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Abstract
The study of parental lifespan has emerged as an innovative tool to advance aging 
biology and our understanding of the genetic architecture of human longevity and 
aging-	associated	diseases.	Here,	we	leveraged	summary	statistics	of	a	genome-	wide	
association study including over one million parental lifespans to identify genetically 
regulated	genes	from	the	Genotype-	Tissue	Expression	project.	Through	a	combination	
of	multi-	tissue	transcriptome-	wide	association	analyses	and	genetic	colocalization,	we	
identified	novel	genes	that	may	be	associated	with	parental	lifespan.	Mendelian	ran-
domization	(MR)	analyses	also	identified	circulating	proteins	and	metabolites	causally	
associated with parental lifespan and chronic diseases offering new drug repositioning 
opportunities	such	as	those	targeting	apolipoprotein-	B-	containing	lipoproteins.	Liver	
expression	of	HP,	the	gene	encoding	haptoglobin,	and	plasma	haptoglobin	levels	were	
causally	linked	with	parental	lifespan.	Phenome-	wide	MR	analyses	were	used	to	map	
genetically	regulated	genes,	proteins	and	metabolites	with	other	human	traits	as	well	
as	the	disease-	related	phenome	in	the	FinnGen	cohorts	(n =	135,638).	Altogether,	this	
study	identified	new	candidate	genes,	circulating	proteins	and	metabolites	that	may	
influence human aging as well as potential therapeutic targets for chronic diseases 
that warrant further investigation.
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1  |  INTRODUC TION

Increasing lifespan and promoting healthy living into old age are 
among top priorities of health care systems around the world. Over 
the	past	decades,	several	policies	have	been	set	in	place	to	improve	
sanitation,	access	to	care	and	control	risk	factors	for	premature	mor-
tality.	 In	Western	 societies,	 however,	 although	 lifespan	 is	 steadily	
improving,	an	increasing	proportion	of	the	population	is	affected	by	
chronic	diseases	and	multimorbidity,	which	may	be	attributable	 to	
a	significant	extent	to	poor	lifestyles	as	well	as	environmental	and	
socio-	economic	 factors.	Unprecedented	 efforts	will	 be	 needed	 to	
target	 these	 risk	 factors	and	decrease	age-	associated	disease	bur-
den and improve the quality of life of aging populations. Drugs aimed 
at improving lifespan may represent additional options that could 
be	used	 to	prevent	aging-	associated	diseases.	 Increasing	evidence	
suggests that drug targets with genetic support are more likely to be 
efficient	and	to	be	approved	by	regulatory	authorities	(Nelson	et	al.,	
2015).	A	better	characterization	of	longevity	genomics	could	there-
fore contribute to the identification of drug development strategies 
to	delay	the	onset	of	aging-	associated	diseases.

The genetics revolution offers new opportunities to foster our 
understanding	 of	 complex	 traits	 such	 as	 human	 longevity	 (Cotto	
et	 al.,	 2018;	 Melzer	 et	 al.,	 2020).	 The	 definition	 of	 longevity	 in	
human genetic studies is highly debated and the lack of a universally 
recognized	 definition	 increases	 the	 possibility	 of	 biases	 and	 limits	
external	validation.	Studying	the	genetic	architecture	of	 long-	lived	
individuals has shed some light on the loci at which genetic variation 
may	influence	human	longevity.	However,	the	most	comprehensive	
meta-	analysis	 of	 genome-	wide	 association	 studies	 (GWAS)	 of	 sur-
vival percentiles only reported one locus (APOE)	to	be	robustly	as-
sociated	with	human	 longevity	 (Deelen	et	al.,	2019).	On	the	other	
hand,	 other	 longevity	 traits	 such	 as	parental	 lifespan	 (the	 lifespan	
of	deceased	or	long-	lived	parents)	have	also	been	used	to	uncover	
longevity	genes.	In	the	most	comprehensive	GWAS	of	parental	lifes-
pan	to	date,	Timmers	et	al.	 (2019)	 reported	several	new	 loci	asso-
ciated	with	parental	lifespan,	including	APOE.	Although	it	has	been	
suggested that human longevity is not simply limited to the absence 
of	 life-	threatening	diseases,	many	of	the	reported	genetic	variants	
associated with lifespan are also associated with chronic diseases.

Mendelian	randomization	 (MR)	 is	a	burgeoning	field	of	research	
that draws on the use of genetic variants as instruments to assess 
potentially	causal	relationships	between	a	wide	variety	of	exposures	
such	as	risk	factors	or	drug	targets	and	outcomes	such	as	age-	related	
disease	or	human	longevity	(Hemani	et	al.,	2018).	By	taking	advantage	
of	the	naturally	randomized	allocation	of	genetic	variation,	MR	is	not	
subject to many of the biases of observational studies such as reverse 
causality or random measurement error and less susceptible to con-
founding and reverse causality. The recent public release of a wide 
variety	 of	 deeply	 phenotyped	 gene-	trait	 association	 datasets	 has	
enabled	the	use	of	multi-	omic	datasets	as	exposures	in	MR	studies.	
However,	few	studies	have	investigated	the	long-	term	consequences	
of	 lifelong	 exposure	 to	 over-		 or	 under-	expressed	 genes	 (eGenes),	
plasma	proteins,	 lipoproteins	or	metabolites	on	human	 lifespan	and	

associated	 age-	related	 chronic	 disease.	 In	 this	 study,	 we	 aimed	 at	
discovering and harnessing novel biological determinants of human 
longevity	by	identifying	eGenes	through	a	transcriptome-	wide	associ-
ation	study	(TWAS)	as	well	as	genetically	regulated	circulating	proteins	
(eProteins)	and	metabolites	(eMetabolites)	using	a	highly	translational	
MR	framework.	We	performed	a	TWAS	for	parental	lifespan	leverag-
ing	expression	Quantitative	Trait	Loci	(eQTL)	data	from	43	non-	sex-	
specific tissues to identify eGenes associated with parental lifespans. 
In	light	of	recent	investigations	reporting	that	the	majority	of	eQTLs	
do	not	necessarily	influence	protein	levels	(He	et	al.,	2020;	Yang	et	al.,	
2020)	we	used	MR	to	identify	key	eProteins,	and	eMetabolites,	that	
may influence human lifespan. In order to discover the role of these 
genetically regulated traits in human homeostasis while at the same 
time determining whether they could be effectively and safely tar-
geted	to	promote	healthy	aging	and	human	longevity,	we	report	MR	
findings	across	the	human	disease-	related	phenome.

