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Ultrasound-based sensing of muscle deformation, known as sonomyography, has shown
promise for accurately classifying the intended hand grasps of individuals with upper limb
loss in offline settings. Building upon this previous work, we present the first demonstration
of real-time prosthetic hand control using sonomyography to perform functional tasks. An
individual with congenital bilateral limb absence was fitted with sockets containing a low-
profile ultrasound transducer placed over forearm muscle tissue in the residual limbs. A
classifier was trained using linear discriminant analysis to recognize ultrasound images of
muscle contractions for three discrete hand configurations (rest, tripod grasp, index finger
point) under a variety of arm positions designed to cover the reachable workspace. A
prosthetic hand mounted to the socket was then controlled using this classifier. Using this
real-time sonomyographic control, the participant was able to complete three functional
tasks that required selecting different hand grasps in order to grasp and move one-inch
wooden blocks over a broad range of arm positions. Additionally, these tests were
successfully repeated without retraining the classifier across 3 hours of prosthesis use
and following simulated donning and doffing of the socket. This study supports the
feasibility of using sonomyography to control upper limb prostheses in real-world
applications.
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1 INTRODUCTION

Upper limb prostheses are abandoned by users at an astonishing rate despite the significant
functional deficits imposed by the loss of an upper limb (Biddiss E. A. and Chau T. T., 2007).
As much as 98% of users who have rejected a prosthesis believe they are equally or more functional
without one, although 74% of those who have abandoned a prosthesis would reconsider this decision
if improvements were made (Biddiss E. and Chau T., 2007). Consequently, advancements in upper
limb prostheses have focused on addressing predominant user concerns relating to comfort and
functionality (Biddiss E. and Chau T., 2007; Smail et al., 2020). In particular, significant effort has
been dedicated towards enabling intuitive control of multi-articulated prosthetic hands (e.g. (Kuiken
et al., 2009; Weir et al., 2009; Hargrove et al., 2018; Resnik et al., 2018a; Simon et al., 2019; Vu et al.,
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2020b),), which might facilitate improved functional outcomes
(Kuiken et al., 2016; Resnik et al., 2018b).

Prosthetic hands are typically controlled via the electrical
activity of muscle contractions in the residual limb.
Myoelectric systems can record and decode these
electromyographic (EMG) signals to predict a user’s intended
configuration of their prosthetic hand. Grasp prediction relies on
classification algorithms to compare features of incoming EMG
signals to sets of previously-collected EMG signals for known
hand configurations (i.e., supervised learning using training
data). Time-domain or frequency-domain features of the EMG
signals can be used for training and classification, with varying
classification accuracy (Fang et al., 2020). Unfortunately, using
EMG sensors on a large set of individual muscles within the
residual limb is challenging because crosstalk between sensors
restricts the number of independent EMG signals that are actually
available (Vu et al., 2020a). This problem restricts the degrees of
freedom within the hand that may be controlled via EMG
(Graimann and Dietl, 2013). However, a user might require a
rich set of control signals to enable more intuitive control of their
prosthetic hand (e.g., for independent actuation of each degree of
freedom).

Sonomyography (SMG) is an alternative approach for
prosthesis control that relies on ultrasound imaging to sense
muscle deformation within the residual limb during voluntary
movement (Sikdar et al., 2014). Similar to EMG control, SMG
control employs a supervised learning framework, using
classification algorithms to compare features of ultrasound
signals to training data. However, because ultrasound enables
spatiotemporal characterization of both superficial and deep
muscle activity, crosstalk can be avoided. As a result, it is
possible to derive a rich set of prosthesis control signals that
may better account for the independent contributions of
individual muscles. Ultrasound images of forearm muscle
tissue from a single transducer have enough unique
spatiotemporal information for classification algorithms to
differentiate between various hand grasps. For example, we
previously used SMG to identify five individual digit
movements in able-bodied individuals with 97% cross-
validation accuracy (Sikdar et al., 2014) and fifteen complex
hand grasps with 91% cross-validation accuracy (Akhlaghi
et al., 2016). We also found that, with minimal training
required, SMG can identify five grasps for individuals with
upper limb loss with 96% cross-validation accuracy (Dhawan
et al., 2019; Engdahl et al., 2022). Thus, it is not surprising that
SMG is becoming a promising option for hand gesture
recognition and prosthesis control for able-bodied individuals
(Chen et al., 2010; Shi et al., 2010; Yang et al., 2019, 2020) and
individuals with upper limb loss (Zheng et al., 2006; Hettiarachchi
et al., 2015; Baker et al., 2016; Dhawan et al., 2019). However, it is
still unclear if SMG is a practical way to control an upper limb
prosthesis for real-time functional task performance.

There are several reasonable concerns regarding the feasibility
of using SMG to control an upper limb prosthesis in real-world
settings, where classification accuracy can degrade due to a variety
of physiological, physical, and user-specific factors (Kyranou
et al., 2018). For example, ultrasound imaging may inherently

be too sensitive to changes in arm position and socket loading
during task performance. Even minor changes to the imaging
angle can drastically affect an acquired ultrasound image and
cause the classifier to misidentify the user’s intended hand
gesture. Unintended hand movements due to misclassification
may lead to reduced task completion rates, slower task
performance, increased temporal variability, and increased
cognitive load (Chadwell et al., 2021). Thus, grasp
classification must be sufficiently stable under varying arm
positions and loading conditions for the user to consistently
achieve their desired hand grasps throughout the reachable
workspace. Although classification training and testing are
typically performed “offline” to avoid these confounding real-
world factors and optimize signal quality, offline classification
accuracy is not considered an adequate measure of real-time
function (Li et al., 2010; Ortiz-Catalan et al., 2015). Real-time
functional testing with a physical prosthesis is therefore crucial
for demonstrating the viability of SMG as control modality. Some
prior studies involving SMG have successfully implemented real-
time virtual target-tracking tasks (Chen et al., 2010; Dhawan et al.,
2019), as well as real-time control of virtual hands (Castellini
et al., 2014; Baker et al., 2016) or benchtop robotic grippers
(Bimbraw et al., 2020). However, these studies are not sufficient to
demonstrate the viability of real-world prosthetic control
using SMG.

The objective of this study was to investigate whether it is
feasible for an individual with upper limb loss to perform
functional tasks using a prosthesis controlled by SMG.
Acknowledging the potential challenges introduced by
operating a prosthesis in real-time, we examined real-time
performance during tasks that required the user to select
different grasps over a broad range of arm positions. We also
examined the repeatability of task performance over 3 hours of
continuous use and with simulated doffing and donning of the
socket. As part of these investigations, we considered different
classifier training strategies to account for changes to arm
position and socket loading. Additionally, we quantified
differences in the associated ultrasound images to
contextualize classifier performance.

2 METHODS

2.1 Participatory Study Design
We followed a participatory research design involving a single
patient. Participatory research is intended to engage patients as
equal partners with the research team following three primary
principles: co-ownership and shared governance of the
research, innovation by the participants, and giving primacy
to the views of participants (Andersson, 2018). Thus, patients
serve as co-researchers who actively play a role in the entire
research process from study creation to completion, rather
than simply serving as a test subject. Following these
principles, our participant was involved with all stages of
the research process. The participant’s perspective was
extensively involved in establishing the study objectives, as
well as designing and refining the methodology through
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iterative pilot testing. Upon completion of data collection, the
participant also contributed to interpretation of the results and
thus is included as an author.

2.2 Participant
The participant was a 30-year-old female with congenital bilateral
limb absence. Both limbs were affected at the wrist disarticulation
level. The participant reported use of single degree of freedom,
direct control myoelectric prostheses with both limbs for 27 years,
as well as right-hand dominance. The study was reviewed and
approved by the Institutional Review Board at George Mason
University. The participant provided written informed consent to
participate in this study, and to include her data and identifiers in
publications about the study.

2.3 Socket Design and Fit
The participant was fitted with thermoplastic test sockets on both
residual limbs using supracondylar suspension. The sockets
weighed 223 g. A TASKA Hand and Quick Disconnect Wrist
(TASKA Prosthetics, Christchurch, New Zealand) and MC
Standard Wrist Rotator (Motion Control Inc., Salt Lake City,
UT) were mounted to the socket. The left hand was 19.3 cm long
and weighed 567 g. The right hand was 20.4 cm long and weighed
680 g. The wrist rotator was 7 cm long and weighed 149 g. The
batteries and on/off switch weighed 105 g. The resulting
prosthesis was extremely long relative to the participant’s
height (149.86 cm) and residual limb length (20.5 cm for the
right limb and 19.3 cm for the left limb). It was also considerably
heavier than the participant’s clinically-prescribed myoelectric
prostheses, with much of the weight located distally due to the
size of the TASKAHand (Figure 1). The participant reported that
the socket alone was well-fitted over the limb, but when the
components were attached to the distal end of the socket (i.e., the
TASKA Hand, wrist rotator, batteries, and on/off switch), the fit
noticeably deteriorated.

2.4 Ultrasound Imaging
A low-profile, high-frequency, linear 16HL7 ultrasound
transducer weighing 11 g was mounted on the socket via a
custom 3D printed bracket (Figure 1). The transducer was
positioned such that it made direct contact with the volar
surface of the residual limb when the prosthesis was donned
(i.e., over the forearm muscle tissue of the residual limb). We
acquired ultrasound images using a clinical ultrasound system
(Terason uSmart 3200T, Terason, Burlington, MA) and
transferred them to a PC in real-time using a USB-based
video grabber (DVI2USB 3.0, Epiphan Systems, Inc., Palo
Alto, CA). The video grabber digitized the images at 8 bits/
pixel. Using a custom MATLAB script (MathWorks,
Natick, MA), we downscaled the ultrasound images to 100 ×
140 pixels before processing with a classifier, as described below.

