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Prediction of multiple pH compartments 
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Abstract 

Background:  Hyperpolarization enhances the sensitivity of nuclear magnetic resonance experiments by between 
four and five orders of magnitude. Several hyperpolarized sensor molecules have been introduced that enable high 
sensitivity detection of metabolism and physiological parameters. However, hyperpolarized magnetic resonance 
spectroscopy imaging (MRSI) often suffers from poor signal-to-noise ratio and spectral analysis is complicated by peak 
overlap. Here, we study measurements of extracellular pH (pHe) by hyperpolarized zymonic acid, where multiple pHe 
compartments, such as those observed in healthy kidney or other heterogeneous tissue, result in a cluster of spec‑
trally overlapping peaks, which is hard to resolve with conventional spectroscopy analysis routines.

Methods:  We investigate whether deep learning methods can yield improved pHe prediction in hyperpolarized 
zymonic acid spectra of multiple pHe compartments compared to conventional line fitting. As hyperpolarized 
13C-MRSI data sets are often small, a convolutional neural network (CNN) and a multilayer perceptron (MLP) were 
trained with either a synthetic or a mixed (synthetic and augmented) data set of acquisitions from the kidneys of 
healthy mice.

Results:  Comparing the networks’ performances compartment-wise on a synthetic test data set and eight real 
kidney data shows superior performance of CNN compared to MLP and equal or superior performance compared 
to conventional line fitting. For correct prediction of real kidney pHe values, training with a mixed data set contain‑
ing only 0.5% real data shows a large improvement compared to training with synthetic data only. Using a manual 
segmentation approach, pH maps of kidney compartments can be improved by neural network predictions for voxels 
including three pH compartments.

Conclusion:  The results of this study indicate that CNNs offer a reliable, accurate, fast and non-interactive method 
for analysis of hyperpolarized 13C MRS and MRSI data, where low amounts of acquired data can be complemented to 
achieve suitable network training.
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Introduction
In living species, extracellular pH (pHe) is an impor-
tant physiological parameter that is tightly regulated 
by intrinsic buffer systems. Locally, deviations from the 
systemic pH are often caused by pathologies, such as 
cancer, inflammation, infection, ischemia, renal failure 
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or pulmonary disease [1–3]. Since pHe can play a criti-
cal role in disease progression [4] and can influence 
therapeutic success [5], many efforts have been under-
taken to develop a quantitative non-invasive pH imag-
ing technique [3, 4, 6]. However, there is no clinical 
routine method available for spatial quantification of 
pHe, rendering it still an important target in biomedical 
imaging.

Magnetic resonance-based pH imaging methods offer 
high spatial resolution without limitations on the pen-
etration depth and without involving ionizing radiation. 
In addition, conventional 1H MRI offers high anatomi-
cal soft tissue contrast that can be overlaid on top of pH 
images. MRI-based pHe imaging techniques that have 
been applied in  vivo require the use of exogenous mol-
ecules and rely either on their pH-dependent chemi-
cal exchange saturation transfer (CEST) or on their pH 
dependence of chemical shifts [1]. Utilizing endogenous 
molecules, the intracellular pH (pHi) can be measured by 
pHi-dependent proton exchange from amide groups of 
intracellular proteins [4].

Magnetic resonance-based detection of biochemical 
and physicochemical quantities by exogenous molecules 
was revolutionized by dissolution dynamic nuclear polar-
ization (DNP) which lifts nuclear spin polarization to a 
so-called hyperpolarized state leading to a sensitivity gain 
of more than four orders of magnitude [7]. Hyperpolar-
ized [1-13C]pyruvic acid is currently being used in clinical 
studies to examine its use for metabolic imaging of can-
cer, as well as in the brain and the heart [8–10]. Several 
pH-sensitive molecules have been hyperpolarized and 
been used for in vitro pH mapping including 13C, 15N, 31P, 
89Y and 129Xe spin-1/2 nuclei [11]. Only two of those have 
so far been applied for pH imaging in vivo: hyperpolar-
ized 13C-labelled bicarbonate [3, 12] and hyperpolarized 
[1,5-13C2]zymonic acid (ZA) [13] as well as its deuterated 
variant [1,5-13C2,3,6,6,6-D4]zymonic acid (ZAd) [14].

With hyperpolarized bicarbonate, pHe is being deter-
mined by the signal intensity ratio of the CO2 and 
HCO3

− peaks, while the pHe determination with ZA 
works via spectral analysis of the peak position, i.e. the 
chemical shifts. Chemical shift-based pHe detection 
offers the unique advantage compared to intensity-
based pH detection that multiple pHe compartments 
within one imaging voxel can be resolved if their spec-
tral peaks are separable, e.g. for resolving different pHe 
compartments in the kidney [13]. For intensity-based 
pHe detection, on the other hand, multiple pH com-
partments within one imaging voxel result in one sig-
nal intensity ratio, allowing only the determination of 
an average voxel pH. The concept of chemical shift-
based detection of quantitative physiological measures 

using hyperpolarized magnetic resonance sensors has, 
besides for detection of pHe, also been used to quantify 
zinc [15], calcium/magnesium/iron ions [16], tempera-
ture [17], or ligand-receptor interactions [18].