2  |  RESULTS

2.1  |  Identification of eGenes associated with 
parental lifespan

We	 performed	 a	 TWAS	 using	 the	MetaXcan	 framework	 (Barbeira	
et	al.,	2018)	to	identify	potentially	causal	effects	of	eGenes	on	paren-
tal	lifespan	using	GWAS	summary-	level	statistics	of	the	UK	Biobank	
and	 LifeGen	 consortium	 meta-	analysis	 (methods)	 (Timmers	 et	 al.,	
2019).	TWAS	is	a	type	of	2-	sample	MR	study	that	takes	advantage	
of	all	cis-	acting	single-	nucleotide	polymorphisms	(SNPs).	These	SNPs	
are	often	in	linkage	disequilibrium	(LD)	with	each	other	and	using	all	
SNPs	for	TWAS	can	ensure	optimal	statistical	power,	 in	contrast	to	
classical	MR	studies	that	use	one	or	multiple	independent	SNPs.	This	
analytical	 approach	uses	eQTL	mapping	 from	 the	Genotype-	Tissue	
Expression	 (GTEx)	project	across	43	non-	sex-	specific	 tissues	 to	es-
timate	 gene-	level	 association	 with	 summary-	level	 GWAS	 results.	
This strategy led to the identification of new potential eGenes for 
parental	 lifespan	after	correction	 for	multiple	 testing	 (Figure	1a).	A	
detailed	 description	 of	 the	 association	 of	 eGenes-	parental	 lifes-
pan	associations	across	all	tissues	is	presented	in	Table	S1.	Because	
TWAS	prioritizes	multiple	genes,	some	eGenes	could	be	non-	causal,	
owing	to	sharing	of	eQTLs	or	co-	regulated	genes.	TWAS	may	thus	be	
prone	 to	 false	positives	 and	 spurious	gene	prioritization,	 especially	
in	 the	absence	of	genetic	 colocalization,	 that	 is,	when	 the	 lead	ge-
netic	variant	driving	gene	expression	 is	not	among	 the	 lead	GWAS	
variants.	We	therefore	took	additional	steps	using	genetic	colocaliza-
tion	to	control	for	spurious	prioritization.	After	excluding	genes	with	
a	posterior	probability	of	statistical	colocalization	PPH4	< 0.75 and 
after	excluding	genes	found	in	pleiotropic	regions	such	as	HLA,	ABO 
and APOE,	 the	number	of	parental	 lifespan	eGenes	was	reduced	to	
30,	spanning	17	loci	(Figure	1b).	Details	on	strength	of	the	associa-
tion,	colocalization	of	these	eGenes	with	parental	lifespan	as	well	as	
the	 lead	 tissue	 (i.e.,	 tissue	providing	 the	strongest	eGenes-	parental	
lifespan	estimate	from	MetaXcan)	are	provided	in	Table	1.	Posterior	
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probabilities	of	genetic	colocalization	(PPH4)	using	a	wider	range	of	
priors	 are	 presented	 in	 Table	 S2.	We	 identified	 tissue-	specific	 ex-
pression regulation of several known parental lifespan genes and re-
vealed potentially new parental lifespan genetic signals at the LRP8 
(ApoER2),	NEK10,	CCDC71L,	NRG1 and RAD52	loci.	Although	the	use	
of	statistical	colocalization	helped	prioritize	several	genes,	the	causal	
gene potentially linked with parental lifespan could not be identified 
in all genetic regions. This is the case for the CELSR-	PSRC1-	SORT1,	
FURIN-	FES,	 TXNL4B-	HP-	HPR and LAMA5-	AL121832.2-	CABLES2-	
CHRNA4	regions,	within	which	the	lead	parental	lifespan	variant	was	
linked	with	the	expression	of	two	or	more	genes.	Multivariable	MR,	a	
MR	technique	used	to	identify	the	causal	exposure	accounting	for	po-
tential	confounders,	did	not	identify	the	causal	eGene	from	these	loci	
(data	not	shown).	We	also	observed	that	among	colocalized	eGenes	
for	parental	lifespan	FURIN	and	HP,	gene	expression	in	one	tissue	was	
positively linked with parental lifespan while negatively linked with 
parental	lifespan	in	another	tissue.	A	Sankey	diagram	presents	tissues	
underlying	the	genetic	signals	of	colocalized	eGenes	(Figure	1c).	Table	
S3	presents	the	results	of	a	classical	MR	approach	that	reports	asso-
ciations	between	the	level	of	expression	of	each	eGene	presented	in	
Table	1	(in	the	tissue	identified	in	Table	1)	and	parental	lifespan	using	
inverse	 variance	 weighted	 (IVW)-	MR	 and	 other	 outlier	 robust	MR	
methods.	This	analysis	revealed	that	most	of	the	colocalized	eGenes	
were	nominally	associated	with	parental	lifespan	with	the	exception	
of LRP8 and BECN1.	We	also	performed	similar	analyses	using	data	
on	whole	blood	gene	expression	levels	from	31,684	individuals	of	the	
eQTLGen	consortium	as	exposure	(Võsa	et	al.,	2018).	Although	only	
17	of	the	28	independent	and	colocalized	eGenes	could	be	evaluated	
using	MR,	we	found	that	most	eGenes	showed	nominal	associations	
with	parental	lifespan	with	the	exception	of	LRP8,	POM121C,	FURIN,	
TXNL4B and LAMA5	(Table	S4).	These	analyses	revealed	the	important	
of	considering	tissue	specificity	and	TWAS	methods	over	classical	MR	
for	 the	 identification	of	 novel	 eGene-	trait	 associations.	 In	 order	 to	
gain insight into potential tissue specificity of the parental lifespan 
associated	 eGenes,	 we	 obtained	 the	 tissue-	specific	 gene	 expres-
sion metric (τ)	as	described	by	Kryuchkova-	Mostacci	and	Robinson-	
Rechavi	(2017).	This	analysis	revealed	that	several	of	the	eGenes	had	
tissue-	specific	 expression	 (τ	 ≥0.80),	 including	 the	HP	 gene,	 which	
appears	to	be	liver-	specific,	 in	accordance	to	our	initial	TWAS	find-
ing	 (Table	 S5).	Other	 tissue-	specific	 eGenes	 include	KCNK3,	NRG1,	
NEK10,	CHRNA3/5 and CHRNA4.	We	used	LocusCompare	(Liu	et	al.,	
2019)	to	depict	colocalization	events	within	our	framework	and	pre-
sent	as	an	example	the	colocalization	of	the	top	SNP	associated	with	
liver HP	expression	and	parental	lifespan	(Figure	1d).

