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Early feeding regime has a substantial lifelong effect on lambs andweaning ewe’smilk can

lead to the intestinal injury of lambs. To explore the molecular regulatory mechanism of

intestinal injury of lambs under weaning stress, the jejunumwas conducted transcriptome

and then integrated analyzed with our previous proteome data. A total of 255 upregulated

genes and 285 downregulated genes were significantly identified. These genes showed

low overlapping with differentially expressed proteins identified by isobaric tags for

relative and absolute quantification (iTRAQ). However, according to their functions, the

differentially expressed genes (DEGs) and proteins with the same expression trend were

enriched for the similar Gene Ontology (GO) terms and the Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways, such as intestinal lipid absorption, urea cycle,

peroxisome proliferator-activated receptor (PPAR) signaling pathway, and ferroptosis.

Furthermore, the DEGs, including FABP2, ACSL3, APOA2, APOC3, and PCK1, might

play essential roles in intestinal lipid absorption and immune response through the PPAR

signaling pathway and ferroptosis. This study could provide new insights into early lamb

breeding at the molecular level.

Keywords: sheep, intestinal injury, weaning stress, transcriptome, proteome

INTRODUCTION

In the recent years, house feeding and intensive breeding have become the primary trend of the
sheep industry due to the limitations of resources and the environment. To improve the utilization
rate of ewes, the implementation of an artificial milk replacer feeding program to substitute ewe
lactation has become a common practice of lamb breeding in many countries (1, 2). However,
weaning is the most severe stimulating factor for the animals during early development, which is
shown as the decreased feed intake, low nutrition absorption, aberrant mucosal immunity, and
higher mortality (3–5). Young ruminants’ intestinal histology and function would significantly
change after the colonization of residential microorganisms, invasion of exogenous pathogens, and
deletion of maternal antibodies (6–8), closely related to their growth, inflammatory response, and
susceptibility to some diseases (5).
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The small intestine, a critical multifunctional organ,
plays crucial roles in digesting and absorbing nutrients,
regulating immune response, and secreting various enzymes and
immunoglobulins (8, 9). The intestinal mucosa is the largest
interface between the host and the external environment, so
intestinal cells are continuously exposed to the coexistence
of symbiotic bacteria, diets, pathogenic microorganisms, and
metabolites. For this reason, the intestinal epithelium and lamina
propria form a multilayer and complex barrier mechanism to
maintain intestinal homeostasis. However, the structure and
function of the intestine are affected by weaning, which is
essential for lambs whose digestive and immune systems are not
yet mature (10). With the intestinal microflora disturbance, the
metabolic imbalance, and the inflammatory reaction induced by
pathogen invasion after weaning, the homeostasis of the intestine
is broken. Therefore, it is urgent to understand the molecular
mechanism of lamb intestinal injury caused by weaning ewe’s
milk, which could help us to draw better methods to minimize
this effect.

Due to the high throughput and quantifiable advantage,
RNA sequencing (RNA-seq) could detect the bulk differentially
expressed genes (DEGs) (11), widely used to identify gene
expressions and modulated pathways. Therefore, in this study,
RNA-seq was performed to analyze the transcriptome of lamb
jejunum. After screening the differentially expressed genes, we
annotated their function to investigate the regulation of intestinal
injury under weaning stress. At the same time, our previous
proteomic data were integrated with the transcriptomic data
to determine the same Gene Ontology (GO) terms and the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
items enriched in the two data sets. Those results provide
more basis for exploring the molecular mechanism of lamb
intestinal injury induced by weaning ewe’s milk, which could
help us to better understand intestinal function regulation
after weaning.