Quantification of these measurements with hyper-
polarized NMR sensors is done via analysis of the peak 
positions of the respective molecular sensors. Typically, 
the NMR spectra and all respective peaks are fitted via 
an optimization procedure giving the peak positions 
and amplitudes. However, such line-fitting procedures 
are error-prone in cases of low signal-to-noise ratio 
(SNR) and peak overlap, e.g. for multiple pHe compart-
ments within the kidneys [13]. In recent years, deep 
learning has shown its potential for magnetic reso-
nance spectroscopy (MRS) and magnetic resonance 
spectroscopic imaging (MRSI) data in several applica-
tions to improve analysis of noisy data with interfering 
signals [19, 20]. Among these, artificial neural networks 
(ANN) demonstrated their value for spectroscopy anal-
ysis in medicine by classifying lung cancer tissue based 
on 1H MRS [21] or denoising of brain 1H MRS [22]. 
Furthermore, it was shown that convolutional neural 
networks (CNN) and multilayer perceptrons (MLP) can 
be trained to classify specific chemical compounds in 
various spectroscopy data sets [23, 24]. Nevertheless, 
we hypothesize that there is an advantage in applying 
a CNN for spectral analysis, as this class of network is 
invariant under frequency shifts of the entire spectrum 
which can be caused by B0 inhomogeneities.

We also hypothesize that transfer learning with real 
mice kidney data could improve the performance for 
our deep learning model. Transfer learning and domain 
adaptation have been used to adapt the model trained 
by one data distribution to the target data domain [25, 
26], especially when the target domain data is limited 
[27]. Our target domain data, 13C-labelled zymonic acid 
kidney spectra, are by definition of the animal study 
and experimental efforts limited in size. Only one or 
two PRESS spectra or one CSI data  set, still contain-
ing only a few single voxel spectra from kidneys, can be 
obtained from a single imaging experiment.

In this work, we investigate whether deep learning 
can improve the prediction of multiple pHe compart-
ments from magnetic resonance data using hyperpolar-
ized ZA. For this task, we evaluate the performance of 
a CNN compared to a MLP as well as to conventional 
line fitting on both a single type of data (synthetic) and 
real data adaptation (a mix of real and synthetic data). 
For deep learning evaluation, both real data using line 
fitting as a gold-standard for evaluation of pHe com-
partments as well as synthetic data with known pHe 
compartments are used.
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Methods
Neural network architecture
We implemented a multi-output regression convolu-
tional neural network (CNN) and a multilayer percep-
tron (MLP), as shown in Fig.  1. The neural networks 
learned to map nuclear magnetic resonance spectra 
to specific pHe values of a specific number of distinct 
pHe compartments, of which were three for our specific 
case of in vivo kidney data of healthy mice.

The proposed CNN (Fig. 1a) consists of 4 sequential 
hidden layers for feature extraction. Each layer con-
sists of a 1D convolutional kernel, a rectified linear 
unit (ReLU) activation function, and max pooling. The 
input into each layer was first convolved with the slid-
ing kernel with stride of 1 and with length of 300, 150, 
50 and 20. The initial weight (kernel) was a random 
value drawn from a truncated normal distribution. The 
convolutional kernel length decreased along the layers 
for extracting sub-regional features [28] as the input 
was downsampled from 1024 to 512, 256, 128 and 64 
due to max pooling. The number of filters for feature 
extraction increased from 4, 4, to 8 and 8. ReLU activa-
tion functions were used in each layer to provide spar-
sity and thus robustness to small changes in input such 
as noise [29], as noise is inevitably present within the 
acquired spectra. The pooling layer was used to reduce 
the tensor size which could potentially merge semanti-
cally similar features [28].

Dropout was applied in the last feature extraction layer 
as a regularization to prevent over-fitting [30], for which 
it randomly dropped out 10% of the weights during train-
ing. Before the output layer, these feature maps were then 
flattened and passed to a dense layer with hyperbolic tan-
gent activation function [31], and the outputs were then 
mapped into the target pHe range 6.32 to 7.44.

The proposed MLP (Fig.  1b) consists of 4 fully con-
nected dense layers, followed by max pooling. Each dense 
layer has a filter size 16, 16, 32 and 32, for which the out-
put of each node is connected to all of the input nodes in 
the next layer. To compare their performance in mapping 
pHe compartments, the architecture of CNN and MLP 
were designed such that the number of weights in both 
neural networks were similar, at approximately 8000.

Modelling of NMR pHe spectra
Relative to the urea peak position, the chemical shifts 
ZA5 and ZA1 can be described as a function of pHe by 
the following scaled logistic function [13]:

(1)ZAi

(

pHe

)

= ZAi,min +
δi

1+ 10(pKa−pHe)

where ZA5,min = 12.57  ppm, ZA1,min = 8.52  ppm, 
δ1 = 2.57 ppm, δ5 = 5.13 ppm and pKa = 6.90 [13]. Using 
a Lorentzian peak model, the spectrum can be described 
by the following equation:

where x(f) is the spectrum, N is the number of peaks (in 
our case n = 7; 6 zymonic acid peaks and one urea peak), 
ai is the peak amplitude, wi is the full width at half maxi-
mum, and ZAi(pHe) is the corresponding chemical shifts 
of ZA5 and ZA1 peaks found by Eq. 1. For the 13C-urea 
peak, ZAi(pHe) is set to zero.