2.2  |  Identification of eProteins associated with 
parental lifespan

Proteins	are	the	target	of	most	medicines.	In	order	to	identify	circu-
lating	factors	causally	 linked	with	parental	 lifespan,	simultaneously	
representing	 therapeutic	 targets	 for	 aging-	associated	 diseases,	we	
performed a systematic screen of the human plasma proteome of 

the	INTERVAL	cohort	(Sun	et	al.,	2018)	using	MR.	We	first	obtained	
robust	instruments	for	protein	levels	by	identifying	proteins	with	≥4	
cis-	acting	 independent	 variants	 (r2 <	 0.1)	 strongly	 associated	with	
protein levels (p-	value	 <5e−8).	 A	 total	 of	 279	 circulating	 proteins	
were	available	 for	MR	analyses	using	 these	criteria.	We	then	used	
IVW-	MR	 to	 determine	 the	 association	 between	 these	 circulating	
proteins and parental lifespan. Nine proteins emerged as causal me-
diators	 of	 parental	 lifespan	 in	 the	 proteome-	wide	MR	 analysis,	 in-
cluding haptoglobin (HP	gene	on	chromosome	16q22),	which	has	also	
been	identified	by	GWAS	and	TWAS	of	liver-	parental	lifespan	asso-
ciations	(Figure	2a).	Other	proteins	identified	as	causal	mediators	of	
parental lifespan include asporin (ASPN	gene	on	chromosome	9q22),	
agouti-	signaling	 protein	 (ASIP	 gene	 on	 chromosome	 20q11),	 the	
soluble	receptor	of	insulin-	like	growth	factor	2	(IGF2R gene on chro-
mosome	6q25),	plexin-	B2	(PLXNB2	gene	on	chromosome	22q13),	in-
terleukin-	6	receptor	subunit	alpha	(IL6R	gene	on	chromosome	1q21),	
soluble	 intercellular	adhesion	molecule-	5	 (ICAM5 gene on chromo-
some	 19p13),	 ectonucleotidase	 phosphodiesterase	 7	 (ENPP7 gene 
on	chromosome	7q25)	and	Sushi,	von	Willebrand	factor	type	A,	EGF	
and	pentraxin	domain-	containing	protein	1	(SVEP1 gene on chromo-
some	9q31).	In	order	to	determine	whether	these	associations	were	
robust	to	pleiotropy	and	outliers,	we	used	additional	outlier	robust	
(MR-	PRESSO)	and	modeling	MR	methods	(MR-	Egger	and	contamina-
tion	mixture).	The	association	of	these	proteins	with	parental	lifespan	
using	these	methods	are	presented	in	Table	S6.	Results	of	this	analy-
sis suggest that the causal association of these proteins with paren-
tal	lifespan	is	robust	to	outliers.	The	MR	method	however	detected	
evidence	of	horizontal	pleiotropy	for	one	protein,	IL6-	sRA.	In	order	
to	 determine	 if	 there	 was	 general	 agreement	 between	 eProteins	
and	eGenes,	we	investigated	whether	the	top	pQTLs	for	eProteins	
also	 influenced	gene	expression	 levels	 in	the	GTEx	tissues.	Results	
presented	in	Table	S7	suggest	that	most	pQTLs	were	indeed	eQTLs,	
but	in	a	tissue	dependent	manner.	Altogether,	this	analysis	identified	
five circulating “protective” proteins that may be positively associ-
ated with parental lifespan and four circulating proteins that may be 
negatively associated with lifespan.

2.3  |  Identification of eMetabolites associated with 
parental lifespan

We	applied	a	similar	MR	framework	as	above	to	identify	eMetabolites	
including lipoprotein metabolomic parameters that could be caus-
ally	associated	with	parental	 lifespan	using	a	GWAS-	metabolomics	
dataset,	previously	described	by	Kettunen	et	al.	(2016).	The	associa-
tion between 123 metabolites from this datasets and parental lifes-
pan	was	 investigated	 using	 IVW-	MR	 (Figure	 2b).	 After	 correction	
for	multiple	testing,	eMetabolites	associated	with	parental	lifespan	
included	several	parameters	 linked	to	very-	low-	density	 lipoprotein	
(VLDL)	 and	 low-	density	 lipoprotein	 (LDL)	physicochemical	 proper-
ties	(e.g.,	apolipoprotein	B,	cholesterol	content	and	total	VLDL/LDL	
particle	 number),	 sphingomyelin	 and	 the	 number	 of	 high-	density	
lipoprotein	 particles	 of	 medium	 size	 (M:HDL-	P).	 The	 same	 MR	
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TA B L E  1 Significant	eGene-	parental	lifespan	associations	from	a	transcriptome-	wide	association	study	of	parental	lifespan	after	filtering	
out	eGenes	without	evidence	of	genetic	colocalization

Gene Ensembl ID
Chromosome 
band Lead tissue

TWAS 
Z- score p- value

p- value 
threshold

COLOC 
PP4

LRP8 ENSG00000157193.15 1p32 Brain	Caudate	basal	ganglia 4.566 4.97e−06 7.67e−06 0.761

