipitation of the desired acids or their monosodium salts. To conjugate aminobisphosphonic acids
with molecules bearing carboxylic groups, classical coupling protocols used in peptide synthesis have
also been used. These include the activation of carboxylic groups with N,N’-dicyclohexylcarbodiimide
(DCC) [129,130]; the use of previously prepared succinimidate esters to obtain 21 extremely complex
fluorescent imaging probes (representative examples of a green fluorescent dye 58 and a red fluorescent
dye 59 are shown in Scheme 29) [131]; and N,N’-dicarbonylimidazole, which was used to conjugate
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pamidronate to pullan (polysaccharide composed of maltotriose units) [132] to obtain a system for
bone regeneration.
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Acylation of aminobisphosphonic acids with small acids, such as acrylic acid [133], chloroacetic
acid [134] or succinic acid [135], provided useful substrates for further functionalization of larger
molecules, such as macrocycles devised for lanthanide ion complexation, chitosan, and hyaluronan.

3.2. Direct Acylation of Tetraethyl Aminobisphosphonates

Esters are far more suitable substrates for acylation than free phosphonic acids, with tetraethyl
aminomethylenebisphosphonate being the most popular substrate. It has been used to obtain
structurally variable conjugates with estradiol (compounds 60, 61 and 62 in Scheme 30) using
classical peptide synthesis coupling agents such as DCC and DPPA (diphenylphosphoryl azide) [136].
These conjugates were synthesized as bone-specific estrogens in the hope that they will protect elderly
women from bone loss resulting from osteoporosis.
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A derivative of raloxifene, a selective estrogen receptor or modulator, was obtained using
a suitable acid chloride as substrate [137], whereas radioligands, which are selectively bound to
bone tissue, have been synthesized by using DCC/HOBt (hydroxybenzotriazol) activation [138]
and antibacterial bisphosphonated benzoxazinorifamycin prodrugs using EDCl (1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide) [139].

In this case, acylation of aminobisphosphonic acids with small acids was also applied as a starting
step to produce antibacterial agents against osteomyelitis [88] and bone imaging macrocycles [81],
using acid chlorides as acylating agents.
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Using DCC as a coupling agent, diethyl 1-(2-aminoethylamino)-1,1-ethylbisphosphonate was
acylated by structurally variable natural acids, such as folic acid [140,141], ursulonic and betulinic
acids [142], and trolox [141,143].

Acylation of pamidronic acid ester 22 by using HBTU (2-(1H-benzotriazol-1-yl)-1,1,3,3-
tetramethyluronium hexafluorophosphate) was used to prepare a catecholic derivative, which was
then bound to the surface of magnetic iron oxide nanoparticles (Scheme 31) [144]. The particle 63 has
been designed to remove uranyl ions from blood.
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3.3. Synthesis of Building Blocks for Polymer Chemistry

Self-etching adhesives are polymeric materials containing phosphonate groups that have become
popular in restorative dentistry because they allow strong bonds between dental hard tissues (enamel
and dentin). One possibility for their preparation is to obtain monomers containing phosphonic
groups [145]. Such methacrylamide monomers 64 and 65 were synthesized by acylation with suitable
acryloylchlorides (Scheme 32) [146]. Studies of their photopolymerization indicated that they may be
suitable for potential use in dentistry.
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A similar monomer, acryloylated pamidronate, has been used to obtain a hyaluronic acid
derivative that is dually polymerized with cross-linkable hydrazide groups and bisphosphonate
ligands. By mixing bisphosphonate polymer with calcium ions and aldehyde-derivatized hyaluronic
acid, a hybrid hydrogel was obtained, which quickly mineralizes [147]. Such a system is of interest as
a mediator for fast bone regeneration.

By dispersion copolymerization of three monomers (methacrylate bisphosphonate 66, N-(3-
aminopropyl) methacrylamide 67, and tetra(ethylene glycol) diacrylate 68) (Scheme 33), polymeric
nanoparticles 69 were obtained [148]. Their size distribution was controlled by changing various
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polymerization parameters. By covalent attachment of a drug and/or a dye to amino groups (such as
a near IR fluorescent dye), a theranostic system may be obtained.

Molecules 2016, 21, 1474 16 of 25 

 

Using DCC as a coupling agent, diethyl 1-(2-aminoethylamino)-1,1-ethylbisphosphonate was 
acylated by structurally variable natural acids, such as folic acid [140,141], ursulonic and betulinic 
acids [142], and trolox [141,143]. 

Acylation of pamidronic acid ester 22 by using HBTU (2-(1H-benzotriazol-1-yl)-1,1,3,3- 
tetramethyluronium hexafluorophosphate) was used to prepare a catecholic derivative, which was 
then bound to the surface of magnetic iron oxide nanoparticles (Scheme 31) [144]. The particle 63 has 
been designed to remove uranyl ions from blood. 