Hyperpolarized 13C magnetic resonance spectroscopy
Hyperpolarization
27  mg [1,5-13C2,3,6,6,6-D4]zymonic acid [14], 1.7  mg 
Ox063 trityl radical (GE Healthcare, Chicago, IL, USA) 
and 24  µL DMSO were vortexed for 35  min. The mix-
ture was added to a DNP sample cup and frozen in liquid 
nitrogen. 25 µL of a sample, containing 10 M 13C-urea in 
glycerol, 30 mM Ox063 and 1.5 mM DOTAREM (Guer-
bet, Villepinte, France) was subsequently added on top of 
the frozen layer and also frozen in liquid nitrogen. The 
sample cup was then polarized at 1.2  K for three hours 
by irradiation with a microwave frequency of 94.169 GHz 
and a power of 100 mW using a HyperSense® DNP Polar-
izer (Oxford Instruments, Abingdon, UK). Dissolution 
was performed with 2.99  ml D2O containing 80  mM 
TRIS, 0.3  mM EDTA and 50  mM NaOH, resulting in 
solutions containing 50  mM hyperpolarized zymonic 
acid and 100 mM urea with a pH 6.7 ± 0.4.

Hyperpolarized 13C‑magnetic resonance spectroscopy
All experiments were performed on a horizontal bore 
small animal 7  T magnet MRI scanner (Agilent/GE) 
MR901 with Bruker AVANCE III HD electronics and 
a 31  mm 1H/13C volume resonator (RAPID Biomedi-
cal, Rimpar, Germany). Experiments were performed on 
seven healthy C57BL/6 mice (Charles River, Wilmington, 
MA, USA) in accordance with pertinent laws and regula-
tions and approved by an ethical review board (Regierung 
von Oberbayern, Munich, Germany, Approval Number 
ROB-55.2-2532.Vet_02-17-177). Prior to imaging, ani-
mals were anaesthetized with 1.5–2.5% Isoflurane (v/v) in 
oxygen as a carrier gas, a tail vain catheter was placed and 
animals were positioned together with a 4.4  M [1-13C]
lactate phantom for B1 calibration inside the magnet. 
Breathing rate (40 ± 7  min−1) and animal temperature 
(37.0 ± 0.6 °C) were monitored with an ECG trigger unit 
(RAPID Biomedical) and an MR-compatible temperature 
monitoring system Model 1030 (SA Instruments Inc, 
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Fig. 1  Schematic diagram of the neural network architecture for the a convolutional neural network (CNN) and the b multilayer perceptron (MLP). 
Both the proposed CNN and MLP consist of 4 feature extraction layers, for which they learnt a mapping between the input spectra and multiple 
pHe compartments. To compare the performance of CNN and MLP in correctly predicting pHe compartments, the architectures were set to a 
similar number of weights, ≈ 8000. The length of the spectrum or feature maps, which are used as the input to each next convolutional or dense 
layer, are shown in the square brackets. In CNN, the lengths are scaled logarithmically. CNN: The number of filters is 4, 4, 8, and 8. The sizes of the 
convolutional kernel are shown in the round brackets. MLP: The number of neurons is 16, 16, 32, and 32. Dense layers are represented with half 
(MLP) or quarter (CNN) the number of nodes, except for output layers
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Stony Brook, New York, NY, USA) respectively. Kidneys 
were located using 1H RARE with FOV 32 × 32  mm2, 
slice thickness 1  mm, matrix size 128 × 128, repetition 
time 4000  ms, effective echo time 48  ms, RARE factor 
12, 10 averages. Following manual B1 calibration using 
13C-FID acquisitions with non-selective excitation by a 
1 ms block pulse of varying RF power and fitting of the 
resulting signal vs. excitation power curves, the hyperpo-
larized solution was injected and 13C acquisitions started 
5  s after end of injection. Single voxel 13C spectroscopy 
used PRESS on single kidneys with typical parameters: 
Total echo time 13.9  ms, total scan time 531  ms, exci-
tation pulse flip angle 90°, refocusing pulse flip angle 
180°, receive bandwidth 2000 Hz, 1024 points, voxel size 
5 × 5 × 7 mm. Hyperpolarized 13C-MRSI was performed 
using FIDCSI with typical parameters: total scan time 
14 s, FOV 28 × 24 mm2, slice thickness 5 mm, matrix size 
14 × 12, repetition time 83.1  ms, flip angle 15°, receive 
bandwidth 3200  Hz, 256 spectral points. Overall, nine 
CSI data sets and six PRESS data sets were acquired and 
used for training and testing.

Data analysis and conventional line fitting
All data processing was performed in MatLab (The 
Mathworks Inc., Natick, MA, USA). For PRESS acquisi-
tions, spectra were line-broadened by 5  Hz and phased 
manually. For CSI acquisitions, no line-broadening was 
applied, and magnitude spectra were averaged across 
both kidneys. C1- and C5-peaks of zymonic acid and of 
urea were identified by a standard automatic peak pick-
ing algorithm in MatLab for each pHe compartment 
and selection was inspected manually. Peaks were fitted 
according to the model described in Eq.  2 where peak 
height, position relative to urea, and a uniform peak 
width for all compartments were fitted as free param-
eters using a built-in non-linear least squares algorithm. 
Second, the corresponding pHe value was fitted from the 
relative zymonic acid peak distance to urea according to 
Eq. 1. Pairs of zymonic acid peaks were grouped into pH 
compartments and for each detected pHe compartment, 
a mean pHe was calculated which was weighted by the 
signal intensities from both the C1- and the C5-peaks. 
Common values for peak linewidths in Hz and ratios of 
signal amplitudes of the different kidney compartments 
were also extracted for generation of synthetic spectra for 
the training of the neural networks.