CELSR2 ENSG00000143126.7 1p13 Liver 5.033 4.83e−07 9.19e−06 0.987

PSRC1 ENSG00000134222.16 1p13 Nerve Tibial 5.032 4.86e−07 3.66e−06 0.986

SORT1 ENSG00000134243.11 1p13 Liver 4.835 1.33e−06 9.19e−06 0.987

KCNK3 ENSG00000171303.6 2p23 Brain	Nucleus	accumbens	
basal ganglia

5.519 3.41e−08 7.11e−06 0.950

NEK10 ENSG00000163491.16 3p24 Esophagus	Muscularis 4.685 2.80e−06 4.39e−06 0.768

ADD1 ENSG00000087274.16 4p16 Thyroid −5.141 2.74e−07 3.68e−06 0.825

HTT ENSG00000197386.10 4p16 Muscle	Skeletal 4.642 3.45e−06 4.53e−06 0.926

AC104596.1 ENSG00000250326.1 4q31 Brain	Nucleus	accumbens	
basal ganglia

4.894 9.87e−07 7.11e−06 0.815

POM121C ENSG00000272391.5 7q11 Nerve Tibial −5.379 7.48e−08 3.66e−06 0.996

ATP5MF ENSG00000241468.7 7q22 Thyroid −4.854 1.21e−06 3.68e−06 0.928

CCDC71L ENSG00000253276.2 7q22 Artery	Aorta −4.994 5.90e−07 5.30e−06 0.975

NRG1 ENSG00000157168.18 8p12 Whole	Blood 4.781 1.74e−06 4.94e−06 0.850

RAD52 ENSG00000002016.17 12p13 Brain	Caudate	basal	ganglia −5.383 7.34e−08 7.67e−06 0.976

AL356740.1 ENSG00000267868.1 13q34 Pituitary −4.796 1.62e−06 5.97e−06 0.752

PSMA4 ENSG00000041357.15 15q25 Whole	Blood −9.749 1.86e−22 4.94e−06 0.948

CHRNA5 ENSG00000169684.13 15q25 Pituitary 6.650 2.93e−11 5.97e−06 0.889

CHRNA3 ENSG00000080644.15 15q25 Colon	Sigmoid 8.129 4.33e−16 5.71e−06 0.815

FURIN ENSG00000140564.11 15q26 Artery	Aorta −5.650 1.61e−08 5.30e−06 0.896

FURIN ENSG00000140564.11 15q26 Cells Cultured fibroblasts 4.882 1.05e−06 4.16e−06 0.785

FES ENSG00000182511.11 15q26 Cells Cultured fibroblasts 6.959 3.41e−12 4.16e−06 0.991

TXNL4B ENSG00000140830.8 16q22 Brain	Putamen	basal	ganglia −5.335 9.57e−08 7.65e−06 0.890

HP ENSG00000257017.8 16q22 Brain	Nucleus	accumbens	
basal ganglia

−5.844 5.10e−09 7.11e−06 0.943

HP ENSG00000257017.8 16q22 Liver 5.324 1.02e−07 9.19e−06 0.849

HPR ENSG00000261701.6 16q22 Brain	Cerebellum −5.531 3.19e−08 5.56e−06 0.991

BECN1 ENSG00000126581.12 17q21 Nerve Tibial −5.624 1.87e−08 3.66e−06 0.925

LAMA5 ENSG00000130702.15 20q13 Liver 4.657 3.21e−06 9.19e−06 0.832

AL121832.2 ENSG00000273619.1 20q13 Brain	Hypothalamus −4.572 4.82e−06 9.16e−06 0.871

CABLES2 ENSG00000149679.11 20q13 Muscle	Skeletal 5.468 4.56e−08 4.53e−06 0.967

CHRNA4 ENSG00000101204.16 20q13 Brain	Nucleus	accumbens	
basal ganglia

4.528 5.95e−06 7.11e−06 0.920

F I G U R E  1 A	multi-	tissue	transcriptome-	wide	association	study	of	parental	lifespan.	(a)	Miami	plot	depicting	the	results	of	transcriptome-	
wide	association	studies	of	parental	lifespan	in	multiple	tissues	before	filtering	out	eGenes	without	evidence	of	genetic	colocalization.	Each	
dot represents the effect of an eGene on parental lifespan and the top tissue underlying the signal is shown. eGenes negatively associated 
with	parental	lifespan	are	above	the	baseline	and	eGenes	positively	associated	with	parental	lifespan	are	below	the	baseline.	Some	tissues	
(for	instance	those	in	the	brain)	were	pooled	in	the	legend	to	facilitate	visualization	of	the	tissues	responsible	for	the	eGene-	parental	
lifespan	associations.	(b)	Miami	plot	depicting	the	results	of	transcriptome-	wide	association	studies	of	parental	lifespan	in	multiple	tissues	
after	filtering	out	eGenes	without	evidence	of	genetic	colocalization	(posterior	probability	of	statistical	colocalization	<0.75)	and	after	
excluding	genes	found	in	pleiotropic	regions	such	as	HLA,	ABO and APOE.	(c)	Sankey	diagram	depicting	tissues	that	are	responsible	for	the	
eGene-	trait	associations.	This	analysis	is	based	on	43	non-	sex-	specific	tissues	from	GTEx.	(d)	LocusCompare	plot	depicting	colocalization	
of	the	top	SNP	associated	with	liver	HP	expression	and	parental	lifespan.	Each	dot	represents	a	single-	nucleotide	polymorphism	(SNP)	at	
the	HP	locus.	In	the	left	panel,	these	SNPs	are	plotted	to	represent	their	effect	on	HP	expression	(top	right)	against	their	effect	on	parental	
lifespan	(bottom	right)
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methods that enabled us to identify causal proteins associated with 
parental	lifespan	were	used	and	no	evidence	of	horizontal	pleiotropy	
or distortion of the causal estimates was detected using these meth-
ods	(Table	S8).	Overall,	results	of	this	analysis	suggest	that	elevated	
apolipoprotein-	B-	containing	 lipoprotein	 levels	 are	 strongly	 associ-
ated with shorter parental lifespan.

