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Objective: To explore
cardiomyopathy (DCM).

immune-related feature genes in patients with dilated

Methods: Expression profiles from three datasets (GSE1145, GSE21610 and GSE21819)
of human cardiac tissues of DCM and healthy controls were downloaded from the GEO
database. After data preprocessing, differentially expressed genes (DEGs) were identified
by the ‘limma’ package in R software. Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analyses were then performed to
identify biological functions of the DEGs. The compositional patterns of stromal and
immune cells were estimated using xCell. Hub genes and functional modules were
identified based on protein-protein interaction (PPl) network analysis by STRING
webtool and Cytoscape application. Correlation analysis was performed between
immune cell subtypes and hub genes. Hub genes with |correlation coefficient| > 0.5
and p value <0.05 were selected as feature biomarkers. A logistic regression model was
constructed based on the selected biomarkers and validated in datasets GSE5406 and
GSE57338.

Results: A total of 1,005 DEGs were identified. Functional enrichment analyses indicated
that extracellular matrix remodeling and immune and inflammation disorder played
important roles in the pathogenesis of DCM. Immune cells, including CD8" T-cells,
macrophages M1 and Th1 cells, were proved to be significantly changed in DCM
patients by immune cell infiltration analysis. In the PPl network analysis, STATS, IL6,
CCL2, PIKBR1, ESR1, CCL5, IL17A, TLR2, BUB1B and MYC were identified as hub
genes, among which CCL2, CCL5 and TLR2 were further screened as feature biomarkers
by using hub genes and immune cells correlation analysis. A diagnosis model was
successfully constructed by using the three biomarkers with area under the curve
(AUC) scores 0.981, 0.867 and 0.946 in merged dataset, GSE5406 and GSE57338,
respectively.
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Exploring Dilated Cardiomyopathy Immune-Related Biomarkers

Conclusion: The present study identified three immune-related genes as diagnostic
biomarkers for DCM, providing a novel perspective of immune and inflammatory response
for the exploration of DCM molecular mechanisms.

Keywords: dilated cardiomyopathy, immune infiltration, diagnosis model, biomarkers, logistic regression

INTRODUCTION

Dilated cardiomyopathy (DCM) is defined as left or both
ventricles enlargement and contraction impairment in the
absence of abnormal loading conditions or coronary disease.
The estimated prevalence of DCM was >1:250 of the
population (Hershberger et al, 2013). It accounts for a
considerable portion of heart failure (HF) (Reichart et al,
2019) and is the leading cause of heart transplantation
(Weintraub et al., 2017). DCM results from a diverse range of
etiologies including genetic alteration, viral infection, drug and
alcohol ~ with a  heterogeneous  pathophysiological
mechanism.(Felker et al., 2000).

Immune and inflammatory response plays an important
role in cardiovascular disease, such as myocardial infarction
(Kologrivova et al., 2021), atrial fibrillation (Li et al., 2021). As
for DCM, myocardial damage, whether from a genetic or
environmental etiology, triggers inflammation and recruits
immune cells to the heart. Regional inflammation causes
tissue fibrosis, which stiffens the heart and promotes the
progression to dilation and HF (Schultheiss et al., 2019).
Myocardial inflammation was related to poor long-term
outcome for DCM (Nakayama et al., 2017). Immune cells,

especially T lymphocytes and macrophages, promote
myocardial inflammation and contribute to ventricular
remodeling (Comarmond and Cacoub, 2017; Jain et al,
2021). For example, it is been reported that polarization of
macrophages towards M2 was associated with ventricular
remodeling and poor long-term prognosis in DCM
(Nakayama et al.,, 2017). In addition, a significant increase
of the number of Thl and Th17 cells was observed while the
number of Treg cells decreased in DCM patients (Wei et al.,
2017; Liu et al, 2021). Infiltrated immune cells release
cytokines and chemokines, such as TGF-p1, IL-1B, and
TNF, promoting collagen deposition, fibrosis and cardiac
remodeling (Schultheiss et al., 2019). Microarray profiling
research has also shown that the expression of some
immune-related genes in left ventricle of DCM was
dysregulated, such as IL-6, CXCL10, TLR3 (Qiao et al,
2017). Based on the potential relationship between
inflammation and DCM, some immunological therapies
have been reported, including immunosuppressants,
(Parrillo et al., 1989; Frustaci et al, 2009),
immunoadsorption, (Bian et al., 2021), IL-1 inhibitors, (Van
Tassell et al., 2017; De Luca et al., 2018). However, these
immune-based therapies are either unsatisfactory or not
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fully confirmed by large randomized, multi-center research. It
is necessary to better understand DCM pathogenetic
mechanism.

