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Abstract
Background Microvascular invasion (MVI) is essential for the management of hepatocellular carcinoma (HCC). However, 
MVI is hard to evaluate in patients without sufficient peri-tumoral tissue samples, which account for over a half of HCC 
patients.
Methods We established an MVI deep-learning (MVI-DL) model with a weakly supervised multiple-instance learning 
framework, to evaluate MVI status using only tumor tissues from the histological whole slide images (WSIs). A total of 350 
HCC patients (2917 WSIs) from the First Affiliated Hospital of Sun Yat-sen University (FAHSYSU cohort) were divided into 
a training and test set. One hundred and twenty patients (504 WSIs) from Dongguan People’s Hospital and Shunde Hospital 
of Southern Medical University (DG-SD cohort) formed an external test set. Unsupervised clustering and class activation 
mapping were applied to visualize the key histological features.
Results In the FAHSYSU and DG-SD test set, the MVI-DL model achieved an AUC of 0.904 (95% CI 0.888–0.920) and 
0.871 (95% CI 0.837–0.905), respectively. Visualization results showed that macrotrabecular architecture with rich blood 
sinus, rich tumor stroma and high intratumor heterogeneity were identified as the key features associated with MVI ( +), 
whereas severe immune infiltration and highly differentiated tumor cells were associated with MVI (−). In the simulation 
of patients with only one WSI or biopsies only, the AUC of the MVI-DL model reached 0.875 (95% CI 0.855–0.895) and 
0.879 (95% CI 0.853–0.906), respectively.
Conclusion The effective, interpretable MVI-DL model has potential as an important tool with practical clinical applicability 
in evaluating MVI status from the tumor areas on the histological slides.
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Introduction

Microvascular invasion (MVI) is one of the most important 
histological features of the prognosis and treatment man-
agement of hepatocellular carcinoma (HCC) [1, 2]. Postop-
erative adjuvant transarterial chemoembolization for HCC 
patients with MVI significantly reduced tumor recurrence 
and improved survival [3, 4]. MVI is also the only histo-
logical feature that has been proven to be predictive of the 
efficacy of adjuvant therapy by a clinical trial [5]. Addi-
tionally, MVI status can also be an indicator for therapeutic 
decision-making in recurrent HCC [6]. Therefore, an accu-
rate histological diagnosis of MVI is highly critical to the 
precise management of HCC.

Postoperative histological assessment is the gold stand-
ard for the diagnosis of MVI. However, MVI is commonly 
scattered in the adjacent peri-tumor liver tissues, leading to 
difficulties in its evaluation. Accordingly, 83.3% of the MVIs 
were located within 1 cm from the tumor boundary, but 
also approximately 8.4% were located beyond 2 cm or even 

further [7]. Therefore, multipoint sampling at the peri-tumor 
region is necessary to ensure the detection rate of MVI [8, 
9]. Nevertheless, in clinical practice, not all patients could 
obtain sufficient sampling tissues for MVI evaluation. More 
than 60% of HCC patients received nonsurgical treatment 
with only biopsy specimens [10]. For patients who receive 
surgical treatment, the background cirrhosis leads to a con-
siderable portion of them having narrow surgical margins 
to maintain sufficient remnant liver volume [11]. According 
to the previous studies, the proportion of HCC patients with 
margins < 0.5 cm ranged from 43.6 to 44.2% [7]. The MVI 
status could hardly be evaluated in these patients with lim-
ited information on the peri-tumor region, ultimately affect-
ing the treatment decisions and clinical outcomes.