2.5 Classifier Training Conditions
We acquired a set of ultrasound images under various training
conditions to be used as training data for a classifier (Table 1).
For each acquisition, we instructed the participant to perform a
forearm muscle contraction corresponding to a desired hand
grasp and maintain this contraction for a specified duration.
We also instructed the participant to perform contractions at a
comfortable level and allowed her to rest between periods of
classifier training to minimize fatigue. Note that the TASKA
hand and wrist rotator were not active during classifier
training.

We used linear discriminant analysis (LDA) classifiers to
predict the user’s desired hand grasp from the acquired
ultrasound training data. While more complex classification
algorithms are possible, LDA classifiers are commonly used
for myoelectric control given their simple implementation,
strong classification performance, and computational efficiency
(Fougner et al., 2011; Geng et al., 2012). As described below, we
considered different classifier training strategies to account for
changes to arm position and socket loading.

2.5.1 Hand Grasps
We trained the classifiers to recognize a set of three intended
hand grasps: tripod grasp, index finger point, and rest. Any
repeatable muscle deformation pattern could be mapped to
these intended hand grasps, therefore we asked the participant
to choose a set of muscle contractions that would be easiest to
perform based on her experience using direct control
myoelectric prostheses. The participant had congenital limb
absence and could not reliably produce tripod grasp or index
finger point, so she instead chose to produce a set of muscle
contractions corresponding to wrist flexion, wrist extension,
and rest (i.e., a relaxed muscle state). Within the classifiers, we
mapped wrist flexion to tripod, wrist extension to point, and
rest to rest.

2.5.2 Socket Loading
The participant reported a deteriorated socket fit when all the
distal components were attached. We therefore conducted
classifier training using two separate loading conditions
(Figure 1). Under the load A training condition, classifier

FIGURE 1 | Classifier training was performed with all distal components
attached during the load A condition and with a weight equal to the
participant’s clinically-prescribed prosthetic hand during the load B condition.
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training was performed with all the distal components
attached to the socket (i.e., the TASKA Hand, wrist
rotator, batteries, and on/off switch). Under the load B
training condition, training was performed without the
TASKA hand and wrist rotator attached to the socket.
However, in this condition we temporarily attached a
weight to the distal end of the socket equal to the weight
of the participant’s clinically-prescribed prosthetic hand
(Transcarpal Hand DMC Plus, Ottobock, Duderstadt,
Germany). The attached weight was designed to make the
resultant socket length approximately similar to the length of
the participant’s clinically-prescribed prosthesis. We
designed this loading condition to approximate the inertial

loading and end-effector distance that the participant
normally experiences using her prostheses.

2.5.3 Arm Position
We considered three classifier training strategies to account for
changes to arm position during real-world prosthesis use
(Figure 2). In the first strategy (i.e., the static training
strategy), we recorded training data for the set of hand grasps
while the participant held her arm still for 5 seconds in seven
different positions. In the second strategy (i.e., the dynamic
training strategy), we recorded training data for the set of
hand grasps while the participant moved her arm for
5 seconds following four prescribed movement patterns. In the

TABLE 1 | All training and testing conditions implemented in this study. Results from offline testing were used to select a subset of training conditions for functional testing.

Training Conditions Testing Conditions

Arm Position Socket Loading Offlinea Short-Termb Three-Hourb Donning/Doffingb

Static Load A Right arm – – –

Load B Right arm Right arm – –

Dynamic Load A Right arm – – –

Load B Right arm – – –

Continuous Dynamic Load A – Right arm – –

Load B – Both arms Both arms Both arms

aOutcome measures: Classification accuracy; SSIM.
bOutcome measures: Test scores; Number of transient bouts; Percent of frames classified as point.

FIGURE 2 |We imposed discrete arm positions andmovement patterns during classifier training (shown here relative to the left arm). During the static condition, the
participant held her hand for 5 seconds within seven different positions designed to cover a majority of the reachable workspace. During the dynamic condition, the
participant moved her hand for 5 seconds between these positions in four different movement patterns. We also considered a continuous dynamic condition, in which
the participant moved her hand throughout all positions during a single 20-sec movement pattern. The names of each position and pattern were based on a
functional activity for that arm configuration. Corresponding positions and movement patterns were also established relative to the right arm (i.e., flipped horizontally).
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third strategy (i.e., the continuous dynamic training strategy), we
recorded training data for a set of hand grasps while the
participant moved her arm through all seven positions in a
pre-defined 20-sec movement pattern. We chose this approach
to minimize the total training time required and to reduce the
potential impact of extraneous arm motion between data
collection periods.

We used a naming convention for the seven arm positions and
four movement patterns to make it easier for the participant
quickly recognize and perform the requested action. The names
were selected based on a functional task related to each position
or pattern. The seven arm positions for the static training strategy
were chosen to cover the majority of the reachable workspace:

1) Ipsilateral Countertop: as if reaching for an object located in
front of and ipsilateral to the body at waist height

2) Midline Countertop: as if reaching for an object located
directly in front of the body at waist height

3) Contralateral Countertop: as if reaching for an object located
in front of and contralateral to the body at waist height

4) Ipsilateral Bookshelf: as if reaching for an object located in
front of and ipsilateral to the body at head height

5) Midline Bookshelf: as if reaching for an object located directly
in front of the body at head height

6) Contralateral Bookshelf: as if reaching for an object located
in front of and contralateral to the body at head height

7) Drinking Glass: as if reaching for an object located directly in
front of the body at sternum height

To maintain consistency between trials, the positions were
defined relative to the participant’s anatomy and displayed on a
wall in front of the participant at about an arm’s length away
(Supplementary Figure S1).

The four prescribed movement patterns for the dynamic
training strategy were chosen to cover the seven arm positions:

1) Countertop Wipe: moving from Contralateral Countertop to
Midline Countertop to Ipsilateral Countertop in one fluid
motion

2) Lawnmower: moving from Contralateral Countertop to
Drinking Glass to Ipsilateral Bookshelf in one fluid motion

3) Sliding Glass Door: moving from Contralateral Bookshelf to
Midline Bookshelf to Ipsilateral Bookshelf in one fluid motion

4) Drawing Blinds: moving from Contralateral Bookshelf to
Drinking Glass to Ipsilateral Countertop in one fluid motion

The continuous dynamic training strategy was defined as a
combination of the four movement patterns from the dynamic
training strategy. However, the direction of the Countertop Wipe
and Sliding Glass Door movement patterns were reversed so that
the combined patterns could be performed continuously.

2.6 Offline Classification Performance
Before performing any real-time functional testing of the SMG-
controlled prosthetic hand, we first examined the offline
performance of classifiers using our different training

strategies to account for socket loading and changes in arm
positions.

2.6.1 Training and Testing Data Collection
For a given set of training strategies, we collected classifier
training and testing data during a single session. Two repeated
sets of muscle contractions were collected for the set of hand
grasps during each arm position or movement pattern. For
example, under the load A training condition using the static
training strategy, we collected two sets of ultrasound images over
two 5-sec collection periods for muscle contractions
corresponding to tripod, point, and rest for each of the seven
static arm positions. Note that for our offline testing, we only
considered the static and dynamic training strategies and did not
consider the continuous dynamic training strategy.

The order of the selected hand grasps and arm positions or
movement patterns were randomized. To avoid including any
transient motion at the start of the recording, we instructed the
participant to assume their initial arm position and then
provided two audio cues (i.e., beeps). The first beep notified
the participant that their prescribed arm motion would start in
3 seconds (i.e., a preparatory period). The second beep occurred
3 seconds later to notify the participant to initiate the prescribed
arm motion (e.g., by holding their arm still for static training
sessions or by moving their arm for dynamic training sessions).
Ultrasound images were recorded at the end of the preparatory
period and continued for 5 seconds, during which the
participant maintained the requested muscle contraction.
After the data collection session, data for two repeated sets of
muscle contractions were randomly assigned as either classifier
training data or classifier testing data.

2.6.2 Offline Classification Accuracy Calculation
For a given set of training strategies, we built a series of LDA
classifiers to predict a user’s desired hand grasp from the
designated training data. For sessions using the static training
strategy, we built seven classifiers using training data from each of
the seven static positions individually and an eighth classifier
from all seven static positions collectively. Similarly, for sessions
using the dynamic training strategy, we built four classifiers using
training data from each of the four dynamic movement patterns
individually and a fifth classifier from all four dynamic patterns
collectively.

We then calculated classification accuracy by inputting the
designated testing data from each static position or dynamic
movement pattern into the relevant classifier. This process
generated a predicted grasp for each frame of testing data,
which could be compared to the true grasp. Note that because
the participant held only one grasp when recording a given
dataset, the true grasp was the same for each frame in that
dataset. Finally, classification accuracy was calculated by
summing the number of correctly-predicted frames and
dividing by the number of total frames in the dataset:

classification accuracy (%) � ncorrect predictions

ntotal predictions
*100
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Note that although data was collected for 5 seconds for both
the static and dynamic training strategies, the total number of
frames fluctuated between 57 or 58 across datasets.

2.6.3 Characterizing Similarity of Ultrasound Images
We used the Structural Similarity Index (SSIM) to quantify
differences in the ultrasound images acquired during
classifier training. SSIM quantifies the similarity between
two images by decomposing them into luminance,
contrast, and structure components, which are compared
separately between the two images. A final value between
-1 and 1 is then computed as an index of similarity, where 1
represents perfect similarity. Given two images A and B, the
index is defined as

SSIM(A,B) � [l(A,B)]α*[c(A,B)]β*[s(A,B)]γ

where l(A, B), c (A, B), and s(A, B) are the luminance, contrast,
and structure components. The components are defined as

l(A, B) � 2μAμB + C1

μ2A + μ2
B + C1

c(A,B) � 2σAσB + C2

σ2
A + σ2

B + C2

s(A,B) � σAB + C3

σAσB + C3

where μA, μB, σA, σB, and σAB are the local means, standard
deviations, and cross-variance, and constant C3 � C2/2. The
exponents are used to adjust the relevance of each component
and were defined as α � β � γ � 1. To provide context to a
calculated SSIM value, we determined the similarity of
ultrasound images due to chance was 0.229. We determined
the similarity due to chance as the average SSIM between 100
randomly generated ultrasound images (i.e., 4,950 unique
comparisons). Each image was generated using random image
intensity values from a Rayleigh distribution (σ � 0.101)
matching a representative ultrasound image of forearm muscle
tissue.