As shown in Figure 1, we integrated several GEO datasets.
Through systematically bioinformatics analyses, we identified
differentially expressed genes (DEGs) between DCM and
healthy cardiac samples and explored the potential
pathological mechanism of DCM by functional enrichment
analysis, immune cell infiltration analysis and protein-protein
network analysis. Moreover, we constructed a three-gene
diagnostic model via logistic regression analysis. Finally, we
confirmed the validity of the diagnostic model in another two
datasets GSE406 and GSE57338. This article is the first to
explore the pathogenesis of DCM from the perspective of
immunity and inflammation with bioinformatics, and we
hope our analyses will provide potential targets for future
in-depth research.

MATERIALS AND METHODS

GEO Datasets

The DCM RNA expression datasets were collected from the
online GEO database (http://www.ncbi.nlm.nih.gov/geo/).
The keywords “dilated cardiomyopathy”, “Homo sapiens”,
and “expression profiling by array” were used on the initial
search, and 184 DCM related studies were found. Then the
following criteria were used to further screen datasets: 1) The
study includes DCM case vs healthy control; 2) tissue samples
obtained from left ventricle; 3) sample size was bigger than 10.
Three datasets qualified for the above criteria and performed
on the same platform were combined for analysis. Another
two datasets derived from other platforms were used as
validating datasets. The processed data of GSE1145
(platform: GPL570, including 11samples of control and 12
samples of DCM), GSE21610 (Schwientek et al, 2010)
(platform: GPL570, including eight samples of control and
21 samples of DCM), GSE29819 (Gaertner et al., 2012)
(platform: GPL570, including six samples of control and
seven samples of DCM), GSE5406 (Hannenhalli et al.,
2006) (platform: GPL96, including 16 samples of control
and 86 samples of DCM) GSE57338 (Liu et al., 2015)
(platform: GPL11532, including 132 samples of control and
82 samples of DCM) were downloaded as expression matrix
with R package ‘GEOquery’.(Davis and Meltzer, 2007). The
mRNA expression profiles of controls and targeted patients
were extracted and were performed log2 transformation
before further analysis (Only if they have not be log2
transformed).

Data Preprocessing and DEGs
Identification

The ‘limma’ (Ritchie et al., 2015) and ‘sva’ (Parker et al., 2014)
packages in R software (R version 4.0.3) were used to correct
intra- and inter-batch effect. Prcomp function was used to
perform principal component analysis (PCA). Next, probes
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annotations were performed. Probes annotated to >1 gene
were removed. For multiple probes annotated to the same
gene, the first one appeared retained. Finally, the ‘limma’
package was also used for DEGs identification between
different groups with cut-off values of adjusted p-value <
0.05 and [fold change| > 1.5. In addition, DEGs were also
identified by applying robust rank aggregation (RRA)
algorithm (Kolde et al., 2012) with the same criteria. Venn
diagrams (http://bioinformatics.psb.ugent.be/webtools/Venn/
) were used to summarize the overlapping DEGs between ‘sva’
and RRA algorithms. Boxplot function, ‘ggplot2’ and
‘pheatmap’ packages were then used to plot gene expression
boxplot, volcano plot and heatmap.

Functional Enrichment Analysis

To further analyze the functions of DEGs, the R package
‘clusterProfiler’ (Yu et al, 2012) was used to perform Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis. The cut-off values for
GO and KEGG were set as p < 0.05. The ‘enrichplot’ package was
used to draw dot plots for the results of functional enrichment
analysis.