Histological whole slide images (WSIs) of HCC contain 
a massive amount of biological information. Recent stud-
ies demonstrated that some histological features such as 
macrotrabecular-massive type, cholangiocarcinoma-like and 
stem cell-like traits were positively correlated with the inci-
dence of vascular invasion [12, 13]. Therefore, quantitative 
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analysis of this information in tumor tissue has the potential 
to help diagnose MVI without sampling from the peri-tumor 
region. However, quantitative evaluation of this information 
is challenging with the naked eyes of pathologists. Deep 
learning could automatically extract imaging features which 
are invisible to human observers and potentially provide 
important clinical, biological and molecular-morphologic 
information [14]. Previous studies on deep-learning models 
in other tumors also indicated the possibility of predicting 
features outside the tumor (such as lymph node metastasis) 
by evaluating information from tumor areas only [15, 16]. 
Therefore, constructing a deep-learning model based on the 
imaging information of tumor areas might have the potential 
to evaluate MVI status effectively and assist with the clinical 
management of HCC patients.

In this study, we developed MVI deep-learning (MVI-
DL) prediction model in multicenter HCC cohorts, by learn-
ing the characteristic information from the tumor areas of 
histological WSIs, to automatically and accurately evaluate 
the MVI status.

Materials and methods

Patient cohorts and data preparation

This study protocol conforms to the ethical guidelines of the 
1975 Declaration of Helsinki as reflected in a priori approval 
by the institution's Human Research Committee. Informed 
consent was waived since this was a retrospective cohort 
study.

We retrospectively collected 368 patients from the First 
Affiliated Hospital of Sun Yat-sen University (FAHSYSU) 
and 120 patients from the Dongguan People’s Hospital 
and Shunde Hospital of Southern Medical University (DG-
SD) who underwent curative hepatectomy from January 
2016 to December 2018. All these patients were patho-
logically diagnosed with HCC, and all hematoxylin and 
eosin histological slides were collected to train and vali-
date the MVI prediction model. Slides with poor stain-
ing quality or images with artifacts after scanning were 
excluded. Finally, a total of 2917 WSIs of 350 patients 
from FAHSYSU were included and were randomly divided 
into a training set and an independent test set. A total of 
504 WSIs of 120 HCC patients from DG-SD formed an 
external test set (Fig. 1a). In order to ensure the high-qual-
ity ground truth labels of the data used for model develop-
ment and validation, all the resected HCC specimens from 
the FAHSYSU and DG-SD cohorts had surgical margins 
over 2 cm, and sufficient postoperative sampling tissues 
were obtained for MVI evaluation. According to our pre-
vious large retrospective study, a threshold of four, six, 
eight and eight sampling tissues within peri-tumor liver 

parenchyma were required for evaluating MVI in solitary 
tumors measuring 1.0–3.0 cm, 3.1–4.9 cm and ≥ 5.0 cm 
and multiple tumors [8]. Additionally, the histological 
diagnosis of MVI for each slide was prospectively evalu-
ated based on the consensus of three pathologists with over 
5 years of experience in liver pathology.

Additionally, a total of 376 WSIs from 376 HCC patients 
were obtained from the TCGA database via the Genomic 
Data Commons (https:// gdc. cancer. gov/). Information on 
recurrence-free survival (RFS) and overall survival (OS) was 
collected from these patients. Patients without survival data 
or slides with poor image quality were excluded and finally 
304 WSIs of 304 HCC patients were included to evaluate the 
correlation of predicted MVI results by the MVI-DL model 
with patients’ survival outcomes (Fig. 1a).

All WSIs were scanned at 40 × magnification by a KF-
PRO-020 type of scanning machine (KFBIO, Ningbo, 
China) and were stored in SVS file format. A pathologist 
with over 1 year of working experience in liver pathology 
performed the image quality control to screen out poorly 
stained slides or had obvious artifacts. To prevent overlaps 
between datasets, the WSIs from a given patient were kept 
together in the same set. To extract the information under 
different magnifications, we divided the WSIs into nono-
verlapping 512 × 512 pixel patches at magnifications of 5 × , 
10 × , 20 × and 40 × , respectively. Patches with over 50% 
of background coverage were excluded (Supplementary 
Methods).