Evaluation and training of the neural networks
Data sets
Spectra synthetization  Due both to the fact that in vivo 
experiments are necessarily small in sample size for ethi-
cal reasons, and that in vivo hyperpolarized 13C experi-
ments are labour intensive, synthetic data was generated 

for the purpose of training the neural networks. To avoid 
over-fitting, noise was included in the spectral syntheti-
zation and was performed based on the following model:

where X(f) is the synthetic spectrum,  b0 is a constant 
baseline, ε is the additive noise, S is the SNR scale fac-
tor, x(f) is the set of Lorentzian peaks for the 3 metabolite 
peaks: urea, ZA5 and ZA1. Figure 2a shows the distribu-
tion of the 3 pHe compartment values of the synthetic 
spectra, which were initiated from a normal distribution 
respectively in the ranges: 7.33–7.44; 6.96–7.15; 6.32–
6.78, which were found from the measurements carried 
out according to “Hyperpolarized 13C-magnetic reso-
nance spectroscopy” section. The urea peak positions and 
widths were initiated from a normal distribution with a 
standard deviation of 0.580 ppm starting from 163 ppm, 
to represent potential B0 inhomogeneities and the peak 
widths were initiated between 30 and 70  Hz (0.397–
0.927 ppm) to account for variations in shim quality. The 
corresponding chemical shifts ZA5 and ZA1 peaks were 
then found by Eq. 2 using the Lorentzian peak model, and 
a set of basis peaks for the 3 metabolites peaks urea, ZA5 
and ZA1 was then generated (Fig. 2b). The ratios for the 
urea, ZA5 and ZA1 peak amplitudes were set to be 4:1:2, 
which represents the in vivo signal ratios of zymonic acid 
peaks detected in the different pHe compartments com-
pared to urea. Gaussian noise and baseline were added to 
the set of combined basis peaks to take the noise from 
MRS acquisition into account. The range of SNR scale 
factor was 2 to 7 and baseline was set from − 0.2 to 0.2, 
both drawn from the normal distribution (Fig. 2c). 10,020 
spectra were synthesized, 10,000 spectra were used for 
training and 20 spectra were used for testing.

Kidney data and augmentation  To adapt the neural net-
works to our target domain of mice kidney spectra, we 
generated 40 augmented spectra as training data based on 
the eight acquired mice kidney spectra by applying a five-
scale Gaussian denoising (scale factors 1.5, 1.2, 1, 0.8, 0.5) 
(Fig. 2d). The original eight spectra were used for testing.

Experiments
We set up four experiments to evaluate the perfor-
mance of CNN and MLP on mixed training data: 
CNNmix, MLPmix, and single type of training data: 
CNNsyn, and MLPsyn. A total of 10,000 spectra were 
used (Training: 8500, Validation: 1500). CNNmix and 
MLPmix consisted of 9960 synthetic spectra, 40 aug-
mented kidney data from PRESS and ROI-averaged CSI 
acquisitions, whereas CNNsyn and MLPsyn consisted of 
10,000 synthetic datasets. All augmented spectra were 

(3)X
(

f
)

= b0 + ε + S · x
(

f
)
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set to size of 1024, the magnitude of all spectra was 
normalized between 0 and 1 for training and testing.

A total of 28 spectra were used for testing, which 
included 20 augmented spectra and eight real mice kid-
ney spectra. Generation of augmented spectra and pre-
processing of in  vivo kidney spectra was implemented 
in MatLab.

Network training
Both the CNN and the MLP were trained with a 
batch size of 200 spectra and 400 epochs. Train-
ing progress was achieved by minimizing the sum of 
mean-square error loss of three pHe compartments: 
L = Lcortex + Lmedulla + Lureter , where Li is the L2 norm 
of the difference between the predicted pHe compart-
ment from the input spectra, and the ground truth 
pHe compartment. The loss was then back-propagated 
for updating the weight kernel for each layer using 
NADAM (Nesterov-accelerated Adaptive Moment 
Estimation) optimizer [32]. Both networks were imple-
mented in Keras using TensorFlow as the backend [33]. 
The training time for both neural networks was approx-
imately five minutes, both training and testing were 
performed on a NVIDIA Tesla P100 GPU.

Synthesis of line fitted pH values and neural network 
predicted pH values into a combined pH map
Based on the network performance results from tests 
on synthetic and real kidney data, the best perform-
ing network is chosen for neural-network-assisted 
improvement of pH mapping in healthy mice kidneys. 
For this purpose, supervised line fitting was performed 
voxel-wise on seven CSI data  sets from four mice for 
which the correct number of fitted compartments 
and fit quality was assessed. Spectra which were fitted 
with three pH compartments were extracted. For each 
image, a segmentation mask was created, indicating 
voxels either containing three pH compartments (“1”) 
or less than three compartments (“0”; corresponding to 
0, 1 or 2 pH compartments), and fed voxel-wise into the 
best-performing neural network. pH maps for each CSI 
data  set were then generated where the segmentation 
mask-positive area pH values were replaced by the pre-
dicted pH values from the network for the respective 
compartment, resulting in hybrid pH maps which are 
composed of pH values either based on line fitting or 
neural network predictions. The corresponding mean 
pH maps were calculated by averaging all compartmen-
tal pH values.