MATERIALS AND METHODS

Animals, Experimental Design, and
Sampling
The same animals were used according to our previous study
(6). In summary, eight pairs of twin neonatal ram Hu lambs
born on the same day with almost the same body weight
(2.75 ± 0.2 kg) were randomly divided into the two groups.
One group was artificially reared (AR) with milk replacer fed
four times a day after sucking colostrum for 3 days and the
other group was ewe-reared (ER) during the entire 15 days
experiment. Each pair of twin samples could be monozygotic and
dizygotic twins and siblings to reduce the influence of inherent
genes in exploration of the differences of gene expression after
AR or ER feeding procedures. The commercial milk replacer
was acquired from Precision Animal Nutrition Research Center
(Beijing, China; CP: 25.08%, DE: 18.38%, EE: 11.18%, Ash: 5.29%,
Ca: 1.13%, and P: 0.51% of DM) and the feed amount of milk

replacer was adjusted in direct accordance with 2% of the lamb’s
body weight.

On 15 days of the experiment, three pairs of healthy twins
with similar weight and same gender were slaughtered with a
compressed air pistol to cause a cerebral concussion, followed
by exsanguination by cutting the jugular and carotid veins. After
slaughter, the middle part of the jejunum with 2 cm was sampled
quickly and frozen in liquid nitrogen.

Ribonucleic Acid Extraction, Sequencing,
and Read Quality Control
The frozen jejunum samples were ground with liquid nitrogen
and then weighted 1.0 g for each sample. Total RNA of
each jejunum was extracted and purified using the Total
RNA Extraction Kit (Invitrogen, Carlsbad, California, USA),
according to themanufacturer’s standard protocol. RNA integrity
number (RIN) and accurate yield were initially measured
by spectrophotometry on the Nanodrop 1000 (Nanodrop
Technologies, Wilmington, Delaware, USA). Only high-quality
RNAs (RIN > 8 and RNA yield > 2 µg) could be advanced to
the next step. Individual complementary DNA (cDNA) libraries
were generated from 0.5 µg of total RNA per sample using
the Illumina TruSeq RNA Library Preparation Kit version 2
(Illumina Incorporation, San Diego, California, USA). Then,
sequencing libraries were sequenced on the Illumina HiSeq 2500
(Illumina Incorporation) and generated 100 bp paired-end reads.

The raw reads were filtered and trimmed using Trimmomatic
software (12) to remove low-quality reads and adapter sequences.
In other words, the reads whose number of low-quality (sQ ≤

5) bases contained in a single-ended sequencing read exceeded
50% of the total number of bases and N content > 10%
were removed. The generated clean reads were aligned against
sheep genome reference sequences (OARv4.0) by applying STAR
aligner (13) with default parameters. Mapped reads were sorted
by the Sequence Alignment/Map tools (SAM tools) (14) and
then counted by gene using featureCounts (15) embedded in
Subread (16).

Statistical Analysis
Gene expression levels in each library were normalized to
fragments per kilobase of exon per million mapped reads
(FPKM). The significant DEGs in pairwise comparison between
the AR and ER groups were determined using the DESeq2
R package (17). The selected model for identifying the DEGs
incorporated group and maternal effect (design=∼ group effect
+ maternal effect). The maternal effect is mainly related to the
lamb individuals and were collected from different ewes, which
could infect the performance during lactation. Wald inferences
tests were used to assign false discovery rate (FDR)-adjusted
p-values (q-values) for each gene in each pairwise contrast.
Both the significance level (q-value < 0.05) and magnitude of
expression change [|log2(fold-change)| ≥ 1] were used to select
the significant DEGs. The functional analysis, including the
KEGG and GO, for DEGs was used ClueGo (version 2.8.5) in
Cytoscape (version 3.7.2) (18). All the pathways were shown with
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a q-value < 0.05 and the kappa score was used to define term–
term interrelation and the functional groups based on shared
genes between the terms. Meanwhile, the network specificity was
set to “medium.” Finally, STRING version 11 (http://string-db.
org/) was used to predict the protein–protein interactions (PPIs)
of DEGs. A PPI network was drawn using Cytoscape and the
cytoHubba application was used to identify the top 10 hub genes
(19, 20). The isobaric tags for relative and absolute quantification
(iTRAQ) data of the same samples has been published in
the previous study (6). In this integrative study, DEGs were
identified by RNA-seq. In addition, the differentially expressed
proteins (DEPs) from iTRAQ were compared and overlapped
for consistent results. In brief, direct and indirect correlations
were combined to get a complete relationship between the two
omics. The specific operation methods are as follows: geninfo
identifier (GI) of the proteome ismapped to gene symbol through
the gene2accession in the National Center for Biotechnology
Information (NCBI) and then compared with the gene number
of the transcriptome. Then, for the unrelated genes, the database
(transcript sequence of transcriptome) and query (identified
protein sequence) were used for the Basic Local Alignment
Search Tool (BLAST) sequence alignment, the e-value threshold
was selected as 1e−5, and the identity (sequence similarity) was
guaranteed to be more than 95%. Next, the Pearson correlation
method was used to calculate the correlation of sample pair ratio
in transcriptome and proteome. To show the correlation between
two omics in detail, we further classified the DEGs revealed by
RNA-seq and the DEPs identified by the previous report minutely
via the threshold of expression difference: fold-change ≥ 1.5 in
transcriptome and fold-change ≥ 1.2 in the proteome.