Development of the MVI‑DL model

Image sampling and magnification selection

To clarify the contribution of different tissue areas in the 
WSI to the prediction of MVI, and to further confirm the 
sampling strategy for model training, we compared the per-
formances of models developed based on different tissue 
areas. We first trained a segmentation network, details in 
Supplementary Methods. We then applied the segmenta-
tion model to all other WSIs in the FAHSYSU and DG-SD 
cohorts for automatic segmentation. Prediction models were 
constructed based on tumor area, peri-tumor area and the 
whole WSI, respectively, to compare models’ performance 
with different sampling strategies.

To further determine the optimal number of sampling 
patches under different magnifications for the prediction 
model, we performed sensitivity analyses of the number of 
sampling patches under different magnifications. We also 
compared the performances of the models under different 
magnifications with the ensemble model integrating differ-
ent magnifications to determine the network structure of the 
final prediction model (MVI-DL model).

https://gdc.cancer.gov/
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Training of the MVI‑DL model

The MVI-DL model was constructed based on a weakly 
supervised multiple-instance learning (MIL) framework 
[17]. The framework consists of a convolutional neural net-
work (CNN) feature extraction layer, a MIL pooling layer 
and a fully connected layer. Each WSI obtained a patch bag 
after tiling, the label of which was the patient’s MVI status 
(Fig. 1b). We used patch bags and their corresponding labels 
as the input to train the prediction network. A pre-trained 
Inception-v4 model was used as the backbone to extract the 
features of patches. In the MIL pooling layer, we introduced 
the attention mechanism, aggregated the patch features 
through the attention score, and finally output the predicted 
value of the WSI through the fully connected layer (Fig. 1c 

and Supplementary Methods). We used a fine-tuned set (a 
part of the training set) to select five optimal prediction mod-
els before overfitting and took the average of the five models 
as the final prediction score (Fig. 2a and Fig. S1, S2). The 
average of the prediction scores under different magnifica-
tions formed the prediction scores of the MVI-DL model.

Visualization of the MVI prediction

To further understand the key histological features that 
contribute the most to the model prediction of MVI, we 
extracted the top 4000 and the bottom 4000 patches based 
on the MVI predictive attention score and then clustered 
and visualized them using t-SNE and DCCS algorithms [18, 
19]. Pathologists reviewed the pathological features in each 

Fig. 1  Data collection and study design. a Patients from three medi-
cal centers and the TCGA dataset were enrolled in this study. b 
Labelling of the images. All patches on one WSI were considered as 
a patch bag and shared a same label. If the patient is MVI (−), all its 
WSIs, namely, patch bags would be labelled as negative; If the patient 
is MVI ( +), all the patch bags would be labelled as positive, regard-

less of the existence of MVI. c The flowchart of the MVI-DL model. 
All WSIs obtained from multipoint sampling were automatically 
segmented first, and the tumor areas tiled at different magnification 
scales were then fed into the prediction network. The average of all 
WSI-level scores formed the MVI-DL score of the patient, and when 
it is above a certain threshold, the patient is predicted to be MVI ( +)
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cluster of patches without being informed of the label or 
prediction score for each patch. We also applied gradient-
weighted class activation mapping (Grad-CAM) [20] to 
provide an insight into regions within each patch of the cor-
responding cluster that the MVI-DL model used to generate 
predictions (Supplementary Methods).

Validation of the MVI‑DL model performance

The predictive performance of the MVI-DL model was 
evaluated in the FAHSYSU test cohort and DG-SD 
cohort. Clinical information (age, gender, serum AFP 
level, tumor number and size, BCLC, Edmondson grade 
and tumor encapsulation) was collected and analysed by 

multivariable logistic analysis to determine the MVI-asso-
ciated clinical characteristics. A clinical-MVI-DL model 
was constructed based on the MVI-DL prediction score 
and the clinical MVI-associated characteristics. We further 
compared the performance of the MVI-DL model with 
MVI-associated clinical characteristics and the clinical-
MVI-DL model.