Fig. 2  Spectra synthetization was performed to generate three pHe compartment spectra for the CNN and MLP training data. a The pHe values 
for each of the three compartments (7.33–7.44; 6.96–7.15; 6.32–6.78) are normally distributed. b An example of the generated spectrum by 3 
compartment pHe values. c Signal-to-noise (SNR) ratios are applied ranging from 2 to 7 for the synthetic spectra. For simplification, only SNR 2, 5, 
and 7 are shown. Kidney spectra were augmented by applying five-scale Gaussian denoising to increase the real training data size. d Example of the 
original and denoised spectra. For simplicity, only the first and the fifth scale-denoised spectra are shown. An enlarged version of the spectra (green 
box) is shown on the right
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Results
13C spectroscopic data
Spectra from 13C-acquisitions of healthy kidney (top 
“Input” in Fig.  1) show the urea peak (164  ppm), six 
zymonic acid peaks (173–178  ppm) and the C5-peak of 
parapyruvate-hydrate (179  ppm), a decay product of 
zymonic acid. For zymonic acid, three pairs of C1 and 
C5 peaks can be grouped unambiguously to a single 
pHe compartment, and each compartment corresponds 

respectively to the three anatomical regions of the kid-
ney, namely the cortex (red stars), the medulla (green 
diamonds) and the ureter (blue triangles). Multi-
ple measurements on three mice return consistent 
pHe values for the cortex (pHe = 7.38 ± 0.03, n = 13), 
the medulla (pHe = 7.06 ± 0.06, n = 11) and the ureter 
(pHe = 6.53 ± 0.16, n = 9).

Network training
The training losses of CNNmix, CNNsyn, MLPmix and 
MLPsyn over 400 epochs are shown in Fig.  3. While the 
CNNs rapidly converge to their respective limit, the 
MLPs’ minimal loss after 400 epochs remains higher 
compared to the CNNs, having not yet reached a con-
verging limit. Interestingly, for both networks, this 
behaviour is independent of the training data set.

Comparison of performance of neural networks 
on augmented test data and conventional line fitting
To validate the network outputs and perform a compari-
son of the trained networks and conventional line fitting 
performed by an expert MRS scientist, 20 synthetically 
generated spectra with known ground truth pHe com-
partments were blind-fitted by the conventional line fit-
ting and pH analysis routine. In cases of sufficient pH 
difference between compartments together with suffi-
cient SNR, all peaks can be detected reliably with a high 
accuracy of the predicted pHe values (Fig. 4a).

In cases of low SNR and low intensity for one or mul-
tiple compartments relative to a third one, the conven-
tional line fitting only partially allows for detection of 

Fig. 3  The training losses for four models: CNNmix, CNNsyn, MLPmix 
and MLPsyn, stably converge to a minimal loss. While the CNNs 
achieve absolute minimum loss after 400 epochs, the MLPs remain 
at a considerably higher loss having not yet reached their absolute 
minimum at this training stage

Fig. 4  a Conventional line fitting of a synthetic kidney spectrum with three fitted pHe compartments indicated by coloured markers (compartment 
1: red stars, compartment 2: green diamonds, compartment 3: blue triangles) and comparison of calculated pHe values and ground truth data is 
shown as inset resulting in good agreement. b Conventional line fitting on a noisy spectrum and low compartment intensities of the medulla and 
the ureter. Three compartments can only be partially detected and agreement with ground truth is rather poor
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pHe compartments with less accuracy when compar-
ing to the ground truth pH values (Fig. 4b). In the next 
step, the same twenty spectra were analyzed with the 
two CNN models CNNmix and CNNsyn and the two 
MLP models MLPmix and MLPsyn which were all previ-
ously trained either with a mixed (augmented + synthetic 
spectra) or with synthetic spectra only. The perfor-
mance of the conventional line fitting and the four net-
work models on the synthetic spectra test set relative 
to each other was compared by linear regression of the 
predicted and the ground truth pH value for each com-
partment. The adjusted coefficient of determination R2 
and slopes of the linear regression β to compare statis-
tical and systematic uncertainties respectively are listed 
in Table  1. The dominant pHe compartment of the cor-
tex is best predicted by the CNNmix (β = 1.01), however 
with greater uncertainty (R2 = 0.78) compared to con-
ventional line fitting (R2 = 0.85) or CNNsyn (R2 = 0.90). 
The pHe compartment of the medulla is best and equally 
well predicted by CNNmix and CNNsyn compared to all 
other methods, however with greater systematic uncer-
tainty (βCNNmix = 1.30, βCNNsyn = 1.26) and lower scatter-
ing (RCNNmix

2 = 0.91, RCNNsyn
2 = 0.92) compared to the 

cortex. Interestingly, for the pHe compartment of the ure-
ter, line fitting achieves equivalent statistical uncertainty 
(R2 = 0.99) compared to the CNNs (RCNNmix

2 = 0.98, 
RCNNsyn

2 = 0.99) while outperforming them regarding sys-
tematic error (βFit = 1.02). The performance of the MLPs 
is very poor for the cortex and the medulla compartment 
and only modest for the ureter compartment. This obser-
vation of poor MLP performance is also visualized in the 
modified Bland–Altman plots (Fig. 5), indicating that the 
MLPs have deviations of more than 0.2 pH units for the 
ureter compartments for some spectra. Furthermore, the 
good performance of both trained CNNs for all compart-
ments is verified while for the conventional line fitting 

some systematic underestimation of the cortex pHe can 
be observed.