RESULTS

Summary of Transcriptome Data
RNA-seq produced more than 18,195,848 raw reads (Table 1).
After data filtering, 18,136,753–27,932,670 clean reads were
generated to quantify transcripts and single nucleotide
polymorphism (SNP) calling. The Guanine and cytosine

(GC) content in the libraries ranged from 48.24 to 50.56%. The
six samples had at least 91.91% reads with ≥Q20 and 85.81%
reads with ≥Q30. The majority of reads in each library were
mapped to the sheep genome reference sequences and the
average mapping rates were 78.96 and 77.15% for the AR and ER
groups, respectively. A total of 18,590 transcripts and 396,743
SNPs were identified in the samples.

The principal component analysis (PCA) of all the genes
from intestinal samples showed separations between the
two groups (Figure 1). Besides, samples were significantly
divided into the two groups as experimental design
(Supplementary Figure S1A). They were clustered into three
branches as their ewe origination (Supplementary Figure S1B).

FIGURE 1 | The principal component analysis (PCA) analysis of gene

expressions in the intestinal samples. The black patterns represent the

artificially reared (AR) group and the red patterns represent the ewe reared

(ER) group.

TABLE 1 | The quality of data output.

Sample Raw

reads

Clean

reads

Raw

bases (G)

Clean

bases (G)

Error

(%)

Q20

(%)

Q30

(%)

GC

(%)

AR1 22995633 22373634 5.75 5.59 0.06 91.96 85.92 50.48

AR2 28353082 27932670 7.09 6.98 0.04 94.19 89.22 50.56

AR3 21275181 21220183 5.32 5.31 0.06 92.59 86.52 50.05

ER1 23576166 23185535 5.89 5.8 0.04 94.19 89.28 49.38

ER2 18195848 18136753 4.55 4.53 0.04 96.15 92.00 48.24

ER3 21778235 21267590 5.44 5.32 0.06 91.91 85.81 49.13

Raw reads: the original sequence data was counted, four behaviors per unit, statistics of the number of sequencing sequences of each file.

Clean reads: the calculation method was the same as raw reads, but the statistical files were filtered sequencing data.

Raw bases (G): the number of original sequence data was multiplied by the length of the sequencing sequence, unit: G (data).

Clean bases (G): the number of filtered sequences multiplied by the length of the sequence, unit: G (data).

Error (%): base error rate. Q20, Q30 (%): the percentage of bases with Phred values > 20 and 30 to the total bases.

GC (%): the percentage of the total number of bases G and C to the total number of bases.
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FIGURE 2 | Gene expression between the AR and ER groups. (A) The expression of differentially expressed genes (DEGs) between the two groups. The red dots

indicate upregulated DEGs and the green dots indicate downregulated DEGs. The gray dots reveal that there is no difference in the expression of genes between the

two groups. (B) Number of significantly DEGs.