2.4  |  Investigation of genetic colocalization across 
multiple traits at the HP locus

Given	 that	 the	 only	 parental	 lifespan	 signal	 supported	 by	 GWAS,	
TWAS	and	proteome-	wide	MR	was	at	HP,	 the	gene	encoding	hap-
toglobin	 (Hp),	 and	 that	 variation	 at	 the	HP locus was linked with 

F I G U R E  2 Proteome-		and	metabolome-	wide	Mendelian	randomization	analysis	of	parental	lifespan.	Volcano	plots	representing	the	
association	between	plasma	eProteins	from	the	study	of	Sun	et	al.	(a)	and	eMetabolites	from	Kettunen	et	al.	(b)	and	parental	lifespan	using	
inverse	variance	weighted	Mendelian	randomization.	eProteins	and	eMetabolites	in	blue	represent	those	positively	associated	with	parental	
lifespan and those in red are negatively associated with parental lifespan

F I G U R E  3 Statistical	colocalization	at	the	HP	locus.	(a)	Regional	association	plot	highlighting	the	lead	SNP	associated	with	liver	HP 
expression	(rs34042070)	and	circulating	haptoglobin	levels,	low-	density	lipoprotein	cholesterol	levels	and	parental	lifespan	with	color	key	
indicating r2	with	the	lead	SNP.	(b)	Heatmap	depicting	the	posterior	probabilities	of	colocalization	between	each	trait	pair

(a) (b)
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hyperlipidemia,	we	 investigated	genetic	colocalization	across	multi-
ple traits at the HP	 locus.	For	this	purpose,	we	used	a	Bayesian	al-
gorithm	called	Hypothesis	Prioritization	in	multi-	trait	Colocalization	
(HyPrCOLOC)	 (Foley	 et	 al.,	 ,	 2021).	 In	 order	 to	 reduce	 the	 risk	 as-
sociated	 with	 spurious	 association	 from	 overlapping	 dataset,	 we	
used	 GWAS	 summary	 statistics	 from	 the	 Global	 Lipids	 Genetics	
Consortium	for	LDL-	C.	Results	presented	in	Figure	3a	suggest	strong	
evidence	of	genetic	colocalization	between	liver	HP	expression,	cir-
culating	LDL	levels,	and	parental	lifespan.	Upon	further	investigation,	
we found that liver HP	 expression,	 circulating	 LDL	 levels,	 parental	
lifespan but not circulating Hp levels showed evidence of genetic 
colocalization	with	 a	 posterior	 probability	 of	 colocalization	of	 0.96	
(Figure	3b).

2.5  |  Identification of drug repositioning 
opportunities for human lifespan and chronic diseases

As	many	of	the	eGenes,	eProteins	and	eMetabolites	were	associated	
with	age-	related	chronic	disease,	we	aimed	at	identifying	in	a	more	
comprehensive manner which disease traits were influenced by these 
exposures.	We	performed	a	systematic	analysis	of	potential	diseases	
associated	with	eGenes	and	genes	encoding	eProteins	 in	the	Open	
Targets	Platform	(Carvalho-	Silva	et	al.,	2019).	eMetabolites	were	not	
considered in this analysis as their variance is determined by more 
than	one	gene	each	contributing	to	a	different	extent	to	eMetabolite	
levels.	Table	S9	presents	the	diseases	and	therapeutic	areas	relevant	
to	 the	 identified	eGenes	and	eProteins	with	p-	values	<5e−8 for as-
sociation score with therapeutic areas concordant with the effect of 
eGenes	and	eProteins	(Table	1	and	Figure	2)	on	chronic	diseases.	We	
further	searched	the	Open	Targets	Platform	to	identify	drug	candi-
dates	targeting	eGenes	and	eProteins.	Table	S10	presents	23	drug	can-
didates	that	were	identified	by	Open	Targets	Platform.	These	drugs	
target four parental lifespan eGenes (CHRNA4,	KCNK3,	CHRNA3/5,	
and HTT)	and	one	parental	lifespan	eProtein	(IL6R).	A	second	strategy	
was	also	used	to	intersect	eGenes	and	eProteins	with	the	DrugBank	
and	the	Drug	Gene	Interaction	database	(Wishart	et	al.,	2018).	This	
analysis identified new targets potentially interacting with parental 
lifespan	eGenes	and	eProteins	(Tables	S11	and	S12).	Finally,	we	used	
the	network	processing	data	tool	GeneMANIA	to	identify	new	genes	
that	may	show	co-	expression	or	physical	interaction	with	our	targets	
(Franz	et	al.,	2018).	The	inner	circle	of	Figure	4a	includes	the	eGenes	

and	genes	encoding	for	eProteins	that	we	have	entered	in	the	engine	
while	the	outer	circle	presents	new	targets	that	show	co-	expression	
or physical interaction with our targets. Consistent with Timmers 
et	al.	 (2019),	 this	analysis	enabled	the	 identification	of	the	top	bio-
logical	pathways	(all	with	FDR	p-	value	< 1e−4),	which	are	all	related	to	
lipoprotein	metabolism.	Proprotein	Subtilisin/Kexin	Type	9	(PCSK9)	
was identified in the biological pathway analysis as interacting with 
several	of	the	parental	lifespan	associated	eGenes	such	as	the	LDLR.	
Through	this	strategy,	we	also	identified	PCSK9	inhibitors	as	poten-
tial	lifespan	extending	drug	candidates.

2.6  |  Genetic investigation into PCSK9 as 
a therapeutic target for chronic diseases