3.3. Synthesis of Building Blocks for Polymer Chemistry 

Self-etching adhesives are polymeric materials containing phosphonate groups that have become 
popular in restorative dentistry because they allow strong bonds between dental hard tissues (enamel 
and dentin). One possibility for their preparation is to obtain monomers containing phosphonic 
groups [145]. Such methacrylamide monomers 64 and 65 were synthesized by acylation with 
suitable acryloylchlorides (Scheme 32) [146]. Studies of their photopolymerization indicated that 
they may be suitable for potential use in dentistry. 

O

N
H

PO3H2

PO3H2

O
H
N

O

PO3H2

H
NH2O3P

OH2O3P PO3H264 65  
Scheme 32. Bisphosphonylated methacrylamide monomers. 

A similar monomer, acryloylated pamidronate, has been used to obtain a hyaluronic acid 
derivative that is dually polymerized with cross-linkable hydrazide groups and bisphosphonate 
ligands. By mixing bisphosphonate polymer with calcium ions and aldehyde-derivatized hyaluronic 
acid, a hybrid hydrogel was obtained, which quickly mineralizes [147]. Such a system is of interest as 
a mediator for fast bone regeneration. 

By dispersion copolymerization of three monomers (methacrylate bisphosphonate 66, 
N-(3-aminopropyl) methacrylamide 67, and tetra(ethylene glycol) diacrylate 68) (Scheme 33), 
polymeric nanoparticles 69 were obtained [148]. Their size distribution was controlled by changing 
various polymerization parameters. By covalent attachment of a drug and/or a dye to amino groups 
(such as a near IR fluorescent dye), a theranostic system may be obtained. 

O

O
O

PO3H2

PO3H2

OH
x

NH2

O

O
O

4

O

O

NH2

O

NH2O
H2N

O

H2N

O

H2N

O
NH2

PO3H2

PO3H2

PO3H2

PO3H2

PO3H2
H2O3P

H2O3P

H2O3P

H2O3P

H2O3P

H2O3P
PO3H2

66

67

68 69  
Scheme 33. Synthesis of polymeric nanoparticles as potential dye and drug carriers. 

Macromolecular co-conjugates of bisphosphonate and ferrocene were synthesized by means  
of Michael addition copolymerization of methylenebisacrylamide (MBA) with primary amines-6- 
amino-1-hydroxyhexylidene-1,1-bisphosphonate and 4-ferrocenyl-butamidopropylamine [149]. The 
mass percentage incorporation of ferrocene analogues was found to be between 4%–5%, and 10%–12% 
for bisphosphonate. Such polymers could be selectively bound to bone tissue and slowly release 
anticancer ferrocene derivatives at this target site. 

Scheme 33. Synthesis of polymeric nanoparticles as potential dye and drug carriers.

Macromolecular co-conjugates of bisphosphonate and ferrocene were synthesized by means
of Michael addition copolymerization of methylenebisacrylamide (MBA) with primary amines-6-
amino-1-hydroxyhexylidene-1,1-bisphosphonate and 4-ferrocenyl-butamidopropylamine [149].
The mass percentage incorporation of ferrocene analogues was found to be between 4%–5%,
and 10%–12% for bisphosphonate. Such polymers could be selectively bound to bone tissue and
slowly release anticancer ferrocene derivatives at this target site.

3.4. Miscellaneous

Other means to functionalize amino moieties are quite scarce and dispersed. Classical ones
include the formation of Schiff bases, which are then alkylated [150] or reduced [126], and synthesis of
thioureido derivatives as intermediates in the preparation of heterocyclic compounds [151–153].

The functionalization of polysaccharides is the gateway of aminobisphosphonates into
nanoscience. For example, phosphonated cellulose was utilized to obtain nanocellulose with good
thermal stability and potential intumescent properties. It was synthesized from birch pulp via
sequential periodate oxidation and reductive amination using alendronate 57 as a phosphonating
reagent (Scheme 34) [154]. After high-pressure homogenization, bisphosphonate cellulose nanofibers
or nanocrystals of the general formula 70 were obtained, depending on the initial oxidation degree.
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Alendronate was also bound to conjugates of pullulan and paclitaxel, which were bound to the
polysaccharide by a cathepsin K-sensitive tetrapeptide spacer. This should ensure release of paclitaxel
in bones. Then, bisphosphonate was covalently conjugated to the sugar chain via a polyethyleneglycol
chain, using a technique similar to that described above (identical to those shown in Scheme 34) [155].
This system exhibited strong antiproliferative action against several cancer cell lines.

4. Conclusions

Aminobisphosphonic acids are gaining significant interest as a class of compounds with promising
physiologic activity, with some representatives already commercialized as bone resorption inhibitors,
and therefore useful drugs against osteoporosis and related bone disorders. This leads to both the
modification of existing and the elaboration of novel procedures for their preparation. There are
several commonly used reactions for this purpose; however, they have also been modified in the last
decade to be tailored to specific biological needs. A few novel procedures have also been developed.
Functionalization of simple aminobisphosphonic acids is a difficult task because of their strongly
polar character. However, successful examples of functionalization of the amino moieties of these
compounds have provided promising diagnostics and novel therapeutic agents.
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