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Abstract: We assessed age-related excisional palatal mucoperiosteal wound closure in rats. A 4.2 mm
diameter punch was used to create a secondary healing defect in the palate of Wistar rats. Study
group—21, 18-month-old vs. control 21, 2-month-old males. The 2-dimensional area, maximum
length and width of the soft tissue defect served as clinical outcome parameters. The dynamics
of the initial three healing weeks were assessed. Semi-quantitative histomorphometric analysis of
inflammation and myofibroblasts served for the evaluation of the inflammatory and proliferative
wound healing phases. Complete wound closure was faster in the old rats. A dimensional related
wound closure was observed in the young rats versus a symmetrical wound closure in the old rats.
Inflammatory response was significantly delayed and of lower intensity in the old rats. Myofibrob-
lastic response, representing the proliferative stage, was delayed and of lower intensity in the old
rats, albeit not statistically significant. Reduced initial tissue damage due to decreased and delayed
inflammatory response in the old rats ultimately led to faster clinical wound healing compared to the
young rats, despite a statistically non-significant lower proliferative response in the old rats.

Keywords: inflammation; myofibroblasts; palate; rats; wound healing

1. Introduction

The surgical treatment of gingival recession is a popular surgical procedure in the
periodontal armamentarium, with the free soft tissue graft being one of the most popular [1].
Apart from the intra-oral applications, free gingival grafts are successfully used in several
medical specialties, such as otolaryngology [2,3], ophthalmology [4], dermatology, and
plastic surgery [5,6]. The palatal mucosa mesial to the first molar is ideal anatomically [7].
Graft thickness may be ensured [8] without endangering anatomical critical structures
(greater palatine complex). The main disadvantages of free soft tissue grafts are donor site
morbidity, such as discomfort, bleeding, pain, swelling, difficulty in chewing, eating or
speaking, bad smell, infection and loss of sensation [9]. The free gingival graft (FGG) palatal
wound will usually heal within 2–4 weeks [10], despite the denuded palate. The main
advantage of FGG is the ease of performance and large volume of soft tissue acquired [1].
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Experimental wound healing has been vastly studied [11]. It is a dynamic, interac-
tive process involving soluble mediators, blood cells, extracellular matrix, and parenchy-
mal cells. Wound healing has three phases—inflammation, tissue formation, and tissue
remodeling—that overlap in time. The reaction pattern may differ depending on the
individual and location [12]. The healing of excisional wounds in the palatal mucosa of
rats has been investigated [13]. However, excisional wounds in the palate with a large
soft-tissue defect are largely dependent on the individuum [14–16]. Secondary healing
with epithelial cell migration from the periphery towards the central part of the defect
is necessary to close the wound. Interaction between epithelium and connective tissue,
the viability of underlying bone, inflammatory and reparative processes and many more
factors are crucial [13,16].

Age-related challenges in wound healing have been suggested [17]. Experimental
data have shown that palatal wound healing may be affected by aging [18]. Although
most wounds heal, they have a longer duration as a result of compromises in all wound
healing stages [19]. The inflammatory [18] and proliferative responses may be decreased
or delayed [20]. Phases of the wound-healing process, including epithelial migration,
granulation tissue formation, connective tissue formation and tissue remodeling, may be
hampered [19].

The primary goal of wound treatment is rapid closure. Recent advances in cellular
and molecular biology have greatly expanded our understanding of the biologic processes
involved in wound repair and tissue regeneration, and may lead to improvements in wound
care. Improving the treatment of the elderly is one of tomorrow’s leading challenges. The
aim of the present experimental comparative study was to assess age-related differences in
early palatal wound healing between the young and old in a rat model.

2. Materials and Methods
2.1. Animals and Preparation of Experimental Model

The Ethics and Institutional Animal Care and Use Committee of Tel Aviv University ap-
proved the study protocol (approval number—01-16-034). All animals received humane care.

The study design followed the Animal Research Reporting In Vivo Experiments
(ARRIVE) guidelines [21]. The young group consisted of 21 Wistar-derived, 2-month-old
male rats, each weighing an average of 240 g. The older group consisted of 21 Wistar-
derived, 18-month-old male rats, each weighing an average of 650 g. General anesthesia
was achieved with 10% Ketamine (90 mg/1 kg; Kepro, Deventer, Holland) and 2% Xylazine
(10 mg/1 kg; Medical Market, Tel Izhak, Israel) injected intra-peritoneally.