PCSK9	emerged	as	a	potential	drug	target	for	several	reasons.	PCSK9	
is	 involved	 in	 the	 top	6	pathways	 suggested	by	GeneMANIA.	This	
tool	also	suggested	co-	expression	with	LDLR (another parental lifes-
pan	locus)	and	experimental	evidence	supports	this	finding	since	both	
PCSK9	 and	 the	 LDLR	 are	 under	 sterol	 regulatory	 element-	binding	
protein	2	control,	a	regulatory	point	in	cholesterol	metabolism	(Rashid	
et	al.,	2005).	PCSK9	interacts	with	apolipoprotein	B,	and	an	impor-
tant	proportion	of	circulating	PCSK9	is	carried	by	apolipoprotein-	B-	
containing	lipoproteins	(Kosenko	et	al.,	2013)	including	lipoprotein(a),	
another	parental	lifespan	locus,	LPA	(Tavori	et	al.,	2016).	PCKS9	also	
has	 shared	 protein	 domains	with	 another	 parental	 lifespan	 eGene,	
FURIN	(also	supported	by	experimental	evidence	since	furin	has	the	
ability	to	cleave	PCSK9	(Benjannet	et	al.,	2006)).	DrugBank	and	the	
Open	 Targets	 Platform	 suggested	 PCSK9	 neutralizing	 antibodies	
(alirocumab	 and	 evolocumab)	 as	 potential	 drug	 repurposing	oppor-
tunities.	Finally,	PCSK9	inhibitors	have	important	LDL	cholesterol	re-
duction	properties	(up	to	60%).	As	our	investigation	reported	a	strong	
and	causal	effect	of	exposure	to	low	LDL	cholesterol	levels	and	pa-
rental	lifespan	(Figure	2b),	we	investigated	the	association	between	
genetic variation at the PCSK9 locus and parental lifespan using in-
dividual	participant	 level	data	 in	 the	UK	Biobank.	We	 identified	11	
independent	 SNPs	within	 the	PCSK9 region strongly and indepen-
dently	associated	with	LDL	cholesterol	in	the	Global	Lipids	Genetic	
Consortium (r2 < 0.1 and p-	value	< 5e−8).	We	evaluated	the	impact	
of carrier status of PCSK9	SNPs	linked	with	high	LDL	and	the	impact	
of	a	weighted	genetic	score	(GS)	scaled	to	model	a	1	mmol/L	increase	
in	LDL-	C	levels	and	found	a	significant	association	with	having	lower	

F I G U R E  4 Investigation	of	proprotein	convertase	subtilisin/kexin	type	9	(PCSK9)	inhibition	as	a	potential	therapy	for	chronic	diseases.	(a)	
Interaction	network	of	parental	lifespan	eGenes	and	eProteins	with	other	genes	and	top	pathways	of	parental	lifespan	eGenes	and	eProteins	
(false discovery rate <5e−5)	from	the	GeneMANIA	prediction	server.	(b)	Odds	ratio	(OR)	and	95%	confidence	interval	(CI)	for	high	parental	
lifespan	in	participants	of	the	UK	Biobank	separated	into	quartiles	of	the	PCSK9	genetic	score	(GS)	of	11	independent	variants	associated	
with	low-	density	lipoprotein	cholesterol	levels.	Analyses	were	adjusted	for	age,	sex	and	10	first	ancestry-	based	principal	components.	
The	adjusted	odds	ratio	and	95%	CI	for	high	parental	lifespan,	associated	with	a	1	mmol/L	increase	in	low-	density	lipoprotein	cholesterol	
associated	with	these	variants	is	also	shown.	(c)	Phenome-	wide	inverse	variance	weighted	Mendelian	randomization	study	depicting	the	
association between variants at the PCSK9	locus	weighted	for	their	impact	on	low-	density	lipoprotein	cholesterol	and	1169	binary	disease-	
related	traits	in	FinnGen.	Associations	are	reported	after	correction	for	multiple	testing,	which	accounted	for	phenotypic	correlation	
between	traits.	Arrows	pointing	up	represent	higher	disease	presence	and	arrows	pointing	down	represent	lower	disease	presence.	The	
dotted line represents the nominal p-	value	of	0.05	and	the	green	line	represents	the	p-	value	after	correction	for	multiple	testing
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odds	 of	 high	 parental	 lifespan	 (Figure	 4b).	 We	 next	 performed	 a	
phenome-	wide	MR	analysis	across	 the	disease-	related	phenome	to	
gain	more	insight	on	the	potential	benefits/risk	ratio	of	PCSK9	inhibi-
tors.	In	this	phenome-	wide	MR,	the	association	between	11	SNPs	at	
the PCSK9	 locus	 (weighted	 for	 their	 impact	on	plasma	LDL	choles-
terol	 levels)	 and	1169	binary	 disease-	related	 traits	 in	 135,638	par-
ticipants	 of	 the	 FinnGen	 cohorts	was	 investigated	 using	 IVW-	MR.	
As	expected,	PCSK9	“genetic	inhibition”	may	target	aging-	associated	
diseases	 through	 its	 association	with	 lifelong	exposure	 to	 low	LDL	
cholesterol levels and associated reduction in the risk of cardiovascu-
lar	diseases	(Figure	4c	and	Table	S13).

2.7  |  Mendelian randomization studies across the 
human phenome

We	used	PhenomeXcan	(Pividori	et	al.,	2020),	a	resource	enabling	the	
investigation	of	eGenes	across	the	human	phenome,	to	identify	human	
traits and diseases than may be causally influenced by parental lifes-
pan	eGenes.	This	 analysis	 revealed	669	eGene-	trait	 associations	of	
interest	after	correction	for	multiple	testing	(Table	S14).	We	observed	
noteworthy associations such as links between LRP8 and psychologi-
cal	traits,	SORT1	and	cholesterol	metabolism,	KCNK3 and hyperten-
sion	and	obesity,	NEK10	and	cardiovascular	 traits,	HTT and platelet 
count,	alcohol	 intake,	socio-	economic	status	and	obesity,	POM121C 
and	obesity,	CCDC71L	and	platelet	count	and	hypertension,	NRG1 and 
height,	RAD52	and	basal	metabolic	rate	and	obesity,	CHRNA2/3/4/5 
and	smoking	behavior	and	lung	phenotypes,	FURIN/FES and cardio-
vascular	 traits,	HP and lipid and hemoglobin concentrations as well 
as BECN1	 and	 abdominal	 obesity.	 The	 eGenes,	 eProteins	 and	 eM-
etabolites that showed robust association with our longevity trait 
could represent potential therapeutic targets for other human dis-
eases. In order to gain knowledge on the function of these genes and 
proteins,	and	to	predict	potential	benefits	and/or	adverse	effects	of	
therapeutic	agents	developed	to	mimic	the	effect	of	eGenes,	ePro-
teins	eMetabolites	on	human	health,	we	performed	a	phenome-	wide	
MR	across	a	broad	range	of	human	diseases.	We	used	IVW-	MR	with	
genetic	 instruments	 for	 eGenes,	 eProteins	 and	 eMetabolites	 to	 in-
vestigate	1169	disease-	specific	binary	traits	in	the	FinnGen	cohorts.	
Parental	lifespan	genome-	wide	significant	variants	not	having	TWAS	
associations (MAGI3,	CDKN2B-	AS1,	LPA,	LDLR and APOE),	were	also	
included	in	this	analysis,	the	exception	being	ATXN2/BRAP,	which	we	
considered an eGene (SH2B3)	as	this	gene	passed	the	TWAS	signifi-
cance	threshold	with	posterior	probability	of	genetic	colocalization	of	
0.63.	Details	on	all	diseases	that	passed	correction	for	multiple	test-
ing	using	MR-	pheWAS	analyses	 in	FinnGen	are	presented	 in	Tables	
S15,	S16,	S17	and	S18	for	parental	lifespan	eGenes,	eProteins,	eMe-
tabolites	and	other	parental	lifespan	SNPs,	respectively.	This	analysis	
yielded	 270	 eGene-	disease	 trait	 associations,	 239	 eProtein-	disease	
trait	 associations,	 57	 eMetabolite-	disease-	trait	 association	 and	223	
parental	lifespan	SNP-	disease	trait	associations.	Thus,	targeting	some	
of	the	parental	lifespan	eGenes,	eProteins	or	eMetabolites	may	pre-
vent	age-	associated	diseases	such	as	cardiovascular	diseases	and	type	