To understand the consistency of ultrasound images for
repeated conditions, we assessed the similarity of the
ultrasound images for the two sets of contractions collected
using the same classifier training strategies and hand grasp.
Similarly, to understand the uniqueness of ultrasound images
for differing hand grasps, we assessed the similarity of
ultrasound images for two sets of contractions collected
using the same classifier training strategies but different
hand grasps. For all these comparisons, we calculated the
SSIM within each frame of their 5-sec training periods. We
then used a t-test to compare the average SSIM values between
images using the same hand grasp and images using different
hand grasps.

2.7 Real-Time Functional Performance
After offline classification testing, we conducted real-time
functional testing using SMG to control the TASKA hand.
Commands for the predicted hand grasp were delivered to the
TASKA hand via Bluetooth. During functional testing, the MC

Standard Wrist Rotator was fixed in place such that hand
pronation or supination could not be controlled.

2.7.1 Classifier Training
We collected a new set of training data to build classifiers for
functional testing. We selected classifiers using different
training strategies based on our evaluation of offline
performance. By considering a smaller set of classifiers
during functional testing we hoped to reduce the user’s
burden of repeated functional testing under separate classifier
strategies (e.g., to reduce fatigue). For the functional testing that
involved classifiers trained using the static strategy, we included
training data from all seven positions collectively. We also used
a classifier built from training data collected using the
continuous dynamic strategy. The functional tests were
conducted immediately after training the relevant classifier
(i.e., we did not train all classifiers before beginning the
functional testing). Note that the TASKA hand was not
attached when collecting training data during the load B
training condition. However, the TASKA hand and related
components were reattached to complete the functional testing.

FIGURE 3 | The TASKA hand was configured to include tripod grasp,
index finger point, and rest. Each grasp was initiated in response to a different
muscle activation pattern, including wrist flexion for tripod, wrist extension for
point, and a relaxed muscle state for rest. Representative ultrasound
images are included for each muscle activation pattern.
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2.7.2 Prescribed Prosthetic Hand Grasps
We configured the TASKA hand to perform the three grasps
executed in classifier training, including tripod, point, and rest
(Figure 3). We chose to implement these three grasps because
only two of the grasps would be needed to perform the
functional tests (tripod and rest) and one of the grasps
would not be helpful (point). Each grasp was defined to be
a discrete configuration of the thumb and fingers on the
TASKA hand, such that a trained classifier initiated the
TASKA hand to assume that configuration (i.e., the
position and velocity of the thumb and fingers during
grasp transitions were set in advance and not controlled by
the classifier or participant). Thus, a participant could
physically implement a grasp by activating their muscles in
a manner that enabled the classifier to identify the desired
grasp based on the ultrasound image of muscle deformation.
We defined the rest grasp such that the thumb, index, and
middle fingers of the TASKA hand were partially extended
and the ring and little fingers were in a closed position
(Figure 3). We used this definition to prevent the ring and
little fingers from inadvertently moving blocks out of their
designated rows during the targeted Box and Blocks Test, as
described below. For consistency, we used this definition of
rest grasp during all three functional tests.

2.7.3 Functional Tests
We instructed the participant to perform three functional tests
involving grasping and moving one-inch wooden blocks. Each
functional test included a quantifiable score related to completion
speed. We also recorded the participant’s performance with a
video camera. Although the primary purpose was to ensure
accurate quantification of the test scores, we also used
comparisons of the recorded video for a general observational
analysis of functional performance.

Additionally, we calculated two outcome measures to
characterize the efficiency of grasp selection. First, we
counted the “number of transient bouts” during each test. A
transient bout was defined as an instance when the classifier
predicted a grasp for less than five consecutive frames. Note
that a transient bout does not necessarily indicate that a
predicted grasp was misclassified, as it is possible for a user
to select a grasp for a brief period (i.e., <5 frames) if desired.
However, given the relatively slow, pick-and-place nature of
each functional test, we consider it unlikely that a user would
deliberately choose to switch grasps that quickly. This outcome
measure thus serves as an indirect indicator of a classifier’s
ability to predict a user’s intended grasp. Second, we quantified
the percent of all frames that were classified as point during
each functional test. Although point was not a helpful grasp
during functional testing, we included it in the repertoire of
available grasps so that we might examine a participant’s
ability to select a desired grasp from a set of grasps. Because
the participant should not be selecting point to accomplish the
functional tasks, these instances of point also served as an
indirect indicator of a classifier’s ability to predict a user’s
intended grasp. Note that classification of point during a
functional test does not necessarily indicate that a predicted

grasp was misclassified, but we consider it unlikely for a user to
voluntarily select this grasp when attempting to hold a block.

2.7.3.1 Box and Blocks Test
The Box and Blocks Test (BBT) is a common measure of gross
manual dexterity (Mathiowetz et al., 1985). The set-up consists
of two 10-inch square compartments separated by a six-inch-
tall partition (Figure 4). The compartment on the side of the
arm being tested is filled with 150 one-inch wooden blocks,
which are mixed such that the blocks rest in many different
orientations. The test is scored by the number of blocks
transported over the partition in 1 minute. Subjects may
transport the blocks in any order as long as their fingertips
cross the partition before releasing the block into the opposite
compartment. The BBT apparatus was placed on a table set to
10 cm below the participant’s right anterior superior iliac
spine. The apparatus was positioned 4 cm from the
proximal edge of the table with the box partition aligned
with the participant’s midline.

2.7.3.2 Targeted Box and Blocks Test
The Targeted Box and Blocks Test (tBBT) is a modified version
of the BBT involving only 16 blocks (Kontson et al., 2017). The
blocks are placed in a four-by-four grid in the compartment on
the side of the arm being tested (Figure 4). The blocks are
numbered 1 to 16, beginning with the innermost block on the
bottom row and moving across each row. Subjects must
transport the blocks between the compartments in
numbered order. Each block must be placed in its mirrored
position in the other compartment. The test is scored by the
time required to transport all 16 blocks. The tBBT was
performed on the same table as the BBT with the apparatus
placed in the same position described previously. Note that we
made a minor modification to the tBBT apparatus by removing
both compartments’ outer walls (Figure 4). Because of the
large size of the TASKA Hand, it collided with the walls when
the participant attempted to manipulate blocks located near
the edge of the compartment. Since this study was intended to
demonstrate the feasibility of using prostheses controlled by
SMG during functional tasks, we felt it was appropriate to
remove the walls so that the tBBT could be completed more
easily.

2.7.3.3 Rainbow Test
The Rainbow Test was developed for this study to evaluate
grasp control over a wider variety of arm positions than is
required by the BBT or tBBT (Figure 4, Supplementary
Figure S2). A series of 14 squares were marked on a
magnetic whiteboard following an approximate arch shape.
One-inch magnetized blocks with magnets attached were
placed inside each square. We instructed the participant to
transport each block from the whiteboard to a collection box
placed at waist height along the midline of the body. Blocks
were transported in a designated order, beginning with the
bottom blocks on the side ipsilateral to the prosthesis and
continuing up each column. The test was scored by the time
required to transport all blocks.
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2.7.4 Repeatability of Functional Performance
To assess whether the participant could repeatedly perform
functional tasks using an SMG-controlled prosthetic hand,
real-time functional performance was assessed for three
separate scenarios:

1) Short-term testing: The participant trained a classifier and
performed the set of three functional tests in random order.
The participant then repeated the set of three functional
tests (presented in a new random order) for a second and
third time without retraining the classifier.

2) Three-hour testing: The participant trained a classifier and then
wore the socket for 3 hours. Every 30 min, the participant
performed the set of three functional tasks in random order.

During each break between the functional testing, the TASKA
hand was turned off and the participant was able to move freely
and perform normal daily activities. Although the TASKA
Hand could not be actively controlled during breaks, it
could still be used for passive object manipulation. The
participant performed pre-defined tasks during each break
(Table 2), which were staggered to require increased arm
movement and socket loading over time. For this testing
scenario, we used a linear regression model to reveal any
changes to the outcome measures over this 3-h period.

3) Simulated donning/doffing: The participant trained a classifier
and performed the set of three functional tests in random
order. Next, the ultrasound transducer was removed and
replaced to simulate donning/doffing of the socket. The

FIGURE 4 | The three functional tasks included the Box and Blocks Test, the Targeted Box and Blocks Test, and the Rainbow Test.

TABLE 2 | Activities performed during each break in the 3-h testing. All activities were performed with the arm wearing the sonomyographic prosthesis. The clinically-
prescribed myoelectric prosthesis was worn on the contralateral arm for the bimanual activities. The TASKA hand was not turned on during these breaks, but the
participant was able to passively manipulate objects using the hand.

Interval Activities

0–30 min • Typing on a keyboard
• Short walks while allowing natural arm swing

30–60 min • Typing on a keyboard
• Short walks while allowing natural arm swing

60–90 min • Typing on a keyboard
• One-minute walk while allowing natural arm swing
• Bending over as if to pick up a dropped object (1x)

90–120 min • Typing on a keyboard
• Three-minute walk while allowing natural arm swing, including going up and down one flight of stairs

120–150 min • Typing on a keyboard
• Bimanual lift of light (205 g) box from ground to shelf at head height (3x)
• Bimanual lift of heavy (1.059 kg) box from shelf at waist height to shelf at head height (3x)
• Writing on whiteboard with three columns of text aligned to the midline, ipsilateral shoulder, and contralateral shoulder

150–180 min • Typing on a keyboard
• Pushed door open (3x)
• Pulled door closed (3x)
• Pushed a 17.87 kg cart up and down hallway for a total of 60 feet, including turn one turn half (3x)
• Picked up 1.86 kg bucket vertically from the ground (3x)
• Carried 1.31 kg bag for 30 s with elbow flexed to 90°
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participant then repeated the set of three functional tests in
random order without retraining the classifier.