Function of Differentially Expressed Genes
After annotation, 255 upregulated DEGs and 285 downregulated
DEGs in the AR group were compared with the ER group
(Figures 2A,B). In this study, the genes related to lipid metabolic
processes, defense response, regulation of immune response, and
intestinal epitheliummorphology verified by quantitative reverse
transcription-PCR (qRT-PCR) in the proteome were consistent
with their expression trends in the previous study (6). The GO
enrichment analysis was carried out to explore the biological
mechanisms underlying the two different feeding regimes. The 9
GO terms were enriched, including five biological processes (BPs)
and four cellular components (CCs) on the DEGs (Figure 3). The
significantly enriched BP terms were mainly related to the small
molecule catabolic process, hexose transmembrane transporter
activity, chemotaxis, and leukocyte activation. The enriched CC
terms considerably were primarily involved in transaminase
activity, extracellular space, extracellular matrix, extracellular
organelle, and plasma lipoprotein particle.

We also performed the same enrichment analysis based
on the KEGG pathway database and identified five pathways
overrepresented in the pathway annotations of the given
DEGs. As shown in Figure 4, the significant enrichment
pathways were mainly associated with the peroxisome
proliferator-activated receptor (PPAR) signaling pathway
(ACSL5, FABP1, EHHADH, OLR1, DBI, PLIN2, and SCD),
hematopoietic cell lineage (CD8A, CD1E, CD22, CD55, TFRC,
MS4A1, CR2, and ANPEP), ferroptosis (TFRC, SLC40A1,
LPCAT3, 9LC39A14, LOC101115614, and ACSL5), retinol
metabolism (LOC101104808, AOX1, CYP1A1, RDH12,

LOC101118447, LOC101116729, and LOC101117764), and
tryptophan metabolism (EHHADH, IDO1, CYP1A1, AOX1,
LOC101104808, and AOC1). Furthermore, we identified the top
10 hub genes among the DEGs, including ORM1, HPX, TTR,
APOA2, APOA3, CP, AFM, SERPINC1, LTF, and RBP4, using
the cytoHubba application (Figure 5).

Correlation Analysis of Differentially
Expressed Genes and the Previously
Reported Differentially Expressed Proteins
According to Pearson’s analysis of the overall correlation between
proteome and transcriptome expression changes, we found that
transcriptome and proteome had a low correlation (Figure 6A).
Moreover, the results of most genes are concentrated near the
coordinate center 0, indicating that the expression of most genes
at the transcriptome and proteome levels changes the same.
There is no significant change. However, the correlation was
significantly higher when the expression variation was consistent
and opposite (Figures 6B,C). Further, the specific expression
correlation between transcriptome and proteome is given in
Figure 6D. Based on this, we analyzed the screened DEGs
using the KEGG and the GO databases in GlueGo, respectively
(Figures 7A,B). Interestingly, the genes that were upregulated
in both the transcriptome and proteome or upregulated in
transcriptome but downregulated in the proteome could not be
enriched in the KEGG and the GO databases. Nevertheless, genes
that were upregulated in transcriptome but downregulated in
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FIGURE 3 | Enriched biological processes, cellular components, and molecular functions assigned to the DEGs between the AR and ER groups. The diamond

showed the biological processes; the big circle showed the cellular components; the small circle showed the genes; the different colors represented the different

functional groups, respectively, based on kappa score; all the DEGs were not enriched molecular functions.

proteome were increased in the functions of immunoglobulin-
mediated immune response, Staphylococcus aureus infection, and
negative regulation of leukocyte differentiation. Meanwhile, the
genes having the same downregulated trend in transcriptome
and proteome were enriched in the PPAR signaling pathway
(APOA2, APOC3, ACSL3, CPS1, FABP2, and PCK1), intestinal
lipid absorption (APOA2, FABP2, and CEL), urea cycle (CPS1,
PCK1, SLC25A15, and ASS1), and ferroptosis (ACLS3, CP,
and TFRC).