For patients in the FAHSYSU test cohort, the DG-SD 
cohort and the TCGA cohort, we further divided them by 
the predicted MVI status from the MVI-DL model. Sub-
sequently, we compared the RFS and OS between patients 
predicted to be MVI ( +) and MVI (−) to evaluate the cor-
relation between the predicted MVI status and patient’s 
survival outcomes in these three cohorts independently.

Fig. 2  Network structure and hyperparameters of the MVI-DL model. 
a The MVI-DL model consisted of a segmentation model and a 
predication model. First, the segmentation model identified the tiled 
patches as tumor or peri-tumor patch under 5 × , 10 × and 20 × mag-
nification scales. The prediction section included five trained models 
(each model consisted of an Inception-v4 network, a MIL pooling 
layer and a fully connected layer) at each magnification scale, these 
tumor patches were fed into the five models and each generated one 
score reflecting the probability of MVI. The average of the five scores 

was considered as the ensemble score, one for each magnification. 
The mean of the three ensemble scores represents the final predictive 
score for this WSI. b Comparison of the AUCs of different sampling 
tissue categories under different magnification scales. c Comparison 
of the AUCs of different sampling patches numbers under different 
magnification scales. d Comparison of the AUCs of single magnifica-
tion scales and the ensemble one. ns, p > 0.05; *, 0.05 > p > 0.01; **, 
0.01 > p > 0.001; ***, p < 0.001
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Simulation of the clinical application of the MVI‑DL 
model

Patients with insufficient surgical margin for MVI 
evaluation

Considering that some HCC patients with narrow surgi-
cal margins had insufficient histological sections for MVI 
evaluation, we simulated a clinical scenario where patients 
had only one WSI. We randomly selected one WSI for each 
patient in the FAHSYSU and DG-SD test set as the input 
and then analysed the predictive performance of the MVI-
DL model. Additionally, to further investigate the impact of 
different number of the WSIs randomly selected from each 
patient on the prediction performance of the model, we per-
formed 100 rounds of iteration for each point of the number 
of the WSIs and then performed a sensitivity analysis with 
these mean values (standard deviation) of each point that 
calculated from the generated 100 results.

Patients with biopsies only

Considering that a large part of HCC patients could only 
acquire biopsy specimens, we simulated a clinical scenario 
where the tissue size of the WSIs were similar to liver biopsy 
specimens. Therefore, we randomly selected one WSI for 
each patient in the FAHSYSU and DG-SD test set and then 
randomly sampled adjacent patches with a similar area of 
a liver biopsy from each WSI as the one simulated biopsy. 
Clinically, three biopsies at most were routinely acquired for 
HCC patients. Therefore, we analysed the predictive perfor-
mance of the MVI-DL model with one to three simulated 
biopsies. The detailed simulation method is described in 
Supplementary Methods.

Statistical analysis

Receiver operating characteristic (ROC) curves were gen-
erated to evaluate the performance of the MVI-DL model. 
Subsequently, the area under the receiver operating char-
acteristic curve (AUC) values were calculated accordingly. 
A two-sided DeLong test was used to compare the AUCs. 
An optimal cut-off was determined by the ROC curve to 
reach the best accuracy, which was 0.58 in this study. The 
accuracy, sensitivity and specificity were then calculated 
according to this cut-off for the prediction results (≥ 0.58 as 
positive, < 0.58 as negative). RFS and OS curves were ana-
lysed using the Kaplan–Meier method and compared using 
the Mantel–Cox log-rank test. Logistic regression analyses 
were performed to select the MVI-associated characteristics. 
Each variable was assessed by univariate logistic regression 
analysis, and variables with a p < 0.05 were enrolled in a 
stepwise multivariate analysis. The clinical-MVI-DL model 

was then constructed based on the results of multivariable 
logistic regression analysis. A two-sided p value less than 
0.05 was considered statistically significant. Scikit-learn 
was used for ROC curve analysis and the calculation of the 
confusion matrix.