Comparison of performance of neural networks on real 
kidney data
To evaluate the suitability for routine spectroscopic data 
analysis, all four networks were tested on eight real mice 
kidney spectra. A comparison to the values obtained by 
conventional line fitting as a pseudo ground truth is vis-
ualized with Bland–Altman plots (Fig. 6). Following the 
trend observed for the synthetic test data, the CNNmix 
network outperforms all other networks, showing the 
predicted pHe values to deviate less than 0.1 pH units 
from the fitted data for all compartments. In contrast 
to testing on synthetic spectra, a CNN network being 
trained only with synthetic data CNNsyn, shows only poor 
performance when tested on real data with predicted pHe 
values deviating up to 0.3 pH units from conventional fit 
values and decreasing performance from compartment 
1 (cortex) to compartment 3 (ureter). For compartment 
2 (medulla) and 3 (ureter), MLPmix also achieves better 
agreement with fitted pHe values. Analogous to testing 
on synthetic test spectra, MLPsyn shows the worst agree-
ment with conventional line fitting, exceeding 0.1 pH 
units mean difference for compartment 3 (ureter).

Hybrid pH mapping by voxel‑wise combination of pH 
values reconstructed from CNNmix and line fitting
Based on the performance measurements for synthetic 
and real kidney spectra, CNNmix was chosen for applica-
tion in pH mapping of healthy mice kidney (Fig. 7a). An 
exemplary segmentation mask for CSI data matching the 
anatomy in Fig. 7a based on supervised line fitting to dis-
tinguish voxels with three pH compartments and voxels 
with less than three pH compartments is shown in Fig. 7b 

Table 1  Top: Evaluation of the prediction accuracy by compartment-wise comparison of the adjusted coefficient of determination 
R2 derived from a linear regression of ground truth and pH values predicted by conventional line fitting (model “Modelling of NMR 
pHe spectra” and “Data analysis and conventional line fitting” sections) and the neural networks after application to 20 synthetic test 
spectra; Bottom: Linear slope coefficients β derived from linear regressions to evaluate prediction bias

Both parameters show poor accuracy and strong prediction bias for the medulla for line fitting and MLP networks potentially due to low SNR

R2 Line fitting CNNmix CNNsyn MLPmix MLPsyn

Compartment 1—Cortex 0.85 0.78 0.90 0.11 0.22

Compartment 2—Medulla 0.65 0.91 0.92 0.05 0.08

Compartment 3—Ureter 0.99 0.98 0.99 0.65 0.59

β Line Fitting CNNmix CNNsyn MLPmix MLPsyn

Compartment 1—Cortex 0.81 1.01 1.30 3.83 4.79

Compartment 2—Medulla 0.59 1.30 1.26 1.87 2.64

Compartment 3—Ureter 1.02 1.09 1.08 1.52 1.62
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(white: three pH compartments, black: less than three pH 
compartments).

pH mapping based on supervised line fitting (Fig.  7c, 
top row) reveals a globally present physiological pH 
compartment (top left), a heterogeneous, slightly acidic 
second pH compartment which can be attributed to the 
medulla (top middle-left) and a third pH compartment 
corresponding to the ureter (top middle-right). Voxel-
wise compartment-averaging generates kidney-specific 
pH contrast. Substitution of line fitted pH values by val-
ues predicted by CNNmix shows slightly more basic pH 
values predicted by the neural network compared to the 
line fitting. For the medulla compartment, network pre-
dictions appear to be more homogeneous compared to 
line fitted maps. For the ureter compartment, line fit-
ted as well as neural network predicted maps agree well 
with each other. The mean pH map based on these hybrid 
compartment pH maps shows good inter- and intra-kid-
ney homogeneity in mean pH values compared to line fit-
ted maps.

For quantitative comparison, pH compartments 
derived from line fitting and neural networks were both 
averaged across individual kidneys for multiple acquisi-
tions on different animals (Fig. 8). pH values derived from 
line fitting show lowest inter- and intra-subject variation 
for the cortex (pHcortex,fit = 7.41 ± 0.02, n = 14) while pH 

values for the medulla (pHmedulla,fit = 7.09 ± 0.10, n = 14) 
and the ureter (pHureter,fit = 6.70 ± 0.13, n = 14) are dis-
tributed across larger pH ranges while all compart-
ments can be well separated from each other based on 
pH. pH compartments predicted by the CNNmix agree 
well with line-fitted compartments, despite the cor-
tex (pHcortex,CNN = 7.43 ± 0.01, n = 14) and the medulla 
(pHmedulla,CNN = 7.13 ± 0.04, n = 14) exhibiting over-
all slightly more basic pH values compared to the line-
fitted ones. For the ureter, no relevant difference can be 
observed (pHureter,CNN = 6.72 ± 0.04, n = 14). In agree-
ment with lower intra-subject variations as seen in com-
partment maps in Fig.  7, the inter- and intra-subject 
variations of compartment pH values are lower for the 
neural-network-predicted pH values, while the values for 
each subject are in good agreement relative to the com-
partment-specific standard deviation (black crosses are 
corresponding to the same kidney in the same subject in 
Fig. 8).