DISCUSSION

The intestine is the largest immune and digestive organ of
mammals, suffering from any damage, which will lead to a series
of health problems. Its mucous membrane is the largest interface
between the body and the external environment, digesting and
metabolizing nutrients, and resisting the invasion of foreign
substances. Therefore, in this study, twin samples from three
ewes were selected to explore the effects of AR and ER feeding
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FIGURE 4 | The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the DEGs between the AR and ER groups. The big circle showed the

metabolic pathway; the small circle showed the genes; the different colors represented different pathways, respectively.

regimes on the intestine health of lambs. Early intestine tissue
sections have shown that the stress of separation from the dam at
weaning destroyed the inherent morphological structure of the
intestine, resulting in intestinal villus atrophy and crypt depth

deepening (6). To further explore the intestinal dysfunction of
lambs caused by the stress of weaning ewe’s milk, we carried out
the transcriptome analysis of intestinal tissues of lambs after AR
or ER feeding procedures by RNA-seq technique and the DEGs

Frontiers in Veterinary Science | www.frontiersin.org 6 April 2022 | Volume 9 | Article 809188

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Han et al. Transcriptome Analysis of Lamb Intestine

FIGURE 5 | The top 10 hub genes by cytoHubba in the DEGs between the

AR and ER groups.

were screened. Based on the comprehensive analysis of the DEGs
and DEPs, it was found that the two key KEGG pathways were
mainly enriched—the PPAR signaling pathway and ferroptosis.

The DEGs mainly enriched the 9 GO terms in the
transcriptome, which primarily mediated the metabolism of
nutrients, the immune response, the cellular composition,
and the integrin signaling of lambs under weaning stress.
Transaminase activity and plasma lipoprotein particles are
closely related to intestinal fat digestion and absorption,
supported by a study of Yokoyama (21). Yokoyama concludes
that the level of transaminase in the small intestine is positively
correlated with the synthesis of enzyme proteins and the
transport of fatty acids to intestinal cells. In addition, the hexose
transmembrane transporter activity is closely related to the
digestion and metabolism of glucose and other monosaccharides
and the small molecule catabolic process. Its significantly
enrichment indicated that the absorption and transportation of
nutrients have changed significantly after separating from the
ewe at weaning. At the same time, the leukocyte activation and
chemotaxis reflected the changes in intestinal immunity in lambs.

Furthermore, the greatly enriched KEGG pathways mainly
included the PPAR signaling pathway and ferroptosis. Notably,
these pathways are closely related to immune response, cellular
process, and nutrient metabolism, which indicated that weaning
stress most likely disturbed these processes. For example, the
solute carrier (SLC) group of membrane transporters is mainly
distributed on the cell membrane (22). It is the main intestinal
transporter of many amino acids and peptides (23). Meanwhile,
according to Liao and Gaowa’s study, it was found that changing
the nutrient intake ratio of young ruminants would lead to
an increased expression level of nutrient transporters in jejunal
enterocytes (24, 25).

Although in this study, the correlation between the
transcriptome and proteome of the same samples was
low and it is a common phenomenon (26, 27). The main
reasons for this phenomenon might be: (1) the process of

transcription and translation is very complex and there are RNA-
mediated transcription regulation and posttranslational protein
modification, so transcriptome analysis cannot completely reveal
protein expression and (2) both the RNA and protein quantitative
methods have their limitations, such as: RNA-seq may involve in
overestimation or underestimation of the expression level, while
iTRAQ will show a significant underestimation of the degree
of protein upregulation or downregulation (28). Therefore, in
the recent years, comprehensive transcriptomic and proteomic
methods have been conducted in diverse study fields. The
integrating proteomic and transcriptomic analysis showed that
the two GO terms (intestinal lipid absorption and urea cycle) and
the 2 KEGG pathways (PPAR signaling pathway and ferroptosis)
were significantly downregulated after weaning stress.