Results

Patient characteristics

We initially obtained 3568 slides from 488 HCC patients 
across two independent cohorts. A total of 147 (4.1%) slides 
from 22 patients who did not meet the inclusion criteria were 
excluded. Finally, in the FAHSYSU cohort, a total of 2917 
slides from 350 HCC patients were enrolled, 180 (51.4%) 
of whom were MVI ( +), while in the DG-SD cohort, 504 
slides from 120 HCC patients were enrolled, 44 (36.7%) of 
whom were MVI ( +). Patients from the FAHSYSU cohort 
were randomly divided into a training set and an independent 
test set. Patients from the DG-SD cohort were used as the 
external test set (Fig. 1a). Baseline clinical and demographic 
characteristics were generally well balanced between the two 
cohorts, except for a significantly higher Edmondson grade 
(p = 0.009) and higher incidence of MVI ( +) (p = 0.015) in 
the FAHSYSU cohort (Table S1).

Development of the MVI‑DL model

Considering that there is a huge amount of information on a 
single WSI, we first trained a tissue segmentation network to 
automatically segment all WSIs in the two cohorts (Table S2 
and S3) and compared the contribution of different tissue 
areas on the WSI to MVI prediction to reduce the redundant 
information. One WSI was divided into the tumor area and 
peri-tumoral area by a segmentation network (Fig. S3). We 
tested the performance of our segmentation network, achiev-
ing accuracies of 0.960, 0.958, 0.934 and 0.932, and AUCs 
of 0.991, 0.986, 0.984 and 0.981, under 5 × , 10 × , 20 × and 
40 × magnification scales, respectively (Fig. S3).

Then, we used patches from the tumor area, peri-tumoral 
area and the whole WSI as inputs to construct prediction 
models for MVI and compared the performances between 
different tissue categories and different magnification scales. 
The predictive performances of the models under 40 × mag-
nification were significantly lower than those of other magni-
fications, with the best AUC of only 0.68, and were excluded 
from the following analysis. The models using patches from 
the tumor area as the inputs had significantly higher AUCs 
than those using patches from the peri-tumoral area or the 
whole WSI at every magnification scale (all p < 0.001, 
Fig. 2b).
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Next, we evaluated the optimate sample counts for the 
input patches and select the sample count with the best train-
ing efficacy under each magnification scales. We chose 8 
patches for the 5 × , 32 patches for the 10 × and 64 patches 
for the 20 × magnification scales to achieve the best training 
efficacy and sufficient sampling numbers to represent the 
features of the tumor area (Fig. 2c). The ensemble model 
integrating different magnification scales reached an AUC 
of 0.831 for tumor area and was significantly higher than 
those under a single magnification scale (p = 0.004, Fig. 2d). 
Therefore, we took the ensemble model for the tumor area as 
the backbone model for the following training and validation 
of the MVI-DL model (Fig. 2a).

Validation of the MVI‑DL model

We validated the performances of the MVI-DL model on 
the FAHSYSU and DG-SD test set (Fig. 3a, b). On the 
FAHSYSU test set, the AUC of the MVI-DL model was 
0.904 (95% CI 0.888–0.920), and the accuracy, sensitivity 
and specificity were 83.3%, 92.6% and 71.0%, respectively. 
For the DG-SD cohort, the AUC reached 0.871 (95% CI 
0.837–0.905), and its accuracy, sensitivity and specificity 
were 79.1%, 90.0% and 69.8%, respectively (Table S4).

Furthermore, we also compared the RFS and OS between 
patients predicted with different MVI status, and the results 
showed that patients who were predicted to be MVI ( +) 
had significantly worse survival outcomes than patients with 
MVI (−) (median RFS: 9.39 vs. 66.15 months, p < 0.001; 
13.09 vs. 40.20 months, p < 0.001; 7.23 vs. 36.70 months, 
p < 0.001 in the FAHSYSU test set, DG-SD cohort and 
TCGA cohort, respectively) (Fig. 3c). The OS analysis also 
indicated the similar results (Fig. S4).