Discussion
Modelling and fitting of hyperpolarized 13C spectroscopic 
data
Analogous to published data on spectra of zymonic acid 
in kidney of healthy rats [13], several pH compartments 
can be detected in hyperpolarized 13C acquisitions of 

Fig. 5  Modified Bland–Altman plots showing the difference between predicted and ground truth pH values from synthetic kidney test spectra 
against the ground truth pH for each compartment. Black dashed lines indicate the mean difference and grey dotted lines indicate the 95% 
confidence interval for this deviation
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zymonic acid in healthy kidney of mice. However, out 
of three detected pHe compartments which could be 
assigned to cortex, medulla and ureter, the latter two 
often suffer from lower compartment signal due to lim-
ited perfusion of the agent within the short acquisition 
time [13] or enhanced signal decay in case of injury or 
pathological alterations [34–36]. Consequently, line fit-
ting with conventional methods becomes challenging 
when trying to resolve the pHe compartments of the kid-
ney. For these reasons, manual spectral pre-processing 
together with fitting of a linear combination of individual 
Lorentzian peaks while minimizing the free parameters 
to amplitude, peak position, and peak width (FWHM) 
was chosen as an appropriate fitting routine despite 
inherent SNR limitations. For these reasons, manual 
spectral pre-processing together with fitting of a linear 
combination of individual Lorentzian peaks while mini-
mizing the free parameters to amplitude, peak position, 
and peak width (FWHM) was chosen as an appropriate 
fitting routine despite inherent SNR limitations. Addi-
tionally, other standard fitting routines for MR spec-
tra such as LCModel [37] or AMARES [38], were either 

unsuitable, unstable, or of no significant benefit in this 
work.

For instance, for AMARES it was already shown that 
this algorithm suffers from unstable fitting when the peak 
frequencies are allowed as free parameters [39]. In addi-
tion, zymonic acid spectra on kidney are less sparse than 
the previously fitted pyruvate- and lactate-containing 
spectra.

LCModel is a standard fitting routine for magnetic 
resonance spectra which allows excellent peak quanti-
fication for 1H metabolites. Nevertheless, this method 
also has several limitations regarding the application to 
the data of this work. LCModel predominantly aims to 
quantify spectral peaks which requires the input of a set 
of basis spectra of high spectral quality and good SNR. In 
such cases, the peak positions are fixed, and only minor 
peak shifts due to eddy currents and magnetic field inho-
mogeneities are tolerated. This contrasts with hyperpo-
larized 13C acquisitions using zymonic acid in which SNR 
is typically modest, spectral resolution limited and quan-
tification not necessary. As zymonic acid peaks strongly 
shift with pHe, a suitable set of basis spectra would 

Fig. 6  Conventional Bland–Altman plots showing the difference between predicted and conventionally fitted pHe values from spectra of 
hyperpolarized 13C acquisitions on mice kidney plotted against the mean pHe from both analysis methods. Black dashed lines indicate the mean 
difference and grey dotted lines indicate the 95% confidence interval for this deviation
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require multiple zymonic acid spectra at different pHe 
values which either requires a high amount of basis com-
ponents or an inherent limitation in the measured pH 
accuracy limited by a small basis set. In addition, since 
C1- and C5-peak intensities vary relative to each other 
in different acquisitions, combined modelling as one 
basis spectrum for a fixed pH is difficult. Furthermore, 
LCModel requires well separated peaks for proper differ-
entiation which is not the case for the densely packed pH 
compartment peaks as seen in Fig. 1.

CNN and MLP performance
In our study, both CNNmix and CNNsyn outperform 
MLPmix and MLPsyn in predicting all three pH com-
partments in synthetic test data. Here, the CNNs have 
better accuracy and less uncertainty as shown in the 
regression analysis. Interestingly, for the cortex and 
medulla compartments, CNNmix was giving a better 

prediction accuracy as compared to the conventional 
line fitting method. While the CNN and the MLP have 
a similar number of weights (≈ 8000), the CNN used 
kernels in convolutional layers to perform elementwise 
multiplications to inputs while the MLP used densely 
connected neurons. When applied systematically across 
the entire input spectra, these convolutional kernels 
could extract spectral features such as the metabolite 
peaks distances, as the kernels account for the values 
on neighboring pixels. Because of the weight shar-
ing that occurs when the convolutional kernels slide 
across the spectrum [40, 41], the CNN becomes less 
susceptible than the MLP to spectral variance or drifts 
in spectral peak positions which can be caused by B0 
inhomogeneities. However, the choice of specific neural 
network depends on the type of learning tasks and fea-
tures to be extracted, as previous studies showed MLP 
performed well in classification [42, 43], while CNN 

Fig. 7  a Anatomical axial T2-weighted image of mice kidney encircled with white ROIs. For shim improvements, the mouse, as well as a  
[1-13C]lactate-phantom for B1 calibration are covered with carbomer gel. b Segmentation mask for a 14 × 12 CSI data sets acquired on the anatomy 
in a. White areas indicate voxels corresponding to spectra with three pH compartments, black areas indicate voxels of which spectra contain two 
or less compartments. c Top row: Individual pH compartment maps for the cortex or a physiological pH compartment (compartment 1), a slightly 
acidified compartment, mainly the medulla (compartment 2) and a strongly acidified compartment of the ureter (compartment 3) as derived from 
supervised line fitting. The mean pH map represents the un-weighted average of all three pH compartment maps. Bottom row: Compartment 
maps derived from line fitting where white areas in the segmentation mask have been replaced by voxel-wise predicted pH values from CNNmix. 
The mean pH map displays the average pH value of the respective number of pH compartments
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also demonstrated good performance in image segmen-
tation [44] or classifications [45]. Some even explore 
the synergies of MLP and CNN networks [46, 47].