Peroxisome proliferator-activated receptors, belonging to the
nuclear receptor family, are a lipid ligand-activated nuclear
transcription factor, including three members: PPAR-γ, PPAR-
α, and PPAR-β/δ (29), which play a vital role in growth and
development, carbohydrate and lipid metabolism, immunity,
and inflammation (30, 31). The main mechanism of the PPAR
signaling pathway is that it binds to the peroxisome proliferator
response element (PPRE) as a heterodimer with retinoid X
receptor (RXR) after the PPAR activation to regulate the
expression of the target gene, which is vital for the regulation
of intestinal immune response and fat metabolism. The PPARs
control intestinal immune response mainly by changing the
phenotype of macrophages and combining with short-chain
fatty acids to induce the expansion and differentiation of
T lymphocytes (Treg cells) (32–35). Notably, butyric acid is
the main carbon source of intestinal epithelial cells (36) and
the ligand of the PPAR (33). In addition, if the PPAR-α
pathway is inhibited, the expression of interleukin-22 (IL-22)
secreted by Th1 and Th17 cells will decrease and the structural
integrity of the intestinal mucosal barrier will be destroyed,
resulting in an increased intestinal susceptibility to bacteria and
endotoxin (37, 38). Therefore, the changes in milk replacer
nutritional composition compared with ewe’s milk may lead
to the accumulation of intestinal microorganisms and their
metabolites and the steady-state imbalance of lambs.

As shown in Figure 7B, APOA2, APOC3, ACSL3, CPS1,
FABP2, and PCK1 were significantly enriched in the PPAR
signaling pathway. Among these, PCK1 encodes a cytoplasmic
enzyme in sheep intestines to promote the production of
phosphoenolpyruvate (39) and control the production of glycerol
and lipids (40), which plays an essential role in intestinal
lipid metabolism. FABP2 encodes an intestinal fatty acid-
binding protein and is only distributed in mature intestinal
cells. Hence, the downregulation of its expression indicates
the decrease of intestinal lipid metabolism and the blocked
intestinal development of lambs (41). APOA2 mediates the
activation of the PPAR signaling pathway in the intestine
(42). Like APOC3, the proteins they encode are related to
the metabolism of triglyceride-rich lipoproteins and there is
a strong interaction between them (43, 44). Besides, APOA2
is also involved in the metabolism of free fatty acids, but
APOC3 itself, such as lipopolysaccharide, can promote the
release of interleukin-1β (IL-1β) from monocytes and induce
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FIGURE 6 | Differential correlation of proteome-transcriptome expression. (A) The correlation between all the associated protein and messenger RNA (mRNA). (B)

The distribution of correlation of consistent-changed transcriptome and proteome. (C) The distribution of correlation of different-changed transcriptome and

proteome. (D) Detailed classification of expression correlation.

inflammation. Several studies have shown that weaning, as the
most severe stimulating factor in early life, can destroy intestinal
mucosal barrier structure, reduce immune and antioxidant
function, increase the expression of IL-1β and tumor necrosis
factor-α (TNF-α), and induce intestinal inflammation (1, 5, 45).
In summary, we speculated that weaning stress downregulated
the expression of the PPAR signaling pathway, resulting
in intestinal immune function maladjustment, the structural
integrity of intestinal mucosal barrier destruction, increased
susceptibility to endotoxin, and induced severe inflammatory
response. Moreover, the downregulation of the PPAR signaling
pathway led to the disorder of lipid metabolism and the decrease
of the PPAR ligands, which further aggravated this process.