Immune Cell Infiltration Analysis

xCell (Aran et al., 2017) is a new gene signature-based method to
estimate the content of immune and stromal cells. It was validated
using in-silico  simulations and cytometry
immunophenotyping. XCell package was applied to
normalized merged data to portray the cellular heterogeneity
landscape of left ventricular expression profiles. We compared the
cell distribution differences between the two groups through
t-test, and the cutoff value was set as p < 0.05. The results
were significantly different between the two groups,
categorized based on their traits into three categories:
“lymphoid and myeloid cells”, “stem cells” and “stromal cells
and others.” These were visualized by using ‘ggplot2’ and ‘ggpubr’
packages. Correlation analyses of immune cell subtypes and hub
genes were performed with ‘psych’ and ‘corrplot’ packages.
Pearson correlation coefficient was used to assess the strength
of correlation. Hub genes whose absolute correlation coefficient
with immune cells >0.5 and p-value < 0.05 are selected to
further study.

extensive

Protein-Protein Interaction Network and

Gene Module Identification

Search Tool for the Retrieval of Interacting Genes (STRING,
https://string-db.org) is a webtool that provide validated and
predicted information of PPIs (Szklarczyk et al, 2019). The
list of DEGs was uploaded into STRING website to detect
significant protein interactions with minimum interaction
score >0.7. The network was then exported and visualized by
Cytoscape 3.7.1 software (Cline et al, 2007). The CytoHubba
plugin (Chin et al., 2014) was used to calculate hub genes with a
high degree. The results were directly visualized by Cytoscape.
Additionally, the MCODE plugin (Bader and Hogue, 2003) was
used to identify highly interconnected clusters with the cutoff
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FIGURE 2 | The differentially expressed genes in merged dataset (A,B) The boxplot of merged dataset before and after normalization (C,D) Two-dimensional
principal component analysis cluster plot before and after normalization (E) Volcano plot of 1,005 DEGs (F) Heatmap of all DEGs.
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parameters set as follows: degree cutoff = 2, node score cutoff = 0.
2, k-Core = 2, Max. Depth = 100. The results were further
screened with criteria set as MCODE score >4 and nodes
number >5. Gene ontology biological process enrichment
analysis was performed on the significant modules.

Hub Genes Verification and Diagnosis
Model Construction

Hub genes with correlation coefficient >0.5 and p < 0.05 with
immune cells were selected. The expression profiles of the
selected biomarkers were visualized in boxplot and validated
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in another two datasets GSE5406 and GSE57338. Then, a
diagnosis model combining the selected biomarkers was
constructed in the merged dataset by logistic regression using
‘glm’ function and verified in GSE5406 and GSE57338. Receiver-
operating characteristic (ROC) curves were used to assess the
discrimination ability of the key genes and the diagnosis model.

RESULTS

Data Preprocessing and DEGs

Identification

Expression profiles of healthy controls and DCM patients from
GSE1145, GSE21610 and GSE21869 were combined into a
merged dataset. The merged dataset contains 25 healthy
controls and 40 DCM patients. As shown in Figures 2A,C,
the merged dataset had strong batch effect. After
normalization, it was effectively removed (Figures 2B,D).
Then in the differential expression analysis, 1,005 DEGs were
recognized in the merged dataset, which includes 385 down-
regulated genes and 620 up-regulated genes by integration
method of ‘sva’ (Figure 2E). 179 DEGs including 101 up-
regulated genes and 78 down-regulated genes were identified
by integration method of RRA. Venn diagrams depict DEGs
across two different integration methods (Supplementary Figure
S1). DEGs obtained by ‘sva’ method were used in the following
analyses. All of the DEGs were displayed in heatmap (Figure 2F).

Functional Enrichment Analysis

To assess the functions of DEGs, enrichment analyses of GO and
KEGG were performed. The categories of GO analysis include
biological process (BP), cellular component (CC) and molecular

function (MF). The leading 10 enriched terms of each GO
categories and KEGG with p value <0.05 were visualized in
Figure 3.