A circular excisional wound 4.2 mm in diameter (i.e., initial anteroposterior (A-P)
and laterolateral (L-L) dimensions) was made in the center of the palatal mucosa using
a tissue punch (MIS Implant Technologies, Bar Lev Industrial Park, Israel), creating a
wound area of 13.85 mm2 (initial wound area) as described previously [22]. These initial
measurements were considered as time 0 (W0). Palatal soft tissue specimens were removed
by a sharp dissection. Consequently, a circular area of denuded bone was left for secondary
healing [13,23,24]. Gentle pressure was applied with gauze until hemostasis was achieved.
All surgical procedures were performed by the same experienced operators (EW, GC). A 2 h
postoperative break of feeding was advocated to minimize potential mechanical injury. No
medications were given postoperatively to avoid any chemical effect on wound healing.

Animals were randomly sacrificed using CO2 inhalation at one week (W1), 2 weeks
(W2) and 3 weeks (W3) post-operatively. The maxillae were separated and transferred for
fixation into 10% buffered formalin for 24 h. The specimens were divided into three equal
experimental groups (7 animals per group) according to the day of sacrifice.

2.2. Macroscopic Evaluation

The palate specimens were photographed using a 15 mm long University of North
Carolina (UNC) color-coded periodontal probe with millimeter markings (Hu Friedy
Manufacturing Inc., Chicago, IL, USA) in a standardized manner using a Cannon EOS
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550D camera (Canon Inc., Tokyo, Japan) immediately after tissue harvesting W0 and
immediately after sacrifice prior to maxillary harvesting for histological examination W1,
W2 (Figure 1) and W3.
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Figure 1. Representative photographs, using 1 mm periodontal probe as scale measurement, of
the wound 14 days (W2) after surgery. The wound margins were marked (a) and the following
measurements were taken: the final wound area (a), the final L-L distance (b), the final A-P distance
(c) and the arch distance (d).

The images were analyzed using ImageJ software (https://imagej.net/, ImageJ,
RRID:SCR_003070, accessed on 28 January 2017) and calibrated with the periodontal
probe markings. Digital photographs were magnified by computer and the boundaries of
the wound were determined on the magnified image. The wound margins were marked
and the following measurements were taken at each time point (W1, W2, W3): the total
area of the wound (total wound area), the maximum L-L and the A-P dimensions of the
wound. In addition, the palatal width (arch distance) was assessed as the intermaxillary
distance between the first and second molar contact points (Figure 1). The mean values
of these parameters were calculated and the degree of wound healing was expressed as
a percentage (%) between the initial value (W0) and any of the other time point values
((W1 vs. W0), (W2 vs. W0), (W3 vs. W0)) in the same animal.

2.3. Microscopic Examination

After 24 h of fixation in formalin, sections were decalcified in 10% formic acid (Merck,
Germany) for about 3 weeks, or until the bone had undergone sufficient decalcification to
allow for sectioning.

The samples (n = 42) were then macroscopically cut in the frontal plane through the
point of maximum L-L distance of the wound, followed by embedding in paraffin. Three
micron-thick sections were prepared and stained with hematoxylin and eosin (H&E). Each
of the stained slides was photographed at ×20 using a light microscope (Olympus BH-2,
Tokyo, Japan), equipped with a digital camera (Olympus DP71, Tokyo, Japan).

2.4. Immunohistochemistry for Identification of Myofibroblasts

From each paraffin block (n = 42), a 3 µ-thick section was cut and mounted on positive-
charged microscope slides (OptiplusTM, Biogenex, San Ramon, CA, USA), dewaxed in

https://imagej.net/
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xylene, dehydrated in ethanol, rinsed in distilled water, placed in 3% H2O2, and rinsed
again in distilled water. Antigen retrieval was performed by placing slides in citrate
buffer solution, pH = 6, and heating in a microwave oven at 92 ◦C for 10 min. After
cooling, the slides were incubated with the primary antigen for the detection of α-smooth
muscle actin (α-SMA, clone 1A4, 1:100, Dako A/S, Glostrup, Denmark) for 60 min at room
temperature. The universal immune peroxidase polymer anti-mouse rabbit Histofine®

(Multi) kit (Nichirei, Tokyo, Japan) was used for the detection of antibodies. The sections
were rinsed in Phosphate Buffered Saline (PBS), reacted with an amino ethyl-carbazole
substrate chromogen kit (Zymed, San Francisco, CA, USA), counterstained in Mayer’s
hematoxylin (Pioneer Research Chemicals, Colchester, UK) and covered with glycerol
vinyl alcohol mounting medium (Zymed, San Francisco, CA, USA). Positive control tissues
comprised of a colon smooth muscle layer. Negative control was achieved by omission of
the primary antibody.