To compare the predictive performance of the MVI-
DL model to the clinical characteristics and the combined 
clinical-MVI-DL model, we performed a univariable and 
multivariable logistic regression analysis of factors associ-
ated with MVI in the training set (Table S5). Multivariable 
analysis revealed that the MVI-DL prediction score (OR 
1.07, 95% CI 1.05–1.09, p < 0.0001) was an independent 
predictive factor of MVI and was higher than the combined 
clinical score (p < 0.001, Fig. S5). The combination of the 
clinical score with the MVI-DL model did not improve the 
predictive performance of the MVI-DL model (p = 0.304 and 
0.289 for the FAHSYSU and DG-SD test set, respectively).

Visualization and interpretability of the MVI‑DL 
model

Figure 4a shows two WSIs predicted with MVI ( +) and MVI 
(−) by the model and the corresponding heatmaps as exam-
ples. The unsupervised classification classified the patches 
into 8 clusters (Fig. 4b). Clusters with over 60% patches 

from MVI ( +) patients were defined as MVI ( +)-related 
clusters, while those with over 60% patches from MVI (−) 
were defined as MVI (−)-related clusters (Fig. 4c). We found 
that high intratumor heterogeneity (Cluster 2), rich tumor 
stroma (Cluster 7), and macrotrabecular architecture with a 
rich blood sinus (Cluster 8) were associated with MVI ( +). 
In contrary, severe immune infiltration (Cluster 4) and highly 
differentiated tumor cells (Cluster 5) were associated with 
MVI (−) (Fig. S6). Grad-CAMs also showed that regions 
occupied by these features received higher or lower weights 
(Fig. 4d).

Clinical implementation of the MVI‑DL model

Clinically, patients with limited surgical margins or patients 
who underwent ablation therapy could hardly acquire suf-
ficient histological sections to evaluate MVI. Therefore, we 
next simulated the implementation of the MVI-DL model 
in these two clinical scenarios (Fig. 5a). First, we validated 
the performance of the MVI-DL model using only one WSI 
from each patient in the FAHSYSU and DG-SD test set to 
simulate patients with limited surgical margins. The results 
showed that the AUC was 0.875 (95% CI 0.855–0.895) and 
0.837 (95% CI 0.800–0.874), respectively (Fig. 5b). The 
detailed evaluation metrics are shown in Table S6. Addi-
tionally, we also performed a sensitivity analysis to explore 
the impact of the number of the WSIs per patient fed to the 
model on the performance of the MVI-DL model, and the 
results showed that the predictive accuracy of the model did 
not increase significantly as the number of the input WSIs 
increased (the AUCs range from 0.849 to 0.878, Fig. S7). 
Then, we validated the performance of MVI-DL model in 
simulated biopsy specimens to evaluate the performance of 
the MVI-DL model in patients with only biopsy tissues. The 
results showed that the predictive performance positively 
correlated with the number and length of simulated biopsy 
tissues (Fig. 5c, Table S6 and Fig. S8), and the AUC reached 
0.879 (95% CI 0.853–0.906) by three biopsies and similar 
trends were shown in the external test set.

Discussion

In this study, we constructed MVI-DL model for MVI evalu-
ation in HCC patients. The MVI-DL model was well-vali-
dated in the independent external cohort. We found that the 
tumor areas contributed the most to the MVI-DL model, 
indicating that some imaging features of the tumor area 
were strongly associated with the existence of peri-tumoral 
MVI. We then identified these histological features by clus-
tering and visualization. We further simulated the clinical 
scenarios where tissue samples were insufficient for MVI 
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evaluation, and the results showed that the MVI-DL model 
could accurately diagnose MVI in these scenarios.