2	diabetes	and	 the	 risk	 factors	 for	 these	diseases	such	as	smoking,	
blood	cholesterol	levels,	inflammation,	obesity	and	hypertension.

3  |  DISCUSSION

Our	 translational	 approach	 combined	 TWAS	 with	 genetic	 colo-
calization,	 proteome-	wide,	 metabolome-	wide	 and	 phenome-	wide	
MR	 seeking	 to	 identify	 novel	 candidate	 biological	 determinants	
of	 parental	 lifespan	 and	 their	 relevance	 in	 age-	associated	 human	
diseases.	 The	 newly	 identified	 genomic	 loci	 colocalizing	 with	 pa-
rental lifespan include LRP8,	 the	 gene	 encoding	 the	 low-	density	
lipoprotein	 receptor-	related	 protein	 8	 (also	 known	 as	 ApoER2),	
NEK10,	 the	 gene	encoding	NIMA	 related	 kinase	10,	CCDC71L the 
gene	 encoding	 Coiled-	coil	 domain-	containing	 protein	 71L),	NRG1,	
the	 gene	 encoding	 neuregulin-	1,	RAD52,	 the	 gene	 encoding	DNA	
repair	protein	RAD52	homolog	and	BECN1,	the	gene	encoding	be-
clin-	1,	the	latter	being	reported	in	our	previous	MR	study	of	paren-
tal	 lifespan	using	blood	gene	expression	as	instrumental	variables)	
(Chignon	et	al.,	2020).	Our	approach	strengthens	the	case	for	previ-
ously	identified	regions	by	GWAS	by	the	identification	of	a	tissue-	
specific	colocalized	TWAS	signal	for	the	KCNK3,	ADD1/GRK4/HTT,	
HP/HPR/TXNL4B,	 LAMA5/AL121832.2/CABLES2/CHRNA4	 loci.	We	
provide	evidence	using	genetic	colocalization	 that	genetic	 regions	
previously	 identified	 by	 TWAS	 (CELSR2/PSRC1/SORT1,	POM121C,	
CHRNA3/5 and FES/FURIN)	 are	 likely	 causally	 associated	with	pa-
rental	 lifespan.	Results	of	our	analysis	also	suggest	 tissue-	specific	
regulation of parental lifespan eGenes consistent with a biologi-
cal	effect.	Some	examples	include	brain	eGenes	such	as	LRP8 and 
smoking-	associated	 eGenes	 (CHRNA2/3/4/5),	 liver	 eGenes	 such	
as HP and SORT1,	 and	 a	 skeletal	muscle	 eGene	 (HTT).	 Finally,	we	
provide evidence that nine circulating proteins (haptoglobin [HP],	
asporin [ASPN],	 agouti-	signaling	 protein	 [ASIP],	 the	 soluble	 recep-
tor	 of	 insulin-	like	 growth	 factor	 2	 [IGF2R],	 plexin-	B2	 [PLXNB2],	
interleukin-	6	receptor	subunit	alpha	[IL6R],	soluble	intercellular	ad-
hesion	molecule-	5	[ICAM5],	ectonucleotidase	phosphodiesterase	7	
[ENPP7]	and	Sushi,	von	Willebrand	factor	type	A,	EGF	and	pentraxin	
domain-	containing	 protein	 1	 [SVEP1] may be causally associated 
with	parental	lifespan.	Many	of	these	blood	factors	could	represent	
therapeutic	targets	to	reduce	the	risk	of	age-	associated	chronic	dis-
eases	and	longevity.	Our	search	for	parental	lifespan	eMetabolites	
revealed that circulating metabolites such as amino acids or energy 
metabolism associated molecules may not be causally associated 
with	 parental	 lifespan.	 However,	 plasma	 levels	 of	 apolipoprotein-	
B-	containing	lipoproteins	(VLDL	and	LDL)	were	strongly	associated	
with	 shorter	 parental	 lifespan.	 This	MR	 analysis	 provides	 genetic	
confirmation	of	the	results	of	several	 investigations	 into	the	 long-	
term	health	benefits	of	lipid-	lowering	therapies	(Collins	et	al.,	2016;	
Pedersen,	2016).

In	 support	 of	 the	 causal	 association	 of	 apolipoprotein-	B-	
containing	lipoprotein	and	parental	lifespan,	we	found	through	a	gene	
interaction network that the four genes responsible for the over-
whelming majority of the cases for the most prevalent human genetic 
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disease	(Defesche	et	al.,	2017),	 familial	hypercholesterolemia,	could	
be linked with genes regulating lifespan (LDLR,	 PCSK9,	 APOB and 
LDLRAP1).	These	results	support	the	notion	that	lifelong	exposure	to	
low	concentration	of	all	apolipoprotein-	B-	containing	lipoprotein	par-
ticles might be an important determinant of atherosclerotic coronary 
artery	diseases	and	human	longevity.	In	this	work,	we	also	provide	ev-
idence that genetic variation in PCSK9	mimicking	the	effect	of	PCSK9	
inhibitors	is	linked	to	lifelong	exposure	to	low	LDL	cholesterol	levels	
and	higher	parental	lifespan.	These	results	suggest	that	PCSK9	inhib-
itors,	by	reducing	LDL	cholesterol,	could	be	key	to	decreasing	aging-	
associated	diseases	and	extending	lifespan	but	need	to	be	tested	in	
adequately	powered	long-	term	randomized	clinical	trials.