Ferroptosis is an iron-dependent regulatory form of cell death,
different from apoptosis, necrosis, and autophagy, which involves
fatal iron-catalyzed lipid damage (46). The main mechanism
is that Fe2+/ester oxygenase catalyzes the high expression of
polyunsaturated fatty acids (PUFAs) on the cell membrane,

resulting in lipid peroxidation and reactive oxygen species (ROS)
accumulating, further inducing cell death. In addition, PUFAs
is more susceptible to lipid peroxidation (47) and free PUFAs
inserted into extracellular phospholipids after esterification can
be used as a signal of iron ptosis after oxidation (48). Previous
studies have shown that the Acyl-CoA synthetase long-chain
(ACSL) family is involved in PUFA-phosphatidylethanolamines
(PUFA-PEs) biosynthesis in the cell membrane and is the
substrate of lipid peroxidation (48). Interestingly, our combined
transcriptome and proteome analysis showed that the expression
of ACSL3 was significantly downregulated. Above all, we
speculated that after separating from the ewe at weaning,
the lambs downregulated the expression of ACSL3 and other
relative genes to resist the intestinal injury caused by ROS,
resulting in the remodeling of PUFAs on the cell membrane,
the disorder of lipid metabolism and absorption, and the lack
of lipid peroxidation substrate, thus enhancing the resistance to
ferroptosis. Notably, it has been already found that the normal
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FIGURE 7 | Enrichment analysis of the co-expressed DEGs between transcriptome and proteome. (A) Enrichment analysis of the genes, which were upregulated in

transcriptome but downregulated in proteome. (B) Enrichment analysis of the genes, which were downregulated in transcriptome and proteome. The diamond

represented the metabolic pathways in the KEGG database; the triangle represented the functions in the GO database; the circle showed the genes; the different

colors represented the different functional groups, respectively, based on kappa score.
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development of the human fetal immune system depends on
adequate intake of PUFAs, so it may be related to ferroptosis,
which provides a new idea for us to study the regulation of
the intestinal immune system in weaned lambs (49). Above all,
we infer that the cause of ferroptosis is the lack or the low
concentration of transferrin in milk replacer, which results in
the obstruction of absorption and transport of iron ions in
the intestine and the accumulation of Fe2+ in the epithelial
cells of the intestinal mucosa. This result is consistent with
the exfoliation and death of epithelial cells observed in the
previous section and the effects of epithelial cell proliferation
and disturbance of nutrient absorption and transport in the
transcriptional group.

The integrating proteomic and transcriptomic analysis
also showed that immunoglobulin-mediated immune response,
Staphylococcus aureus infection, and negative regulation of
leukocyte differentiation were significantly upregulated in
transcriptome, but downregulated in the proteome. Due to
post-transcription regulation, there is a deviation between
transcriptome analysis results and protein expression. Some
previous studies have shown that microRNA (miRNA) mediates
the regulation of cell response under stress (50, 51). It was
found that miR-146b could directly act on the Toll-like
receptor 4 (TLR4) of intestinal epithelial cells of piglets to
regulate intestinal metabolism and immune response of piglets
under weaning stress (52). Based on this, we speculate that
miRNA-mediated post-transcriptional regulation of messenger
RNA (mRNA) may be involved in regulating intestinal
metabolism and immune response of lambs under the stress
of separating from the ewe at weaning. Therefore, to reveal
the molecular regulatory mechanism of intestinal injury of
lambs under weaning stress, we will further explore miRNA
and its target genes in our following study. In addition,
this study has only been conducted for 15 days. The long-
term effect of early weaning on intestinal gene expression
in lambs is unknown, worthy of further exploration in
future study.

CONCLUSION

In this study, we used transcriptome and proteome to enrich and
analyze the DEGs and found that the PPAR signaling pathway
and ferroptosis may be the key drivers damaging the small
intestine of lambs. Significantly differentially expressed genes
such as FABP2, ACSL3, APOA2, APOC3, and PCK1 may be the
key genes. These results could provide new ideas for alleviating
the intestinal injury of lambs caused by weaning ewe’s milk and a
theoretical basis for preparing the new and efficient milk replacer.
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