The precise histological diagnosis of MVI is critical for 
managing HCC patients but faces two main challenges in 
clinical circumstances. On the one hand, multipoint sam-
pling of peri-tumor is essential for accurate diagnosis of 
MVI [8, 9] but multiplies the diagnosis time of pathologists. 
On the other hand, a considerable proportion of patients had 

insufficient peri-tumor regions to evaluate MVI status [10]. 
To solve these clinical dilemmas, we first retrospectively col-
lected all the WSIs of those HCC patients from two cohorts 
with high-quality MVI labels, and we then established an 
MVI-DL model for MVI evaluation with high accuracy and 
was well validated in external cohorts. By automatically ana-
lysing WSIs, the MVI-DL model can reduce the workload 
of pathologists in MVI evaluation greatly. Furthermore, we 
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Fig. 3  Performances of the MVI-DL model on the test sets. The 
AUCs evaluated on the FAHSYSU (a) and DG-SD (b) test set. c 
Kaplan–Meier curves for RFS analysis of the patients stratified by the 

MVI-DL model in the FAHSYSU (top), DG-SD (middle) and TCGA 
(bottom) test sets. RFS, recurrence-free survival
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Fig. 4  Visualization and clustering of the risk heatmaps. a One exam-
ple of heatmaps of the WSIs predicted with MVI ( +) and MVI (−) by 
the MVI-DL model. Original WSIs (left); Heatmaps (right). b Unsu-
pervised cluster analysis of the top 4000 and the bottom 4000 patches 
based on the attention score by t-SNE and DCCS algorithms. c Pro-
portion of the patches predicted as MVI ( +) or MVI (−) in the eight 
clusters; Pink dotted line represents the proportion of the patches 
predicted as MVI ( +) in this cluster exceeded 60%; Blue dotted line 

represents the proportion of the patches predicted as MVI (−) in this 
cluster exceeded 60%. d Visualization of represented patches and 
their corresponding grad-CAM in the predictive clusters. The colour 
scheme represents the calculated weight of probability at each region, 
which indicates the contribution of the corresponding area to the 
model prediction (red area indicates the region with most important 
contribution, while blue area indicates less contribution)
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verified the model in two simulated clinical scenarios, where 
the patient had only one single section or only a biopsy 
specimen and achieved similar performances. Addition-
ally, we also confirmed that the overall predictive accuracy 

did not increase significantly as the number of the input 
WSIs increased. These results not only indicated the pos-
sibility of predicting MVI status in patients who could not 
be evaluated before, but also greatly reduce the increased 

Fig. 5  Simulation of MVI-DL 
model in clinical scenarios. 
a We simulated the clinical 
scenarios where patient with an 
insufficient surgical margin had 
only one WSI and patient with 
only biopsies. The MVI-DL 
model used one WSI or biopsies 
as the input and output an MVI-
DL score for those patients 
who used to be not able to be 
evaluated. b The AUC of the 
MVI-DL model predicted with 
only one WSI in the FAHSYSU 
(left) and DG-SD (right) test 
set. c The AUCs of the MVI-DL 
model predicted with dif-
ferent biopsy number in the 
FAHSYSU (left) and DG-SD 
(right) test set
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workload caused by multipoint tissue sampling. By apply-
ing the MVI-DL model, a pretreatment biopsy could reflect 
the MVI status and further contribute to various therapeutic 
decision-making. Physicians could plan to achieve a surgical 
margin > 1 cm for MVI ( +) patients to reduce postopera-
tive recurrence [7], design safe ablation margins for RFA in 
MVI ( +) patients [21], and rearrange the priority of the liver 
transplantation list [22].