2.8 System Latency
End-to end system latency was approximated as the delay
between the onset of volitional finger flexion in an individual
without limb loss and the corresponding onset of finger flexion on
the TASKA hand. We manually identified the start of each
movement based on the acceleration signals (Supplementary

Figure S3), and these time differences were averaged over 5
cycles. The resulting value encompasses latency associated with
data acquisition, data transfer, processing, and communication
with the TASKA Hand via Bluetooth.

We also calculated the processing latency for the MATLAB-
based classification algorithmusing all datasets recorded during real-
time functional testing (see Section 2.7). The difference in successive
timestamps were averaged across all files to compute the processing
latency. Lastly, we computed the classification throughput as the

FIGURE 5 | Classification accuracy (%) for the right arm when training and testing each of the static arm positions individually and from all static arm positions
collectively during the load A and load B training conditions. Values shown in the main diagonal represent the intraposition classification accuracies, while the off-diagonal
values represent the interposition classification accuracies.
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number of predictions divided by the total elapsed time, based on the
real-time functional testing datasets (see Section 2.7).

3 RESULTS

3.1 Offline Classification Performance
We collected offline classification testing data for the right arm
only. We collected enough data to evaluate both the static and

dynamic training strategies for the load A and the load B
conditions.

3.1.1 Classification Accuracy
We found that both the static training strategy (Figure 5) and the
dynamic training strategy (Figure 6) could account for changes to
arm position when predicting hand grasps during offline testing.
However, offline classification accuracy was generally higher for
the classifiers trained using the dynamic strategy than the static

FIGURE 6 | Classification accuracy (%) for the right arm when training and testing each of the dynamic movement patterns individually and from all dynamic
movement patterns collectively during the load A and load B training conditions. Values shown in the main diagonal represent the intrapattern classification accuracies,
while the off-diagonal values represent the interpattern classification accuracies.
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FIGURE 7 | For the static training strategy, we found that ultrasound images collected using the same hand grasp (i.e., repeated trials) were more similar to each
other than ultrasound images collected using different hand grasps (i.e., different trials). The Structural Similarity Index (SSIM) was calculated for each image frame of the
respective 5-sec training period.
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strategy. We also observed that offline classification accuracy was
generally higher for classifiers trained under the load B condition
compared to the load A condition.

During static testing, a classifier trained using all seven armpositions
yielded the highest offline classification accuracy (load A: 95.3 ± 12.4%,
load B: 100.0 ± 0.0%) compared to classifiers trained using a single arm
position. Moreover, the average interposition classification accuracy
(loadA: 64.7 ± 25.6%, load B: 85.4 ± 20.3%) was lower compared to the
average intraposition classification accuracy (load A: 92.2 ± 13.6%, load
B: 100.0 ± 0.0%) for both loading conditions.

During dynamic testing, a classifier trained using all four
movement patterns also had very high classification accuracy
(load A: 99.9 ± 0.3%, load B: 100 ± 0.0%) compared to classifiers

trained using single movement patterns. Notably, we observed 100%
classification accuracy for every classifier trained using a single
movement pattern under the load B training condition, as well as
for the classifier trained using only the Lawnmower movement
pattern under the load A training condition. Additionally, the
average interposition classification accuracy (load A: 96.7 ± 6.7%,
load B: 100.0 ± 0.0%) was lower compared to the average
intraposition classification accuracy (load A: 99.7 ± 0.6%, load B:
100.0 ± 0.0%) for both loading conditions.

3.1.2 Similarity of Ultrasound Images
Ultrasound images collected using the same hand grasps were
more similar (i.e., a higher SSIM value) than ultrasound images

FIGURE 8 | For the dynamic training strategy, we found that ultrasound images collected using the same hand grasp (i.e., repeated trials) were more similar to each
other than ultrasound images collected using different hand grasps (i.e., different trials). The Structural Similarity Index (SSIM) was calculated for each image frame of the
respective 5-sec training period.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 87683612

Engdahl et al. Functional Task Performance Using Sonomyography

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


collected using different hand grasps. This was true for images
collected using both a static training strategy (Figure 7) and a
dynamic training strategy (Figure 8). For example, images
collected while using the same hand grasp during static
training yielded an average SSIM of 0.800 ± 0.018 for load A
and 0.806 ± 0.017 for load B. Images collected while using
different hand grasps during static training yielded a
significantly lower average SSIM of 0.759 ± 0.008 for load A
(−5.1%, p < 0.001) and 0.759 ± 0.012 for load B (−5.9%, p <
0.001). Further, the images collected while using the same hand
grasp during dynamic training yielded an average SSIM of
0.815 ± 0.015 for load A and 0.831 ± 0.013 for load B.
Images collected while using different hand grasps during
dynamic training yielded a significantly lower average SSIM
of 0.764 ± 0.010 for load A (−6.3%, p < 0.001) and 0.778 ± 0.007
for load B (−6.4%, p < 0.001).

In addition, we observed that the difference between SSIM values
using the same hand grasp and SSIM values using different hand

grasps were more pronounced when using a dynamic training
strategy compared to a static training strategy (i.e., the dynamic
training could better differentiate images collected using the same
hand grasp from images collected using different hand grasps). The
average difference for SSIM values using a dynamic training strategy
(load A: 0.0516 ± 0.0180; load B: 0.0532 ± 0.0162) were significantly
higher than the average difference for SSIM values using a static
training strategy (load A: 0.0403 ± 0.0183, p < 0.001; load B: 0.0475 ±
0.0223, p < 0.001).

We also observed that the SSIM values calculated for load A
were more variable than the SSIM values calculated for load B.
The average standard deviation for the SSIM values using the
dynamic training strategy for load A (0.0074 ± 0.0034) was
significantly higher than the average standard deviation for
load B (0.0039 ± 0.0015, p < 0.001). However, the average
standard deviation for SSIM values using the static training
strategy were not significantly different between load A
(0.0040 ± 0.0020) and load B (0.0036 ± 0.0017).

FIGURE 9 | Functional outcome measures achieved during short-term testing. Testing with the left arm was completed using a classifier trained with a continuous
dynamic strategy under the load B condition. Repeated testing with the right arm used continuous dynamic classifiers under the load A and load B conditions, as well as a
static classifier under the load B condition (BBT = Box and Blocks Test; tBBT = Targeted Box and Blocks Test).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 87683613

Engdahl et al. Functional Task Performance Using Sonomyography

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


3.2 Real-Time Functional Performance
3.2.1 Short-Term Testing
The participant successfully completed the short-term testing
using both her left and right arms (Figure 9). Based on our
evaluation of offline performance, we chose to conduct testing for
the left arm using a classifier trained using only a continuous
dynamic strategy under the load B condition. However, testing for
the right arm included classifiers trained using a continuous
dynamic strategy under both the load A and load B
conditions, as well as a classifier trained using a static strategy
under the load A condition.

Test scores for the left arm were relatively consistent across the
three rounds of functional testing with the left arm (BBT: 16.7 ±
2.3 blocks, tBBT: 53.4 ± 2.7 s, Rainbow: 49.7 ± 4.0 s). No frames
were ever classified as point, but there were some transient bouts
(BBT: 12.0 ± 4.6 bouts, tBBT: 10.3 ± 5.9 bouts, Rainbow: 8.7 ± 2.3
bouts).

For the right arm, outcome measures were generally better
when using a continuous dynamic training strategy than when
using a static training strategy. For example, the participant
moved more blocks on average during BBT for the continuous
dynamic classifiers (load A: 22.0 ± 2.0 blocks, load B: 25.7 ± 1.2
blocks) than for the static classifier (load B: 17.7 ± 4.2 blocks).
Completion times were also faster during tBBT for the continuous
dynamic classifiers (load A: 40.0 ± 1.1 s, load B: 44.6 ± 0.5 s) than
for the static classifier (load B: 62.5 ± 7.0 s). Similarly, the
completions times were faster during the Rainbow test for the
continuous dynamic classifiers (load A: 36.4 ± 1.1 s, load B: 39.3 ±
1.8 s) than the static classifier (load B: 69.3 ± 16.5 s). The mean
number of transient bouts across all three rounds of functional
testing were lower for the continuous dynamic classifiers (load A:
4.4 ± 6.8 bouts, load B: 3.0 ± 4.4 bouts) than for the static classifier
(load B: 26.0 ± 10.2 bouts). Similarly, the mean percent of frames
classified as point across all three rounds of functional testing
were lower for the continuous dynamic classifiers (load A: 0.0 ±
0.1%, load B: 0.0 ± 0.1%) than for the static classifier (load B:1.4 ±
2.5%). However, these two metrics for the continuous dynamic
classifier were generally similar between the load A and load B
training conditions.

Observational analysis of functional testing yielded additional
insights not captured by the quantifiable outcome measures. We
observed that control of the prosthetic hand when using the static
classifier was extremely sensitive to changes in arm position, as
there were many instances where the hand closed to tripod grasp
at improper times (Supplementary Videos S1–S3). When this
occurred, the participant needed to slightly change her overall
arm position to help the classifier identify a rest state and allow
the hand to open. This behaviour created difficulties with both
grasping and releasing blocks, especially during the Rainbow test
when a wide range of arm positions were required. In contrast,
the participant retained excellent control over the hand’s
behaviour when using a continuous dynamic classifier,
regardless of arm position (Supplementary Videos S4–S6).

3.2.2 Three-Hour Testing
The participant successfully completed the 3-h testing using both
her left and right arms (Figure 10). Based on our evaluation of

offline performance, we chose to only conduct testing with
classifiers trained using a continuous dynamic strategy under
the load B condition.