2.5. Histomorphometry for Assessment of the Intensity of Inflammation and Density
of Myofibroblasts

H&E and α-SMA stained sections (n = 21, each) were photographed at ×20 using a
light microscope (Olympus BH-2, Tokyo, Japan) equipped with a digital camera (Olympus
DP71, Tokyo, Japan), with the original files being saved in JPEG files. Then, each file was
copied on a full screen PPT slide, on which a vertical line was drawn at the midline of the
palate. Two perpendicular parallel horizontal lines were drawn, encasing the area of the
wound: one was between the palatal (latero-lateral) aspects of the alveolar ridges (roughly
corresponding to the dentino-enamel junction of the molars), and the second was beneath
the nasal mucosa (Figure 2a,b). Vertical lines parallel to the midline were drawn through
the dentino-enamel junctions so that they intersected at right angles with the horizontal
lines, forming a rectangle from each side of the midline (right and left). Each rectangle was
further divided into 3 equal parts, thus creating “mirror” equal central, mid, and lateral
rectangles, which were termed as “thirds”, as described elsewhere [22].
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Figure 2. Representative photomicrographs of the wound region in which histometric measurements were made for assess-
ing the degree of inflammation on hematoxylin and eosin-stained slides (a) and density of α-SMA-stained myofibroblasts
(b), (a,b)—original magnification ×20). Scale bar = 250 µm.

A semi-quantitative assessment of the intensity of the inflammatory reaction and
density of myofibroblasts in each third was assessed using a 0 to 4 score system: 0 = no
inflammatory/α-SMA-stained cells, 1 = a few inflammatory/α-SMA-stained dispersed
cells, 2 = similar to “1” with the addition of small foci consisting of <10 cells, and 3 = similar
to “2” with foci comprising >10 cells all over the examined third [25]. For each sample,
there were 2 scores for each third. Results were presented as the mean score for each third
at each time point.
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2.6. Statistical Analysis

Sample size was calculated using G-Power software, based on the following assump-
tions: type I error (alpha) of 5% and statistical power of 80%.

Data were entered and analyzed in SPSS version 24. First, descriptive statistics
were produced, while means and standard deviations were calculated for all continuous
measures. Prior to main analyses, to test if main study measures distributed normally
for the total sample, Kolmogorov–Smirnov tests were conducted. All measures presented
normal distribution (p > 0.05).

For statistical analysis of the wound measurements at different time points (Week 1, 2
and 3) within two groups (young versus old rats), two-way analyses of variance (ANOVA)
were used. Interactions between distance over time and group were specifically examined.
A significant interaction indicates that the change in size of the wound over time depends
on the age of the rats.

Mann–Whitney test was used to analyze statistical significance for histomorphometric
(inflammation reaction and density of myofibroblasts) scores. Significance was reported as
p < 0.05.

3. Results

Table 1 and Figure 3 show differences as a factor of time in distance indicators (mm)
in young and old rats.

Table 1. Macroscopic wound area measurements, mean and standard deviation (SD) in young and old rats from week 1 to
week 3.

Measured Parameter Young (n = 21) Old (n = 21) p Finteraction pinteraction

L-L distance (mm) 5.31 <0.01
Week 1 4.03 ± 0.87 2.73 ± 0.08 0.03
Week 2 3.16 ± 0.82 1.96 ± 0.59 <0.001
Week 3 3.18 ± 0.92 0.00 ± 0.00 <0.001

A-P distance (mm) 1.39 0.26
Week 1 4.66 ± 2.65 2.68 ± 0.20 <0.001
Week 2 3.12 ± 0.75 1.90 ± 0.68 <0.001
Week 3 1.83 ± 0.45 0.00 ± 0.00 <0.001

Total area (mm2) 1.84 0.17
Week 1 14.71 ± 4.01 6.13 ± 1.06 <0.001
Week 2 7.96 ± 3.96 3.80 ± 2.13 <0.001
Week 3 4.89 ± 1.60 0.00 ± 0.00 <0.001

Regarding L-L distance (Figure 3a), it was found that it was smaller among old rats
in week 1 (p = 0.03), week 2 (p < 0.001), and week 3 (p < 0.001). A significant interaction
between weeks and group was found (Table 1, p < 0.01), indicating that L-L distance
decreased in a more rapid fashion among old rats, reaching complete healing after 3 weeks
only in the old rats.