Although MVIs are located in the peri-tumoral area, our 
results showed that the tumor area-based model had the best 
performance. The scattered distribution of MVI could cause 
difficulties in constructing a detection model directly from 
the peri-tumoral area. Not all slides from MVI ( +) patients 
contain MVIs leads to a high false-positive rate in MVI 
labels. The tumor area-based MVI-DL model we constructed 
predicts the existence of MVI by certain MVI-associated his-
tological features in the tumor area instead of trying to find 
the location of MVI, avoiding the inconsistent labels in dif-
ferent slides. Interestingly, we found that the performances 
of tumor area-based models were diverse under different 
magnifications. The 40 × model showed limited predictive 
efficacy compared with the lower magnifications. The reason 
could be that images under different magnifications reveal 
different types of histological features [23]. Images under 
40 × magnification better reflect the characteristics of tumor 
cell morphology and internal cell structure, while images 
under lower magnifications reflect the tumor cell morphol-
ogy and the relationship between tumor cells and their sur-
rounding microenvironments, such as tumor-associated 
stromal cells and tumor-infiltrated lymphocytes. Therefore, 
we speculate that the relationship of tumor cells and their 
surrounding microenvironments may be more important for 
predicting MVI. By assembling models under different mag-
nifications, the final MVI-DL model better combined cell 
morphology, tumor microenvironment and intercell relation-
ships, and achieved better predictive performance.

This is confirmed by the unsupervised clusters and heat-
maps of our study. We found that macrotrabecular archi-
tecture with a rich blood sinus, rich tumor stroma, high 
intratumor heterogeneity, severe immune cell infiltration 
and highly differentiated tumor cells strongly contributed 
to the MVI prediction, all of which were features of cell 
morphology, tumor microenvironment and intercell rela-
tionships. Previous studies have shown that macrotrabecu-
lar architecture in HCC indicates stronger tumor invasive-
ness [12, 24]. This type of HCC can express high levels of 
angiopoietin 2 and vascular endothelial growth factor A to 
regulate angiogenesis and vascular remodeling and is more 
likely to develop vascular invasion and metastasis [12, 25]. 
A rich tumor stroma may promote the production of TGF-
β, which directly upregulates the expression of tumor stem 
cell markers (EpCAM, K19, CD133, etc.), thereby promot-
ing vascular invasion [13]. High intratumoral heterogeneity 

may also be related to stronger tumor invasiveness. Studies 
have revealed that high intratumoral heterogeneity affects 
key cancer pathways and drives phenotypic variation [26], 
and ultimately promotes tumor progression and metastasis 
through a complex intercell competition mechanism [27]. 
In contrast, highly differentiated tumor cells and immune 
cell infiltration are closely related to the reduction of post-
operative tumor recurrence and better prognosis [28–30]. 
Tumor immune cell infiltration has also been proven to be 
negatively correlated with vascular invasion in colorectal 
cancer [31]. These results indicated high interpretability and 
clinical reliability of the MVI-DL model, which are essential 
for clinical acceptability.

There are still some limitations in this study. First, the 
MVI-DL model was constructed and validated in three 
medical centers, all of which were from China. Therefore, 
population of this study was populated mainly with HBV-
related HCC patients. The generalizability of this model to 
HCC with other etiologies needs further validation. Second, 
the performance of this model in biopsy specimens was in a 
simulated scenario. Since that the diagnosis of HCC did not 
require preoperative biopsy, patients with both preoperative 
biopsy tissue and confirmed MVI diagnosis from postopera-
tive histology were limited, making it hard to evaluate in this 
population. Third, this study is a retrospective cohort study, 
and a large prospective clinical trial is necessary for the 
implementation of the MVI-DL model in clinical practice.

Conclusions

The efforts presented in our work highlighted the possibil-
ity of accurately evaluating the MVI status of HCC patients 
from the tumor area on the histological slides using a deep-
learning model. With the validations on multicenter cohort, 
the MVI-DL model we developed exhibited excellent accu-
racy, robustness and considerable clinical interpretability, 
which might provide an important tool with practical clinical 
applicability for better patient management.
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