The mainly enriched BP terms included epithelial cell
proliferation and its regulation, extracellular matrix and
structure organization, cell chemotaxis, leukocyte migration
and regulation, and inflammatory response (Figure 3A). The
mainly enriched MF terms were extracellular matrix structural
constituent, glycosaminoglycan, collagen and fibronectin
binding, G protein-coupled purinergic nucleotide receptor
activity (Figure 3B). The mainly enriched CC terms contained
collagen-containing extracellular matrix, endoplasmic reticulum
lumen, external side of plasma membrane, myofibril, sarcomere,
basement membrane, and collagen trimer (Figure 3C). In whole,
GO results indicated that the gene function of DEGs mainly
associated with both extracellular structure reorganization and
fibrosis, immune, and inflammatory abnormalities.

In KEGG pathway enrichment analysis, DEGs mainly
enriched in PI3K-Akt signaling pathway, Cytokine-cytokine
receptor interaction, AGE-RAGE signaling pathway in diabetic
complications, Phagosome, viral protein interaction with
cytokine and cytokine receptor, and HIF-1 signaling pathway
(Figure 3D).

Immune Cell Infiltration Analysis

xCell was used to estimate the cell composition heterogeneity of
left ventricle between DCM and controls. As shown in Figure 4,
18 cell types were significantly changed in DCM cardiac tissue
compared to control samples, among which the scores of CD8"
T-cells, cDC, adipocytes, fibroblasts, and smooth muscle in DCM
were significantly increased, while the scores of macrophages M1,
Th1 cells were significantly decreased.
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Moreover, the correlation among immune cells were
calculated by using the Pearson’s correlation coefficients. As
shown in Figure 5, iDC has the highest positive correlation
with DC (Pearson’s coefficient 0.89). The correlation
between macrophages and macrophages M1 was the second
strongest positive (Pearson’s coefficient = 0.78). Additionally,
aDC, DC, CD8" Tcm, macrophages, monocytes, and
macrophages M1 had strong correlation coefficient with most
of the remaining immune cells.

PPI Network and Gene Module

Identification

As shown in Figure 6A, there were 633 edges among 350 proteins
in the PPI network. The top 10 genes with the highest degree in
the above network were selected as the hub genes. These are
STATS3, IL6, CCL2, PIK3R1, ESR1, CCL5, IL17A, TLR2, BUB1B,

and MYC (Figure 6B). The expression of the top 10 hub genes
across all datasets was displayed in supplementary material.
Then, the correlation coefficients between 10 hub genes and
significantly changed immune cells were calculated. As shown
in Figure 6C, CD8" T-cells and macrophages M1 had significant
correlation with most of the hub genes. Moreover, with the
screening rules as |Pearson’s coefficient| > 0.5 and p < 0.05,
we obtained three immune-related hub genes with potential
diagnostic value: TLR2, CCL2 and CCLS5.

Additionally, the densely connected modules were identified
by using MCODE plug-in. Nine modules were obtained from the
PPI network (Supplementary Figure S2). The most enriched GO
BP terms of each module were listed in Table 1. Module_1 was
enriched in negative regulation of transcription from RNA
polymerase II promoter. Module_2 was enriched in sister
chromatid cohesion. Enriched BP terms of Module_3 and four
were associated with metabolism. Module_5 was enriched in
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proteolysis. Module_6 and eight were enriched in extracellular
matrix organization. Module_ 9 was enriched in immune
response.

Hub Genes Verification and Diagnosis

Model Construction

As itis shown in Figure 7A, CCL2 and TLR2 were significantly
downregulated, while CCL5 was significantly upregulated in
the merged dataset and verified in another two datasets
GSE5406 and GSE57338 (Figures 7B,C). Next, ROC curve
analysis was performed to verify the diagnostic value of the
selected biomarkers. In the merged dataset, the ROC curves of
the three biomarkers revealed high diagnostic value for DCM
(Figure 8A). The AUC (area under the curve) scores of CCL2,
CCL5, TLR2 were 0.963, 0.803, 0.766 respectively. In
verification dataset GSE5406, the AUC scores of CCL2,

CCL5, TLR2 were 0.733, 0.821, 0.794, respectively
(Figure 8C). In verification dataset GSE57338, the AUC
scores of CCL2, CCL5, TLR2 were 0.738, 0.831, 0.836,
respectively (Figure 8E). Finally, we used the three
biomarkers to construct a diagnosis model by logistic
regression and visualized in ROC curves. The AUC score of
the diagnosis model was 0.981, 0.867 and 0.946 in the merged
dataset, GSE5406 and GSE57338, respectively (Figures
8B,D,F).