Regarding A-P distance (Figure 3b), it was found that it was smaller among old rats in
weeks 1 (p < 0.001), 2 (p < 0.001), and 3 (p < 0.001). No significant interaction between weeks
and group was found (Table 1, p = 0.26), indicating that A-P wound distance had a similar
decreasing trend among young and old rats, reaching complete healing after 3 weeks only
in the old rats.

Total wound area (Figure 3c) was smaller among old rats in weeks 1 (p < 0.001),
2 (p < 0.001), and 3 (p < 0.001). No significant interaction between weeks and group was
found (Table 1, p = 0.17), indicating that total area had a similar decreasing trend among
young and old rats, reaching complete healing after 3 weeks only in the old rats.

To test recovery by change, ANOVA analyses were conducted for changes in percent-
ages (Table 2 and Figure 4).
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Table 2. Changes (%) between initial and final area, mean and standard deviation (SD) in young and old rats from week 1 to week 3
relative to W0 (4.2 mm diameter).

Measured Parameter Young (n = 21) Old (n = 21) p Finteraction pinteraction

L-L fraction relative to W0 (%) 5.99 <0.01
Week 1 91.00 ± 16.70 65.33 ± 2.08 0.04
Week 2 66.00 ± 27.55 46.73 ± 14.26 0.03
Week 3 75.50 ± 19.53 0.00 ± 0.01 <0.001

A-P fraction relative to W0 (%) 4.83 0.04
Week 1 106.25 ± 16.50 64.67 ± 5.16 0.002
Week 2 65.20 ± 27.51 45.27 ± 16.36 0.032
Week 3 43.75 ± 8.73 0.00 ± 0.01 <0.001

Total area fraction relative to W0 (%) 3.47 0.02
Week 1 97.65 ± 29.64 51.67 ± 8.60 0.030
Week 2 53.62 ± 21.91 35.53 ± 20.87 0.025
Week 3 36.00 ± 13.14 0.00 ± 0.01 <0.001
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In L-L dimension (Figure 4a), fraction change was higher among old rats in weeks
1 (p < 0.05), 2 (p < 0.05), and 3 (p < 0.001). A significant interaction between weeks and
group was found (p < 0.01), indicating that L-L distance decreased more rapidly among
old rats. No significant changes were noted in the young rats between weeks 2 and 3 (the
value was 75.50 for week 3, whereas in week 2 the value was 66.00), demonstrating the
delay in wound healing.

In A-P dimension (Figure 4b), change was lower among old rats in weeks 1 (p < 0.05),
2 (p < 0.05), and 3 (p < 0.001). After 1 week, a mean fraction of 106.25 ± 16.50% was recorded
in the young rats (Table 2), indicating the amplification of the initial distance in the young
rats vs. a statistically significant reduction (p = 0.002) in the distance, 64.67 ± 5.16%, as
a result of wound healing processes in the old rats. A significant interaction between
weeks and group was found (p = 0.04), indicating that A-P decreased more rapidly among
old rats.

The change in total area fraction (Figure 4c) was higher among old rats in weeks
1 (p < 0.05), 2 (p < 0.05), and 3 (p < 0.001). A significant interaction between weeks and
group was found (p = 0.02), indicating that total area decreased more rapidly among
old rats.

3.1. Microscopic Evaluation
3.1.1. Semi-Quantitative Evaluation of Inflammatory Phase

In the young rats, the initial inflammatory reaction was high in all evaluated areas
(Figure 5). In week 3, it remained high only in the middle area.
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Figure 5. Inflammatory reaction score in the young and old rats along time.

Results in the old rats (Figure 5) showed a significant increase (p < 0.05) from W1 to
W2 in the lateral and central thirds, followed by a significant decrease (p < 0.05) from W2
to W3 in all thirds.