Performance of neural networks trained with mixed data
We showed that it is possible to train models on a limited 
amount of real data by transfer learning, whilst most of 
the training data were synthetically generated based on a 
spectral model for [1,5-13C2]zymonic acid and 13C-urea. 
When tested with synthetic data, CNNsyn performed bet-
ter than CNNmix in predicting medulla and ureter pH 
as shown in the linear regression analysis and modified 
Bland–Altman plots. Especially for the medulla com-
partment, both line fitting and MLPsyn and MLPmix show 
poor performance what might be due to higher sensi-
tivity to low SNR. As there is no absolute ground truth 
for the kidney in healthy mice, we compared the neural 
network predictions with the results in line fitting as a 
pseudo ground truth. We found CNNmix had the most 
consistent and comparable results to line fitting, as it has 
the smallest difference compared to other models, and its 
95% confidence level is also smaller than CNNsyn in cor-
tex and ureter (see Fig.  5). Moreover, MLPmix are more 
comparable to line fitting than CNNsyn, and MLPmix has 
generally smaller mean difference.

Hybrid pH map generation by combination of line fitting 
and CNNmix predictions
Combination of line fitting and neural networks appears 
to improve pH mapping in kidneys of healthy mice. 
Based on compartmental pH maps, line fitting appears 

to be only quantitatively robust for the cortex while the 
medulla and the ureter show considerable inter- and 
intra-kidney pH variability, the latter being physiologi-
cally rather unreasonable. We assume that this high vari-
ability stems from the low SNR of zymonic acid peaks 
corresponding to these two compartments. Substitution 
of voxels in pH maps corresponding to spectra contain-
ing three pH compartments by neural network predic-
tions results in more homogeneous compartment maps 
while quantitatively still agreeing with line-fitted com-
partments. This suggests a superior performance of the 
neural network compared to the line fitting approach for 
low SNR compartments. Furthermore, as the network is 
predicting pH compartments voxel-wise based on indi-
vidual spectra, it has to be pointed out that the predic-
tions of neighboring voxels are independent from each 
other and therefore the observed spatial homogeneity of 
compartments therefore indicates a good robustness of 
the pH predictions. In addition, high quantitative predic-
tion accuracy is suggested by the observation that cortex 
compartments are systematically predicted with a higher 
pH value compared to the line fitting method, which 
agrees with the observation that line fitting systemati-
cally underestimates the cortex pH when evaluating the 
method performance for artificial spectra of known pH.

Data size
These observations suggest that the real and augmented 
data might consist of spatially independent features, such 
as the noise during the spectra acquisition, which is cru-
cial to train a more accurate model. Neural networks 
usually require a large amount of training data, and the 
number of training data depends on the complexity of 
the tasks and features to extract. However, generating 
a larger data set is challenging for hyperpolarized 13C 
MRSI. In vivo spectra obtained by preclinical studies are 
limited in size for ethical reasons: the number of animals 
should be as low as possible. Additionally, the experimen-
tal efforts are rather large. Also, with regard to applica-
tion for hyperpolarized 13C acquisitions in humans, data 
set size is critical as clinical trials currently performed 
with this imaging technique are typically limited to 5–100 
patients [48]. Efforts to obtain larger amounts of data 
might involve the generation of databases but, especially 
for imaging using hyperpolarized 13C-labelled zymonic 
acid, this is at an early stage. Nevertheless, in our study, 
we showed improved network performance by including 
less than 0.5% real augmented data (40 augmented spec-
tra out of 10,000 training spectra), an amount that can be 
realistically generated from single preclinical studies.

Fig. 8  pH compartments averaged over regions of interests in single 
kidneys of mice. pH values derived from line fitting show stronger 
variations between single kidneys and different subjects compared 
to predictions from CNNmix.pH values for each compartment show 
good agreement between line fitting and neural network predictions 
for individual kidneys (example indicated by black crosses)
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Future works
In this study, we found that the convolutional layers ena-
ble the network to better extract spectral features in the 
spectra. Future works could extend the application of 
convolutional layers to denoise the spectra or automating 
peak picking. Moreover, the neural networks here only 
predict the chemical shift of the spectra—they do not yet 
consider the signal intensity as in the conventional line 
fitting method. An extension the current approach might 
also predict signal intensity, which could then allow a 
more direct calculation of weighted-average pH maps. In 
addition, for imaging of cancer or unknown tissue, net-
works could be trained to predict the correct number of 
pH compartments and using this information to selec-
tively pass the spectra through other networks which 
predict the correct pH values.

Conclusion
Two different types of neural networks trained once with 
a fully synthetic data set and once with a mixed data set, 
containing real and synthetic data, were each evaluated 
for prediction of pH compartments from hyperpolarized 
13C acquisitions of zymonic acid on kidney in healthy 
mice. CNNs trained with a mixed set of augmented and 
synthetic spectra show the ability to accurately pre-
dict multiple pH compartments in hyperpolarized 13C 
spectra. This network achieves the best results out of all 
tested networks and its performance competes with or 
outperforms conventional line fitting being supervised 
by humans. The trained network can be used to improve 
pH mapping by segmentation-based substitution of line 
fitted pH values by neural network predictions. There-
fore, small amounts of experimental data and appropri-
ate neural network and training method choice allows 
fast, accurate, and reliable evaluation of hyperpolarized 
13C magnetic resonance spectroscopic acquisitions for 
pH measurements in kidney. Using appropriate training 
data sets and slightly modified output layers of the net-
works to account for different amounts of detected pH 
compartments, the presented concept could potentially 
be applied to other organs or tumours.
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