Our regression models revealed that although the outcome
measures fluctuated slightly over time, they remained relatively
stable as the participant actively moved her arm between testing
intervals (Supplementary Table S1). However, the number of
blocks moved during BBT with the left arm showed a small
improvement over time (p = 0.038). Similarly, the completion
time during tBBT with the right arm also slightly decreased over
time (p = 0.011). We also observed there was a small increase in
the number of transient bouts during the Rainbow test with the
left arm (p = 0.027).

3.2.3 Simulated Donning/Doffing
The participant successfully completed the simulated donning/
doffing using both her left and right arms (Table 3). Similar to the
3-h testing, we chose to only conduct testing with classifiers
trained using a continuous dynamic strategy under the load B
condition.

Changes in the outcome measures following transducer
removal and replacement were minimal. The BBT scores for
both arms increased by 1-3 blocks after the transducer was
replaced, while the number of transient bouts and percent of
frames classified as point decreased for the right arm only. The
outcome measures did not consistently increase or decrease for
tBBT and Rainbow. Completion times changed by 0.3–1.4 s, the
number of transient bouts changed by 0–2 bouts, and the percent
of frames classified as point changed by 0–0.5%.

3.3 System Latency
The average end-to-end latency (including data acquisition, data
transfer, processing, and communication with the TASKA Hand
via Bluetooth) was approximated as 532 ± 102 ms, while the
latency for data transfer and the classification algorithm
processing was 89.3 ± 8.4 ms. Classification throughput was
measured to be 10.81 ± 0.12 predictions/sec.

4 DISCUSSION

In this study, we report the first demonstration of an individual
with upper limb loss using a prosthetic hand controlled by
sonomyography (SMG) to perform functional tasks in real-
time. We found that our participant could successfully
complete three functional tasks that required selecting
different hand grasps over a broad range of arm
configurations. Additionally, the participant successfully
repeated these tasks throughout 3 hours of use, as well as after
removing and reattaching the ultrasound transducer. We also
found evidence that training a classifier to predict hand grasps
while moving the arm throughout the reachable workspace is a
practical strategy for reducing misclassification related to
changing arm position. This study supports the feasibility of
using SMG to control upper limb prostheses in real-world
applications, which ultimately may enable more intuitive
control of multi-articulated prosthetic hands.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 87683614

Engdahl et al. Functional Task Performance Using Sonomyography

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


4.1 Real-Time Functional Performance
Real-time classification requires users to repeatably produce
muscle contractions that are consistent with the signals used to

train the classifier, and deviations in these contractions may
cause the classifier to misidentify a user’s intended hand gesture.
However, using a prosthesis in real-world settings involves

FIGURE 10 | Functional outcome measures achieved during 3-h testing. Testing with both arms was completed using a classifier trained with a continuous
dynamic strategy under the load B condition (BBT = Box and Blocks Test; tBBT = Targeted Box and Blocks Test).

TABLE 3 | Functional outcome measures achieved during simulated donning/doffing. Testing with both arms was completed using a classifier trained with a continuous
dynamic strategy under the load B condition (BBT = Box and Blocks Test; tBBT = Targeted Box and Blocks Test).

Test Scores Number of Transient Bouts Percent of Frames Classified as Point

Number of Blocks
BBT Left Before removal 21 8 0

After replacement 22 8 0
Right Before removal 23 1 1

After replacement 26 0 0
Time (seconds)

tBBT Left Before removal 40.9 0 0
After replacement 42.2 0 0

Right Before removal 43.9 0 0
After replacement 43.6 0 0

Rainbow Left Before removal 37.4 2 0
After replacement 36.8 0 0

Right Before removal 39.7 6 1.12
After replacement 38.3 5 1.62

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 87683615

Engdahl et al. Functional Task Performance Using Sonomyography

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


complications that can degrade classification accuracy, such as
muscle fatigue, muscle atrophy, fluctuating residual limb
volume, perspiration (i.e., changes in electrode conductivity),
changes in arm position, electrode shift, socket loading, and user
adaptation or learning (Kyranou et al., 2018). Signal variability
can consequently lead to classification failures and
unpredictable behavior of a prosthetic hand, making it more
challenging to use. Real-time functional testing with a physical
prosthesis is therefore an essential step in the development and
refinement of new control modalities. To this end, we are the
first to show it is possible for individuals with upper limb loss to
perform real-time functional tasks using an SMG-controlled
prosthesis.

Our findings demonstrated that SMG could enable repeated
completion of functional tests over a short-term testing period
and over a 3-h testing period. For example, we demonstrated
that a short 20-sec training sequence (per hand grasp) was
sufficient to enable three consecutive hours of functional
performance without retraining the classifier. Most
functional outcomes were relatively stable throughout this
period, although they improved with time in some cases
(possibly via a learning effect). Interestingly, the number of
transient bouts increased in one case, perhaps suggesting a
decrease in classification accuracy that ultimately did not
prevent completing the tasks.

We also found evidence that removal and replacement of the
transducer between sequential tests minimally impacted real-
time performance. Although more extensive testing is required,
this finding may suggest that SMG classifiers may remain stable
after doffing and redonning the socket. We chose to simulate
donning and doffing for this feasibility study because
performing these actions was uncomfortable and difficult for
the participant to do. Additionally, the thermoplastic test
sockets included a 3D printed bracket to hold the transducer
and were not optimized to withstand repeated donning or
doffing. However, sensor systems in clinical prosthesis
sockets are permanently embedded. Thus, we believe effects
of donning and doffing would be more appropriately explored in
the future using a more robust socket design with permanently
embedded transducers.

The three functional tests selected for this study required
accurately selecting hand grasps over a broad range of arm
positions. It should be noted that we developed the Rainbow
test for this study, so it is not a previously established test of
functional performance. We sought to examine functional
performance over a user’s reachable workspace, but were
unable to identify an established functional test with overhead
and lateral reaching that we could easily incorporate. Because we
did not include control of wrist rotation or flexion in our design,
we were preventing from using established reaching tasks that
require these actions, such as the Clothespin Relocation Test
(Hussaini and Kyberd, 2017) or the Cubbies Task (Kuiken et al.,
2016). Nonetheless, we were pleased to find our participant could
complete the Rainbow test, as it involves manipulating small
blocks with over a large range of arm movement. We encourage
future studies to refine and implement the Rainbow test as an
accessible measure of functional performance.

This study utilized a relatively simple hardware set-up to
implement SMG control. As such, the participant was tethered
to a tablet-based commercial ultrasound system that could not
easily be transported. Further, we used a simple array transducer
along with an LDA classifier that examined only single ultrasound
images. We expect to see even better real-world performance
when using a system optimized for SMG control that allows a user
to move freely outside of a laboratory setting. In particular, we are
encouraged by emerging technology involving single-element
ultrasound transducers with miniaturized, low-power
electronics that can be spatially distributed throughout a
standalone prosthesis socket (Yang et al., 2019). We have
previously shown that offline classification accuracy is not
impacted by a sparse sensing approach (Akhlaghi et al., 2019),
and anticipate this to be feasible for real-time testing in
individuals with limb loss.

Another consequence of our simple hardware
implementation was the considerable data processing latency
between muscle contraction and resulting movement of the
TASKA hand. The delay is largely attributable to our method for
transferring the acquired ultrasound images to the classifier
(i.e., using a USB-based video grabber to transfer images
between the ultrasound system and the computer running
MATLAB), combined with Bluetooth transmission from the
computer to the TASKA hand. The participant reported
noticing the latency and attempting to compensate for it
during task performance, although we cannot quantify how
successfully she was able to do this. For example, when she
attempted to transition from rest to tripod, it was difficult for her
to recognize whether the absence of immediate hand movement
resulted from inherent system latency or actual
misclassification. Further, we cannot quantify any small
corrections she made to prompt the hand to move, such as
changing arm positions or alternating between a relaxed and
contracted muscle state (which might be detected as transient
classification bouts). Thus, it is possible that our simple
hardware implementation could have imposed a cognitive
burden that slowed task completion times.

We acknowledge that the current system latency is
nonoptimal. Based on our analysis, the time taken for data
transfer and classification was only ~16.7% of the total latency.
Thus, the majority of the latency can be attributed to the latency
for Bluetooth communication with the TASKA hand. We believe
SMG-based prosthesis control will become more practical with
continued hardware refinement and a hardwired communication
with the TASKA hand. We are creating a more optimized
implementation of SMG control using an integrated system,
which we anticipate will have reduced data processing latency.
The data acquisition latency can be reduced below 20 ms with a
frame rate exceeding 50 frames/sec, as well as a communication
and data transfer latency less than 10 ms. Thus, the overall latency
will be under 125 ms, which has been reported as an optimal
controller delay (Farrell and Weir, 2007).

4.2 Accounting for Changes in Arm Position
Importantly, our training strategies helped mitigate the effect
of changing arm position. Arm position is a particularly
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concerning factor that may influence SMG signal variability
because an individual’s arm position is biomechanically
coupled to their forearm muscle activity. Users can recruit
different combinations of muscles with varying force to
counteract gravity and stabilize their arm in a particular
orientation (Liu et al., 2014; Kyranou et al., 2018).
Moreover, the shape and length of muscles in the residual
limb can change depending on the joint angles of the entire
arm (Fougner et al., 2011) and the compressive forces acting on
the residual limb within the prosthesis socket (Hwang et al.,
2017). Arm position not only impacts the relative position of
muscles beneath skin-mounted sensors, but can also affect the
contact force of sensors mounted within a socket (Stavdahl
et al., 2020). This may be especially problematic for SMG
control because any transducer shifting or change in contact
force can drastically affect the imaging angle and thus the
acquired ultrasound image. For these reasons, classification in
an SMG-controlled prosthesis must be sufficiently robust
under varying arm positions to achieve real-time functional
performance.