DISCUSSION

DCM, a heterogeneous disease, is the major cause of heart
failure and heart transplantation worldwide. Both genetic
mutation and many different environmental changes can
cause cardiomyocyte damage or death and may trigger
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FIGURE 6 | PPI network of DEGs in merged dataset (A) PPI network of DEGs. The color depth and shape size of the dots are positively correlated with degree (B)
Top 10 hub genes in the network (C) Correlation matrix of xCell scores of significantly changed immune cell subtype with top 10 hub genes. *p < 0.05, “*p < 0.01, **p <
0.001.
TABLE 1 | Gene ontology biological process enrichment analysis.
Module Term Count p Value
negative regulation of transcription from olymerase Il promoter 94E-
1 \ lat f tion f RNA pol Il t 6 7.94E-07
2 sister chromatid cohesion 4 3.98E-06
3 metabolic process 2 3.98E-02
4 keratan sulfate catabolic process 5 1.68E-13
5 proteolysis 4 4.00E-04
6 extracellular matrix organization 3 7.94E-04
8 extracellular matrix organization 5 2.00E-08
9 immune response 6 1.00E-08
TABLE 2 | summary of three biomarkers.
Gene General biological function Function in cardiovascular
disease
CC2 Chemoattractant for activated T lymphocytes and monocytes Promotes the infiltration of mononuclear cells
Primary activator for macrophages Protects cardiomyocytes from death by autocrine and paracrine effects
CCL5 Chemoattractant for T lymphocytes, monocytes, eosinophils and NK cells Promotes neutrophil and macrophage activator in myocardial infarction and
myocarditis
TLR2  Recognizes pathogen-associated molecular patterns (PAMP) and damage- Induces expression of inflammatory cytokines and chemokines, resulting in an
associated molecular patterns (DAMP) invasion of inflammatory cells

Protects heart in aged animals after transverse aortic constriction surgery
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FIGURE 7 | Gene expression of the three selected hub genes (A) Boxplot of the three selected hub genes in merged dataset (B) Boxplot of the three selected hub
genes in GSE5406 (C) Boxplot of the three selected hub genes in GSE57338. *p < 0.05, **p < 0.01, **p < 0.001 ***p < 0.0001.

myocardial inflammation in both directions, further
promoting the progression of cardiomyopathy (Whelan
et al, 2010; Lynch et al, 2015). Recent experimental and
clinical evidence has suggested that abnormal activation of
immune system may be involved in the process of cardiac
function deterioration (Kawai, 1999; Lynch et al., 2017;
Brayson et al., 2019). Exploring the mechanism of key
immune cells, pathways, and molecules in the
pathophysiological process of cardiomyopathy can help
clarify the special role of the immune system in the

maintenance and imbalance of cardiac function to some
degree, so as to provide potential immunosuppressive
targets for future immunotherapy.

By bioinformatics analyses, GO annotation and KEGG
pathway enrichment analysis of the DEGs in merged dataset
revealed that immune and inflammatory response and
extracellular matrix remodeling play important roles in the
pathogenesis of DCM, such as in myeloid leukocyte migration,
cell chemotaxis, mononuclear cell migration, and extracellular
matrix organization. Immune cell infiltration analysis
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FIGURE 8 | Analysis of the disease predictive abilities of the three selected hub genes (A) ROC curve analysis of three selected hub genes in merged dataset (B)
ROC curve analysis of diagnosis model using the three selected hub genes in merged dataset (C) ROC curve analysis of three selected hub genes in GSE5406 (D) ROC
curve analysis of diagnosis model using the three selected hub genes in GSE5406 (E) ROC curve analysis of three selected hub genes in GSE57338 (F) ROC curve
analysis of diagnosis model using the three selected hub genes in GSE57338.

indicated that the infiltration degrees of CD8" T-cells and ¢cDC
were significantly enriched in DCM samples while Thl cells
and macrophages M1 were in healthy control tissues.
According to PPI network analysis, ten hub genes were
selected as potential biomarkers of DCM. Finally, three
feature immune-related hub genes were identified as
biomarkers by both correlation and logistic analyses with an
excellent AUC score in the merged dataset of 40 DCM
patients and 25 healthy controls. Our novel diagnosis model
of DCM was constructed based on these three feature
molecules and verified in another two datasets GSE5406
and GSE57338. The functions of the three biomarkers were
summarized and displayed in Table 2.