The comparison between the young and the old rats (Figure 5) demonstrated that in
W1, the inflammatory response showed a higher intensity in the young rats than in the
old rats in all thirds (p < 0.05 in the lateral and central thirds). In W2, the inflammatory
response showed a higher intensity in the old rats than in the young rats in the lateral and
mid thirds (p < 0.05 in lateral third), while it was borderline higher in the young rats than
in the old rats in the central third (p = 0.07). In W3, the inflammatory response in young
rats was borderline higher than in old rats only in the central third (p = 0.054).
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It can be summarized that the overall inflammatory response in the old rats was
delayed with a lower intensity.

3.1.2. Semi-Quantitative Evaluation of the Proliferative Phase (Myofibroblasts)

The comparison of the young and the old rats (Figure 6) yielded higher values in the
young rats in most areas at most time frames. However, this reached statistical significance
only in the lateral third in W2. It can be inferred that the myofibroblastic response is
delayed with lower intensity in the old rats; however, the differences between young and
old rats were not statistically significant in most areas and at most time frames.

Biology 2021, 10, 240 8 of 12 
 

 

3.1.2. Semi-Quantitative Evaluation of the Proliferative Phase (Myofibroblasts) 
The comparison of the young and the old rats (Figure 6) yielded higher values in the 

young rats in most areas at most time frames. However, this reached statistical signifi-
cance only in the lateral third in W2. It can be inferred that the myofibroblastic response 
is delayed with lower intensity in the old rats; however, the differences between young 
and old rats were not statistically significant in most areas and at most time frames. 

 
Figure 6. Myofibroblast density score in young and old rats along time. 

The overall histological comparison between the young and old rats in terms of in-
flammation and myofibroblasts at the various time points of the study is illustrated in 
Figure 7. 

Figure 6. Myofibroblast density score in young and old rats along time.

The overall histological comparison between the young and old rats in terms of
inflammation and myofibroblasts at the various time points of the study is illustrated in
Figure 7.
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Figure 7. Representative photomicrographs of inflammation and myofibroblasts in young and old rats, weeks 1–3 (original
magnification of all microscopic sections ×40). Scale bar 500 µm. Hematoxylin and eosin stain (H&E), Alpha Smooth
Muscle Actin (α-SMA).

4. Discussion

Despite existing studies using experimental palatal wounds as a model, age-related
data regarding the dynamics of the healing process at the wound site remain incomplete.
The novel approach of the present study lies in investigating the age-related macroscopic
pattern of secondary intention mucoperiosteal wound healing outcome in the A-P vs. the
L-L planes.

A significant decrease was found for the A-P vs. an insignificant decrease in the L-L
dimension along time in the young rats, only during the first week. A significant decrease
was found for both A-P and L-L dimensions along time in the older rats. No dimensional
changes were noted during the first week in the young rats vs. significant in the old rats. It
can be speculated that the increased inflammatory reaction (more specifically, increased
inflammatory and stem cell numbers) demonstrated in the young rats, especially in the first
week, is responsible for the increased distance in each time frame as a result of additional
wound damage caused by the amplified inflammatory reaction.

The macroscopic healing (Figure 8) at W1 was minimal in the young rats, as shown
previously [13,23], and significant in the old rats. As stated previously, the increased inflam-
matory reaction in young rats may be responsible. From W1, during the proliferative phase
in both groups the defect gradually filled with soft tissue. The changes were statistically
significant and more prominent in the old rats. The myofibroblastic score demonstrated
no statistically significant differences between the young and the old rats. These findings
suggest that the faster wound closure in the old rats cannot be attributed merely to their
improved proliferative abilities. Interventions to promote wound healing should thus be
used prior to the end of W2 [26].

Biology 2021, 10, 240 10 of 12 
 

 

findings suggest that the faster wound closure in the old rats cannot be attributed merely 
to their improved proliferative abilities. Interventions to promote wound healing should 
thus be used prior to the end of W2 [26]. 

 
Figure 8. Wound closure dynamics. 

Previous studies exist [13,23,24]. In the present study, full epithelization at W3 oc-
curred in the old rats but not in the young rats. It can be speculated that the larger total 
wound area in the young rats in W1 created a worse starting point. 