Our strategies for training classifiers to account for changes
to arm position were based on prior investigations of EMG-
controlled upper limb protheses. For example, we
implemented the established approach of recording training
data from a variety of static arm positions (i.e., a static training
strategy), which has consistently been shown to mitigate
classification error for EMG-controlled systems when
compared to using a single static arm position (Chen et al.,
2011; Fougner et al., 2011; Scheme et al., 2011; Geng et al.,
2012; Jiang et al., 2013; Khushaba et al., 2014, 2016; Liu et al.,
2014; Hwang et al., 2017). However, we found this approach to
be lengthy and fatiguing for the user, especially when a large
number of arm positions are included (e.g., to cover the
entirety of the user’s reachable workspace). Prosthesis users
may tolerate such an approach in real-world settings if
retraining is needed within or between days. Thus, we also
chose to implement a second approach of generating training
data during arm motion through a sequence of predefined
positions (i.e., a dynamic training strategy). Prior studies of
EMG control have found evidence that dynamic arm motions
may reduce training time while also accounting for a variety of
arm positions that might be involved during real-world
prosthesis use (Scheme et al., 2011; Liu et al., 2012; Yang
et al., 2017; Teh and Hargrove, 2020). In line with these past
studies, we found that real-time performance during the
short-term testing was better when using dynamic
classifiers than with a static classifier trained using all seven
static positions.

Our offline results also show that dynamic training
strategies can have higher offline classification than static
training strategies, suggesting this may be a preferred
approach for a user to reliably select grasps in real-time
settings. Although the static classifiers using a single arm
position often had strong offline classification performance
when tested with data from the same arm position used for
training, the performance deteriorated when other arm
positions were tested. Inclusion of all seven static positions

in the training dataset improved the classification accuracy to
nearly 100%. These findings are well-aligned with reports from
the EMG literature showing a similar pattern of reduced inter-
position classification accuracy compared to intra-position
accuracy, as well as improved classification accuracy when
training with multiple static arm positions. Dynamic classifiers
were highly accurate when testing with different arm
movements than those included in training. Inclusion of all
four dynamic patterns yielded perfect classification accuracy.
Again, similar results have been published previously for EMG
control (Scheme et al., 2011; Liu et al., 2012; Yang et al., 2017;
Teh and Hargrove, 2020). We also found that compared to the
static training strategy, the dynamic training strategy could
better differentiate ultrasound images collected using the same
hand grasp from ultrasound images collected using different
hand grasps.

Although we found that dynamic training strategies to be
more effective than static training strategies, we did not attempt
to determine the most optimal training sequence. The real-
time performance was strong with a classifier trained using the
20-sec continuous dynamic strategy, but it is possible that
shorter sequences would also work. Similarly, we only
covered arm positions in the front and center of the body
because most daily activities occur in this area. However, to
achieve robust classification in real-world applications,
classifier training might also consider regions lateral to the
body, above the head, below the waist, or behind the body.
Future work will be needed to explore what other training
sequences are possible.

4.3 Accounting for Socket Loading
We observed that offline classification performance was
partially dependent on socket loading during training. In
general, offline classification accuracies were lower for the
load A training conditions compared to the load B
conditions. The increase in limb length, total weight, and
distribution of weight introduced by the TASKA hand
during load A training may have caused the socket to shift
relative to the residual limb or induced muscle fatigue
throughout the training process, leading to greater SMG
signal variability. Although the socket was also loaded
during load B training, the weight was smaller and located
more proximally, which appeared to impact offline
classification performance less significantly. Socket loading
also impacted the ultrasound images of muscle deformation
during the offline training sequences. In particular, there was
increased variability in the similarity of ultrasound images
during load A training compared to load B training. Again, this
variability is likely due to the increased inertia from the mass of
the TASKA hand located at an anatomically disproportionate
distance from the elbow.

Since it is unlikely that a real-world prosthesis user would
wear such a large hand relative to their body size, the poor
offline classification performance and increased variability in
muscle deformation patterns for the load A training should not
be overly emphasized. We selected the TASKA hand prior to
beginning this study because it could be easily integrated into
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our hardware implementation of SMG control, but we
recognize it is not appropriately sized for many people.
Unfortunately, the participant’s small stature and long
residual limb meant that the hand was especially
disproportionate. Inclusion of the load B training condition
was meant to emulate a more realistic real-world setting in
which the participant wore an appropriately sized hand and
was not required to remove it prior to training (Note that
although the TASKA hand can easily be removed and
reconnected, this is not possible for all prosthetic hand
models.) Nonetheless, it is very encouraging to note that
real-time classification performance during the short-term
testing with load B training was not substantially different
from load A training. Even though the TASKA hand was not
worn during load B training, the classifier seemed to tolerate
any SMG signal variability from subsequent loading
introduced by wearing the hand during testing. This finding
underscores the importance of building classifiers using stable
training data.

4.4 Limitations
Although this study demonstrates feasibility of the using SMG
control a prosthetic hand in real-time, specific findings from
this study should be interpreted cautiously given the inclusion
of a single participant. We chose to include only one participant
since the focus of this study was on the feasibility of using the
technology, and not necessarily on the needs of a patient
population. This choice allowed us to explore technical
questions about the feasibility of our system, including
multiple repetitions of experiments under different
conditions, that would be challenging to do in a study
involving many subjects. Including a single subject also
facilitated our interpretation of the results, as the
heterogeneous characteristics of individuals with upper limb
loss can be a confounding factor in studies involving multiple
participants. Nonetheless, optimizing the hardware, controller,
and classifier to refine the implementation of SMG control for
clinical use must be performed over a larger sample of users in
future work.

It is also a limitation that our participant had congenital limb
absence, as this restricted the number of distinct muscle
contraction patterns she was able to produce (i.e., wrist
flexion, wrist extension, rest). Our prior work has shown that
many individuals with amputation can produce a higher number
of distinct muscle contraction patterns corresponding to different
hand gestures (rather than just wrist flexion and extension) and
that these classes were successfully identified in offline testing
using SMG (Dhawan et al., 2019; Engdahl et al., 2022). Future
work should explore whether real-time classification
performance remains accurate when an increased number of
classified hand grasps are included.

Additionally, there may have been adaptation effects
throughout the data collection process. The participant
required some initial adjustment to unlearn the control
strategy for her direct control myoelectric prostheses–namely,
that the hand closed in response to wrist flexion, opened in
response to wrist extension, and stopped moving when the

muscles were relaxed. With the SMG prostheses, the hand
moved to tripod in response to wrist flexion and opened
when the muscles were relaxed. The participant anecdotally
reported that she learned this control strategy quickly but
occasionally forgot during testing. Adaptation issues may
have persisted throughout testing because data collection
occurred over several days, which meant that her sessions
with SMG were interspersed with the use of her myoelectric
prostheses. Thus, we cannot exclude the possibility that the
outcomes gradually improved throughout a day of testing as she
reacclimated to SMG control. We attempted to mitigate this by
randomizing the order of the functional tests. However, because
the participant was involved in the study development and
piloting process, she had familiarity with the functional tests
prior to formal data collection. It is possible that this prior
practice helped her become more proficient at the tasks, so her
performance may not be representative of more naïve users.

5 CONCLUSION

This study demonstrates the feasibility of using sonomyography
(SMG) to control upper limb prostheses to complete functional
tasks in real-time. Because ultrasound imaging enables
spatiotemporal classification of both superficial and deep
muscle activity, sonomyographic approaches may better
account for the contributions of individual muscles than
traditional myoelectric approaches for controlling prosthetic
hands. Sonomyography is thus a promising modality for
prosthetic control, and improved implementation of
hardware and controller designs might enable increased
functional performance and more intuitive control of
prosthetic hands.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Institutional Review Board at George Mason
University. The patients/participants provided their written
informed consent to participate in this study. Written
informed consent was obtained from the individual(s) for the
publication of any potentially identifiable images or data included
in this article.

AUTHOR CONTRIBUTIONS

All authors contributed to conception and design of the study. SE,
SA, and EK collected the data. All authors contributed to analysis
and interpretation of the data. SE and SA wrote the initial draft of

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 87683618

Engdahl et al. Functional Task Performance Using Sonomyography

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


the manuscript. All authors revised the manuscript and approved
the final version.

FUNDING

This work was supported in part by the Department of Defense
under Award No. W81XWH-16-1–0722 and in part by the
National Institutes of Health under Award No. U01EB027601.
Opinions, interpretations, conclusions and recommendations
are those of the authors and are not necessarily endorsed by the
Department of Defense or National Institutes of Health.

ACKNOWLEDGMENTS

We would like to thank Brian Monroe for his assistance with
socket fabrication.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fbioe.2022.876836/
full#supplementary-material

REFERENCES

Akhlaghi, N., Baker, C. A., Lahlou, M., Zafar, H., Murthy, K. G., Rangwala, H. S.,
et al. (2016). Real-time Classification of Hand Motions Using Ultrasound
Imaging of Forearm Muscles. IEEE Trans. Biomed. Eng. 63, 1687–1698. doi:10.
1109/TBME.2015.2498124

Akhlaghi, N., Dhawan, A., Khan, A. A., Mukherjee, B., Diao, G., Truong, C., et al.
(2020). Sparsity Analysis of a Sonomyographic Muscle-Computer Interface.
IEEE Trans. Biomed. Eng. 67, 688–696. doi:10.1109/TBME.2019.2919488

Andersson, N. (2018). Participatory Research-A Modernizing Science for Primary
Health Care. J. Gen. Fam. Med. 19, 154–159. doi:10.1002/jgf2.187

Baker, C. A., Akhlaghi, N., Rangwala, H., Kosecka, J., and Sikdar, S. (2016). “Real-
time, Ultrasound-Based Control of a Virtual Hand by a Trans-radial Amputee,”
in Conference Proceedings of the IEEE Engineering in Medicine and Biology
Society, 3219–3222. doi:10.1109/EMBC.2016.7591414

Biddiss, E. A., and Chau, T. T. (2007a). Upper Limb Prosthesis Use and
Abandonment. Prosthet. Orthot. Int. 31, 236–257. doi:10.1080/
03093640600994581

Biddiss, E., and Chau, T. (2007b). Upper-Limb Prosthetics. Am. J. Phys. Med.
Rehabil. 86, 977–987. doi:10.1097/PHM.0b013e3181587f6c