CCL2 (C-C motif chemokine ligand 2, also named as
MCP-1) and CCL5 (C-C motif chemokine ligand 5, also
named as RANTES) are two kinds of CC chemokines and
play dual roles in inflammation and tissue repair. CCL2, the
best studied chemokine, can be released by dendritic cells,

monocytes, macrophages, smooth muscle cells and
cardiomyocytes (Hanna and Frangogiannis, 2020). CCL2
is a potent chemoattractant for activated T lymphocytes and
monocytes as well as a primary activator for macrophages
(Rollins et al., 1988; Rollins, 1997). Previous studies
suggested that CCL2 was upregulated in cardiac injury
and was the key culprit for cardiac disease development
and progression by promoting the infiltration of
mononuclear cells (Hanna and Frangogiannis, 2020).
CCL2 could also protect cardiomyocytes from cell death
by its autocrine effect on cardiomyocytes and paracrine
effect on endothelial cells, which stimulated angiogenesis
(Tarzami et al., 2002; Hong et al., 2005; Tarzami et al.,
2005). CCL5 is known to be a potent chemoattractant for T
lymphocytes, monocytes, eosinophils, and natural killer
cells (Jarrah and Tarzami, 2015). It is released by
endothelial cells, smooth muscle cells, activated T-cells,
macrophages, and so on upon inflammatory stimulus or
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infection (Jarrah and Tarzami, 2015). Although their
function has been well studied on a systemic level, their
role in cardiovascular disease, especially DCM, has not been
fully elucidated.

TLR2 (Toll-like receptor 2) is a pattern-recognition
receptor protein critical for the initiation of the innate
immune system, which recognizes both pathogen-
associated molecular patterns (PAMP) and damage-
associated molecular patterns (DAMP) (Bryant et al,
2015). Besides TLR4, TLR2 is the next most abundant toll-
like receptor in heart tissue (Mann, 2011). The binding of
ligand to TLR2 induces expression of inflammatory cytokines
and chemokines (e.g., IL-1B, TNF-a, CCL2), resulting in an
invasion of macrophages and other inflammatory cells
(Kawasaki and Kawai, 2014). Most of the previous reports
suggested that TLR2 played a detrimental role upon pro-
inflammation (Yu and Feng, 2018). However, other studies
indicated a protective role of TLR2 in aged animals and mice
after transverse aortic constriction surgery (Bualeong et al.,
2016; Spurthi et al., 2018). In our study, we found that TLR2
was downregulated in DCM, which may lead to more
sensitivity of DCM patients to injury stimulus, causing
eventual cardiac dysfunction.

The novelties of our study were as follows. Firstly, we were
the first to use bioinformatics analyses to investigate the
molecular mechanism of DCM from the perspective of
immunity and inflammation. Secondly, we identified that
CCL2, CCL5 and TLR2 could be potential diagnostic
biomarkers of DCM. Nonetheless, there are several
limitations that should not be ignored. First, it cannot be
determined whether there is a cause-and-effect relationship
between  gene  expression  differences and  the
pathophysiological mechanism of DCM or whether it was
just compensatory change. Second, the study was a
retrospective data analysis; thus, detailed clinical and
prognostic profiles, such as the left ventricular eject
fraction and the occurrence of adverse cardiovascular
events in patients with DCM, were absent. This restricted
the further exploration of the key genes about their clinical
features and outcomes. Finally, our study was based on
bioinformatics analyses of transcriptomic data of public
datasets, which may be inconsistent with actual situation.
Further clinical trials are needed to test our findings by
bioinformatics analyses.
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