Periodontal disease is a good example for a similar situation [27]. In the past, evi-
dence indicated that periodontitis is a pathogen-induced disease [28]. Nowadays, there is 
a shifting paradigm in the pathogenesis of periodontitis [29]. More and more studies 
demonstrated that periodontal disease is a result of exaggerated inflammatory reaction 
[27–29]. Consequently, a host modulation therapy (HMT) strategy was suggested [27]. 
The modulation of inflammatory reaction is called HMT [29]. Experimental results 
demonstrate encouraging results following the administration of HMT in periodontal dis-
ease [30,31]. It may be speculated that the older age in the present model acts similar to 
HMT agents, decreasing the inflammatory reaction and yielding an improved, faster 
wound healing process. 

Unfortunately, a direct comparison of the current study to the untreated control 
groups in human studies is not feasible, since the common limitations encountered in clin-
ical studies that evaluate donor healing, such as distinct techniques of graft harvesting, 
may impair the standardization of wound depth and the thickness of the graft. However, 
similar to the palatal donor site healing after split thickness FGG harvesting [11,26,32,33], 
we found that the periphery of the mucoperiosteal palatal wounds in rats filled earlier 
compared with the center of the wound. 

Only macroscopic measurements of the dimensional changes in the wound were per-
formed in the present study. Primarily, the margin of newly formed epithelium is not the 
same as that of the macroscopic wound area, while the epithelium grows over the macro-
scopic margin of the wound [24]. Furthermore, we found it inaccurate to microscopically 
determine the dimensional changes and epithelization rate of the wound due to technical 
factors that might have affected the accuracy of the measurements. 

Study limitations must not be ignored. Rat study is not exactly like human study. The 
number of animals may be increased in future studies. Similarly, time frames may be in-
creased, especially in the first week. Furthermore, conclusions should be applied in clini-
cal situations. More specifically, using anti-inflammatory mediators preoperatively or 
during the first week may significantly improve wound healing in the young, whereas in 
the old they are less needed. 

  

Figure 8. Wound closure dynamics.



Biology 2021, 10, 240 10 of 12

Previous studies exist [13,23,24]. In the present study, full epithelization at W3 oc-
curred in the old rats but not in the young rats. It can be speculated that the larger total
wound area in the young rats in W1 created a worse starting point.

Periodontal disease is a good example for a similar situation [27]. In the past, evidence
indicated that periodontitis is a pathogen-induced disease [28]. Nowadays, there is a
shifting paradigm in the pathogenesis of periodontitis [29]. More and more studies demon-
strated that periodontal disease is a result of exaggerated inflammatory reaction [27–29].
Consequently, a host modulation therapy (HMT) strategy was suggested [27]. The modula-
tion of inflammatory reaction is called HMT [29]. Experimental results demonstrate encour-
aging results following the administration of HMT in periodontal disease [30,31]. It may be
speculated that the older age in the present model acts similar to HMT agents, decreasing
the inflammatory reaction and yielding an improved, faster wound healing process.

Unfortunately, a direct comparison of the current study to the untreated control
groups in human studies is not feasible, since the common limitations encountered in
clinical studies that evaluate donor healing, such as distinct techniques of graft harvesting,
may impair the standardization of wound depth and the thickness of the graft. However,
similar to the palatal donor site healing after split thickness FGG harvesting [11,26,32,33],
we found that the periphery of the mucoperiosteal palatal wounds in rats filled earlier
compared with the center of the wound.

Only macroscopic measurements of the dimensional changes in the wound were
performed in the present study. Primarily, the margin of newly formed epithelium is not
the same as that of the macroscopic wound area, while the epithelium grows over the
macroscopic margin of the wound [24]. Furthermore, we found it inaccurate to micro-
scopically determine the dimensional changes and epithelization rate of the wound due to
technical factors that might have affected the accuracy of the measurements.

Study limitations must not be ignored. Rat study is not exactly like human study.
The number of animals may be increased in future studies. Similarly, time frames may
be increased, especially in the first week. Furthermore, conclusions should be applied in
clinical situations. More specifically, using anti-inflammatory mediators preoperatively or
during the first week may significantly improve wound healing in the young, whereas in
the old they are less needed.

5. Conclusions

Collectively, our findings highlight a dynamic process of wound healing in this model.
While there were minimal changes in the soft tissue L-L plane, most of the wound healing
dynamics arose from the A-P plane in the young rats vs. symmetric wound closure in
both dimensions in the old rats. The symmetric wound closure yielded a complete and
faster wound healing. Reduced inflammatory reaction in the old rats, initially resulting in
decreased tissue damage, may be responsible for the differences.
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