Bimbraw, K., Fox, E., Weinberg, G., and Hammond, F. L. (2020). “Towards
Sonomyography-Based Real-Time Control of Powered Prosthesis Grasp
Synergies,” in 2020 42nd Annual International Conference of the IEEE
Engineering in Medicine & Biology Society (Montreal, Canada: EMBC),
4753–4757. doi:10.1109/EMBC44109.2020.9176483

Castellini, C., Hertkorn, K., Sagardia, M., Gonzalez, D. S., and Nowak, M. (2014).
“A Virtual Piano-Playing Environment for Rehabilitation Based upon
Ultrasound Imaging,” in 5th IEEE RAS/EMBS International Conference on
Biomedical Robotics and Biomechatronics, 548–554. doi:10.1109/BIOROB.
2014.6913835

Chadwell, A., Kenney, L., Thies, S., Head, J., Galpin, A., and Baker, R. (2021).
Addressing Unpredictability May Be the Key to Improving Performance with
Current Clinically Prescribed Myoelectric Prostheses. Sci. Rep. 11, 3300. doi:10.
1038/s41598-021-82764-6

Chen, L., Geng, Y., and Li, G. (2011). “Effect of Upper-Limb Positions on Motion
Pattern Recognition Using Electromyography,” in 2011 4th International
Congress on Image and Signal Processing, 139–142. doi:10.1109/CISP.2011.
6100025

Chen, X., Zheng, Y.-P., Guo, J.-Y., and Shi, J. (2010). Sonomyography (SMG)
Control for Powered Prosthetic Hand: a Study with normal Subjects.
Ultrasound Med. Biol. 36, 1076–1088. doi:10.1016/j.ultrasmedbio.2010.
04.015

Dhawan, A. S., Mukherjee, B., Patwardhan, S., Akhlaghi, N., Diao, G., Levay, G.,
et al. (2019). Proprioceptive Sonomyographic Control: a Novel Method for
Intuitive and Proportional Control of Multiple Degrees-Of-freedom for
Individuals with Upper Extremity Limb Loss. Sci. Rep. 9, 9499. doi:10.1038/
s41598-019-45459-7

Engdahl, S., Dhawan, A., Bashatah, A., Diao, G., Mukherjee, B., Monroe, B., et al.
(2022). Classification Performance and Feature Space Characteristics in
Individuals with Upper Limb Loss Using Sonomyography. IEEE J. Transl.
Eng. Health Med. 10, 1–11. doi:10.1109/JTEHM.2022.3140973

Fang, C., He, B., Wang, Y., Cao, J., and Gao, S. (2020). EMG-centered Multisensory
Based Technologies for Pattern Recognition in Rehabilitation: State of the Art
and Challenges. Biosensors 10, 85. doi:10.3390/bios10080085

Farrell, T. R., andWeir, R. F. (2007). The Optimal Controller Delay for Myoelectric
Prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 111–118. doi:10.1109/
TNSRE.2007.891391

Fougner, A., Scheme, E., Chan, A. D. C., Englehart, K., and Stavdahl, Ø. (2011).
Resolving the Limb Position Effect in Myoelectric Pattern Recognition. IEEE
Trans. Neural Syst. Rehabil. Eng. 19, 644–651. doi:10.1109/TNSRE.2011.
2163529

Geng, Y., Zhou, P., and Li, G. (2012). Toward Attenuating the Impact of Arm
Positions on Electromyography Pattern-Recognition Based Motion
Classification in Transradial Amputees. J. Neuroengineering Rehabil. 9, 74.
doi:10.1186/1743-0003-9-74

Graimann, B., and Dietl, H. (2013). “Introduction to Upper Limb Prosthetics,” in
Introduction to Neural Engineering for Motor Rehabilitation. Editors D. Farina,
W. Jensen, and M. Akay (Hoboken, NJ: John Wiley & Sons), 267–290. doi:10.
1002/9781118628522.ch14

Hargrove, L., Miller, L., Turner, K., and Kuiken, T. (2018). Control within a Virtual
Environment Is Correlated to Functional Outcomes when Using a Physical
Prosthesis. J. Neuroengineering Rehabil. 15, 60. doi:10.1186/s12984-018-0402-y

Hettiarachchi, N., Ju, Z., and Liu, H. (2015). “A NewWearable Ultrasound Muscle
Activity Sensing System for Dexterous Prosthetic Control,” in 2015 IEEE
International Conference on Systems, Man, and Cybernetics, 1415–1420.
doi:10.1109/SMC.2015.251

Hussaini, A., and Kyberd, P. (2017). Refined Clothespin Relocation Test and
Assessment of Motion. Prosthet. Orthot. Int. 41, 294–302. doi:10.1177/
0309364616660250

Hwang, H.-J., Hahne, J. M., and Müller, K.-R. (2017). Real-time Robustness
Evaluation of Regression Based Myoelectric Control against Arm Position
Change and Donning/doffing. PLOS ONE 12, e0186318. doi:10.1371/journal.
pone.0186318

Jiang, N., Muceli, S., Graimann, B., and Farina, D. (2013). Effect of Arm Position on
the Prediction of Kinematics from EMG in Amputees.Med. Biol. Eng. Comput.
51, 143–151. doi:10.1007/s11517-012-0979-4

Khushaba, R. N., Al-Timemy, A., Kodagoda, S., and Nazarpour, K. (2016).
Combined Influence of Forearm Orientation and Muscular Contraction on
EMG Pattern Recognition. Expert Syst. Appl. 61, 154–161. doi:10.1016/j.eswa.
2016.05.031

Khushaba, R. N., Takruri, M., Miro, J. V., and Kodagoda, S. (2014). Towards
Limb Position Invariant Myoelectric Pattern Recognition Using Time-
dependent Spectral Features. Neural Networks 55, 42–58. doi:10.1016/j.
neunet.2014.03.010

Kontson, K., Marcus, I., Myklebust, B., and Civillico, E. (2017). Targeted Box and
Blocks Test: Normative Data and Comparison to Standard Tests. PLOS ONE 12,
e0177965. doi:10.1371/journal.pone.0177965

Kuiken, T. A., Li, G., Lock, B. A., Lipschutz, R. D., Miller, L. A., Stubblefield, K. A.,
et al. (2009). Targeted Muscle Reinnervation for Real-Time Myoelectric
Control of Multifunction Artificial Arms. JAMA 301, 619–628. doi:10.1001/
jama.2009.116

Kuiken, T. A., Miller, L. A., Turner, K., and Hargrove, L. J. (2016). A Comparison of
Pattern Recognition Control and Direct Control of a Multiple Degree-Of-

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 87683619

Engdahl et al. Functional Task Performance Using Sonomyography

https://www.frontiersin.org/articles/10.3389/fbioe.2022.876836/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbioe.2022.876836/full#supplementary-material
https://doi.org/10.1109/TBME.2015.2498124
https://doi.org/10.1109/TBME.2015.2498124
https://doi.org/10.1109/TBME.2019.2919488
https://doi.org/10.1002/jgf2.187
https://doi.org/10.1109/EMBC.2016.7591414
https://doi.org/10.1080/03093640600994581
https://doi.org/10.1080/03093640600994581
https://doi.org/10.1097/PHM.0b013e3181587f6c
https://doi.org/10.1109/EMBC44109.2020.9176483
https://doi.org/10.1109/BIOROB.2014.6913835
https://doi.org/10.1109/BIOROB.2014.6913835
https://doi.org/10.1038/s41598-021-82764-6
https://doi.org/10.1038/s41598-021-82764-6
https://doi.org/10.1109/CISP.2011.6100025
https://doi.org/10.1109/CISP.2011.6100025
https://doi.org/10.1016/j.ultrasmedbio.2010.04.015
https://doi.org/10.1016/j.ultrasmedbio.2010.04.015
https://doi.org/10.1038/s41598-019-45459-7
https://doi.org/10.1038/s41598-019-45459-7
https://doi.org/10.1109/JTEHM.2022.3140973
https://doi.org/10.3390/bios10080085
https://doi.org/10.1109/TNSRE.2007.891391
https://doi.org/10.1109/TNSRE.2007.891391
https://doi.org/10.1109/TNSRE.2011.2163529
https://doi.org/10.1109/TNSRE.2011.2163529
https://doi.org/10.1186/1743-0003-9-74
https://doi.org/10.1002/9781118628522.ch14
https://doi.org/10.1002/9781118628522.ch14
https://doi.org/10.1186/s12984-018-0402-y
https://doi.org/10.1109/SMC.2015.251
https://doi.org/10.1177/0309364616660250
https://doi.org/10.1177/0309364616660250
https://doi.org/10.1371/journal.pone.0186318
https://doi.org/10.1371/journal.pone.0186318
https://doi.org/10.1007/s11517-012-0979-4
https://doi.org/10.1016/j.eswa.2016.05.031
https://doi.org/10.1016/j.eswa.2016.05.031
https://doi.org/10.1016/j.neunet.2014.03.010
https://doi.org/10.1016/j.neunet.2014.03.010
https://doi.org/10.1371/journal.pone.0177965
https://doi.org/10.1001/jama.2009.116
https://doi.org/10.1001/jama.2009.116
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


freedom Transradial Prosthesis. IEEE J. Transl. Eng. Health Med. 4, 1–8. doi:10.
1109/JTEHM.2016.2616123

Kyranou, I., Vijayakumar, S., and Erden, M. S. (2018). Causes of Performance
Degradation in Non-invasive Electromyographic Pattern Recognition in Upper
Limb Prostheses. Front. Neurorobot. 12, 58. doi:10.3389/fnbot.2018.00058

Li, G., Schultz, A. E., and Kuiken, T. A. (2010). Quantifying Pattern Recognition-
Based Myoelectric Control of Multifunctional Transradial Prostheses. IEEE
Trans. Neural Syst. Rehabil. Eng. 18, 185–192. doi:10.1109/TNSRE.2009.
2039619

Liu, J., Zhang, D., He, J., and Zhu, X. (2012). “Effect of Dynamic Change of Arm
Position on Myoelectric Pattern Recognition,” in 2012 IEEE International
Conference on Robotics and Biomimetics (Guangzhou, China: ROBIO),
1470–1475. doi:10.1109/ROBIO.2012.6491176

Liu, J., Zhang, D., Sheng, X., and Zhu, X. (2014). Quantification and Solutions of
Arm Movements Effect on sEMG Pattern Recognition. Biomed. Signal Process.
Control. 13, 189–197. doi:10.1016/j.bspc.2014.05.001

Mathiowetz, V., Volland, G., Kashman, N., andWeber, K. (1985). Adult Norms for
the Box and Block Test of Manual Dexterity. Am. J. Occup. Ther. 39, 386–391.
doi:10.5014/ajot.39.6.386

Ortiz-Catalan, M., Rouhani, F., Branemark, R., and Hakansson, B. (2015). “Offline
Accuracy: A Potentially Misleading Metric in Myoelectric Pattern Recognition
for Prosthetic Control,” in 2015 37th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (Toronto, Canada: EMBC),
1140–1143. doi:10.1109/EMBC.2015.7318567

Resnik, L. J., Acluche, F., and Lieberman Klinger, S. (2018a). User Experience of
Controlling the DEKA Arm with EMG Pattern Recognition. PLOS ONE 13,
e0203987. doi:10.1371/journal.pone.0203987

Resnik, L. J., Borgia, M. L., Acluche, F., Cancio, J. M., Latlief, G., and Sasson, N.
(2018b). How Do the Outcomes of the DEKA Arm Compare to Conventional
Prostheses? PLOS ONE 13, e0191326. doi:10.1371/journal.pone.0191326

Scheme, E., Biron, K., and Englehart, K. (2011). “Improving Myoelectric Pattern
Recognition Positional Robustness Using Advanced Training Protocols,” in
2011 Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, 4828–4831. doi:10.1109/IEMBS.2011.6091196

Shi, J., Chang, Q., and Zheng, Y.-P. (2010). Feasibility of Controlling Prosthetic
Hand Using Sonomyography Signal in Real Time: Preliminary Study. J. Rehabil.
Res. Dev. 47 (2), 87–98. doi:10.1682/jrrd.2009.03.0031

Sikdar, S., Rangwala, H., Eastlake, E. B., Hunt, I. A., Nelson, A. J., Devanathan, J., et al.
(2014). Novel Method for Predicting Dexterous Individual finger Movements by
ImagingMuscle ActivityUsing aWearableUltrasonic System. IEEETrans. Neural
Syst. Rehabil. Eng. 22, 69–76. doi:10.1109/tnsre.2013.2274657

Simon, A. M., Turner, K. L., Miller, L. A., Hargrove, L. J., and Kuiken, T. A.
(2019). “Pattern Recognition and Direct Control home Use of a Multi-
Articulating Hand Prosthesis,” in 2019 IEEE 16th International
Conference on Rehabilitation Robotics (ICORR), 386–391. doi:10.1109/
ICORR.2019.8779539

Smail, L. C., Neal, C., Wilkins, C., and Packham, T. L. (2020). Comfort and
Function Remain Key Factors in Upper Limb Prosthetic Abandonment:
Findings of a Scoping Review. Disabil. Rehabil. Assistive Technology 16,
821–830. doi:10.1080/17483107.2020.1738567

Stavdahl, Ø., Mugaas, T., Ottermo, M. V., Magne, T., and Kyberd, P. (2020).
Mechanisms of Sporadic Control Failure Related to the Skin-Electrode Interface

in Myoelectric Hand Prostheses. J. Prosthet. Orthot. 32, 38–51. doi:10.1097/jpo.
0000000000000296

Teh, Y., and Hargrove, L. J. (2020). Understanding Limb Position and External
Load Effects on Real-Time Pattern Recognition Control in Amputees. IEEE
Trans. Neural Syst. Rehabil. Eng. 28, 1605–1613. doi:10.1109/TNSRE.2020.
2991643

Vu, P. P., Chestek, C. A., Nason, S. R., Kung, T. A., Kemp, S. W. P., and Cederna, P.
S. (2020a). The Future of Upper Extremity Rehabilitation Robotics: Research
and Practice. Muscle Nerve 61, 708–718. doi:10.1002/mus.26860

Vu, P. P., Vaskov, A. K., Irwin, Z. T., Henning, P. T., Lueders, D. R., Laidlaw, A. T.,
et al. (2020b). A Regenerative Peripheral Nerve Interface Allows Real-Time
Control of an Artificial Hand in Upper Limb Amputees. Sci. Transl. Med. 12,
eaay2857. doi:10.1126/scitranslmed.aay2857

Weir, R. F., Troyk, P. R., DeMichele, G. A., Kerns, D. A., Schorsch, J. F., and Maas,
H. (2009). Implantable Myoelectric Sensors (IMESs) for Intramuscular
Electromyogram Recording. IEEE Trans. Biomed. Eng. 56, 159–171. doi:10.
1109/TBME.2008.2005942

Yang, D., Yang,W., Huang, Q., and Liu, H. (2017). Classification ofMultiple Finger
Motions during Dynamic Upper Limb Movements. IEEE J. Biomed. Health
Inform. 21, 134–141. doi:10.1109/JBHI.2015.2490718

Yang, X., Chen, Z., Hettiarachchi, N., Yan, J., and Liu, H. (2021). A Wearable
Ultrasound System for Sensing Muscular Morphological Deformations. IEEE
Trans. Syst. Man. Cybern, Syst. 51, 3370–3379. doi:10.1109/TSMC.2019.
2924984

Yang, X., Yan, J., Fang, Y., Zhou, D., and Liu, H. (2020). Simultaneous Prediction of
Wrist/hand Motion via Wearable Ultrasound Sensing. IEEE Trans. Neural Syst.
Rehabil. Eng. 1, 1. doi:10.1109/tnsre.2020.2977908

Zheng, Y. P., Chan, M. M. F., Shi, J., Chen, X., and Huang, Q. H. (2006).
Sonomyography: Monitoring Morphological Changes of Forearm
Muscles in Actions with the Feasibility for the Control of Powered
Prosthesis. Med. Eng. Phys. 28, 405–415. doi:10.1016/j.medengphy.
2005.07.012

Conflict of Interest: SS is an inventor on a patent related to sonomyography.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Engdahl, Acuña, King, Bashatah and Sikdar. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 87683620

Engdahl et al. Functional Task Performance Using Sonomyography

https://doi.org/10.1109/JTEHM.2016.2616123
https://doi.org/10.1109/JTEHM.2016.2616123
https://doi.org/10.3389/fnbot.2018.00058
https://doi.org/10.1109/TNSRE.2009.2039619
https://doi.org/10.1109/TNSRE.2009.2039619
https://doi.org/10.1109/ROBIO.2012.6491176
https://doi.org/10.1016/j.bspc.2014.05.001
https://doi.org/10.5014/ajot.39.6.386
https://doi.org/10.1109/EMBC.2015.7318567
https://doi.org/10.1371/journal.pone.0203987
https://doi.org/10.1371/journal.pone.0191326
https://doi.org/10.1109/IEMBS.2011.6091196
https://doi.org/10.1682/jrrd.2009.03.0031
https://doi.org/10.1109/tnsre.2013.2274657
https://doi.org/10.1109/ICORR.2019.8779539
https://doi.org/10.1109/ICORR.2019.8779539
https://doi.org/10.1080/17483107.2020.1738567
https://doi.org/10.1097/jpo.0000000000000296
https://doi.org/10.1097/jpo.0000000000000296
https://doi.org/10.1109/TNSRE.2020.2991643
https://doi.org/10.1109/TNSRE.2020.2991643
https://doi.org/10.1002/mus.26860
https://doi.org/10.1126/scitranslmed.aay2857
https://doi.org/10.1109/TBME.2008.2005942
https://doi.org/10.1109/TBME.2008.2005942
https://doi.org/10.1109/JBHI.2015.2490718
https://doi.org/10.1109/TSMC.2019.2924984
https://doi.org/10.1109/TSMC.2019.2924984
https://doi.org/10.1109/tnsre.2020.2977908
https://doi.org/10.1016/j.medengphy.2005.07.012
https://doi.org/10.1016/j.medengphy.2005.07.012
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

	First Demonstration of Functional Task Performance Using a Sonomyographic Prosthesis: A Case Study
	1 Introduction
	2 Methods
	2.1 Participatory Study Design
	2.2 Participant
	2.3 Socket Design and Fit
	2.4 Ultrasound Imaging
	2.5 Classifier Training Conditions
	2.5.1 Hand Grasps
	2.5.2 Socket Loading
	2.5.3 Arm Position

	2.6 Offline Classification Performance
	2.6.1 Training and Testing Data Collection
	2.6.2 Offline Classification Accuracy Calculation
	2.6.3 Characterizing Similarity of Ultrasound Images

	2.7 Real-Time Functional Performance
	2.7.1 Classifier Training
	2.7.2 Prescribed Prosthetic Hand Grasps
	2.7.3 Functional Tests
	2.7.3.1 Box and Blocks Test
	2.7.3.2 Targeted Box and Blocks Test
	2.7.3.3 Rainbow Test
	2.7.4 Repeatability of Functional Performance

	2.8 System Latency

	3 Results
	3.1 Offline Classification Performance
	3.1.1 Classification Accuracy
	3.1.2 Similarity of Ultrasound Images

	3.2 Real-Time Functional Performance
	3.2.1 Short-Term Testing
	3.2.2 Three-Hour Testing
	3.2.3 Simulated Donning/Doffing

	3.3 System Latency

	4 Discussion
	4.1 Real-Time Functional Performance
	4.2 Accounting for Changes in Arm Position
	4.3 Accounting for Socket Loading
	4.4 Limitations

	5 Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