A	non-	colocalized	signal	was	also	reported	for	a	liver	expressed	
gene: LPA,	the	gene	that	encodes	apolipoprotein(a),	which	is	one	of	
the	 components	 of	 lipoprotein(a)	 (Lp[a]),	 another	 apolipoprotein-	
B-	containing	 highly	 atherogenic	 lipoprotein	 particle	 (Tsimikas	
et	al.,	2018).	We	have	previously	reported	in	a	hypothesis-	driven	MR	
study	a	strong	relationship	between	plasma	Lp(a)	levels	and	parental	
lifespan,	healthspan	(defined	as	disease-	free	survival)	and	long-	term	
mortality	 risk	 (Arsenault	 et	 al.,	 2020).	 Long-	term	 health	 outcome	
trials	of	lipoprotein(a)-	lowering	therapies	with	antisense	oligonucle-
otides	are	currently	underway	(NCT04023552).

In their landmark study investigating the genetics of paren-
tal	 lifespan	 in	more	 than	 one	million	 individuals,	 Timmers	 et	 al.	
(2019),	developed	and	used	a	new	approach	called	Bayesian	prior-	
informed	GWAS.	This	method	identifies	new	genetic	variants	as-
sociated with parental lifespan based on mortality risk factors. 
This approach led to the discovery of 7 loci associated with pa-
rental	 lifespan.	 Our	 trans-	omic	 MR	 study	 identified	 3	 of	 these	
loci	 (without	 using	 prior	 information	 on	 mortality	 risk	 factors):	
IGF2R	 using	 proteome-	wide	 MR	 as	 well	 as	 POM121C and the 
CELSR2/PSRC1/SORT1	region	using	TWAS.	Although	the	same	ge-
netic	variant	was	responsible	for	the	genetic	colocalization	of	the	
three	co-	regulated	genes	at	the	1p13	locus	(CELSR2/PSRC1/SORT1 
region),	SORT1 might be responsible for the parental lifespan sig-
nal	at	the	1p13	locus.	 Indeed,	a	 large	body	of	evidence	supports	
a functional impact of sortilin (encoded by the SORT1	gene)	in	li-
poprotein	metabolism	(Kjolby	et	al.,	2010;	Musunuru	et	al.,	2010).	
Our findings add novel information on the regulation of genes 
that	may	be	linked	with	parental	lifespan.	Although	Timmers	et	al.	
provided	 evidence	 that	 some	 cis-	acting	 variants	 associated	with	
parental	lifespan	did	influence	gene	expression,	a	TWAS	followed	
by	genetic	colocalization	investigating	potentially	new	eGenes	as-
sociated with parental lifespan was not performed as we report 
here.	 We	 also	 linked	 the	 genetically	 regulated	 genetic	 expres-
sion of these genes with several cardiometabolic traits as well as 
human	diseases.	Altogether,	these	results	support	the	usefulness	
of combining various genetic investigation techniques relying on 
mortality	risk	factors	and	MR	to	identify	new	genetic	and	biologi-
cal	determinants	of	complex	traits	such	as	human	longevity.

Results of this study further confirm the role of smoking be-
haviors as a strong determinant of lifespan and chronic diseases. 
We	 found	 that	 many	 smoking-	associated	 loci	 such	 as	 cholinergic	

receptor	nicotinic	2,	3/5	and	4	subunits	may	actually	be	brain	eGenes.	
Timmers	et	al.	(2019)	did	identify	variation	at	CHRNA 3/5 on chromo-
some	15	to	be	associated	with	parental	lifespan	at	the	genome-	wide	
significance level. Here we report that CHRNA4 on chromosome 20 
and CHRNA2	 on	 chromosome	8	 as	new	potential	 parental	 lifespan	
loci	(although	the	latter	did	not	show	evidence	of	genetic	colocaliza-
tion).	Unsurprisingly,	our	search	for	potential	drug	targets	for	aging-	
associated diseases identified many smoking cessation therapies and 
the	results	of	our	phenome-	wide	MR	studies	confirmed	the	associa-
tion of these eGenes with atherosclerotic cardiovascular diseases and 
neoplasms. These results confirm the importance of urgently adopt-
ing strict tobacco control policies throughout the world to improve 
global	health,	decrease	chronic	disease	burden	and	human	longevity.

In	 this	 analysis,	 the	only	protein	 that	 showed	significant	 asso-
ciation	 in	 genome-	wide,	 transcriptome-	wide	 and	 proteome-	wide	
MR	studies	was	haptoglobin	(Hp).	We	show	here	that	HP is a liver 
expressed	gene	and	 that	 liver	expression	of	HP,	 as	well	as	plasma	
Hp	 is	 linked	with	 parental	 lifespan.	 A	 study	 showed	 that	Hp	 lev-
els	 are	 higher	 in	 the	 plasma	 of	 Japanese	 semisuper	 centenarians	
(Miura	et	al.,	2011).	Hp	is	an	acute-	phase	protein	and	is	one	of	the	
most abundant proteins in human plasma. It binds free hemoglobin 
and facilitates its removal from the bloodstream. Our analysis also 
identified an association between genetically regulated HP genetic 
expression	and	hemoglobin	 levels.	Hp	also	decreases	oxidation	of	
apolipoprotein E (encoded by the longevity gene APOE).	A	previous	
study	showed	that	exon	deletion	 in	HP was associated with lower 
LDL	cholesterol	levels	(Boettger	et	al.,	2016).	The	authors	proposed	
a	mechanism	whereby	Hp	reduced	the	oxidation	of	apolipoprotein	E	
and	facilitated	its	removal	from	the	blood	stream,	thereby	reducing	
LDL	cholesterol	 levels.	Upon	further	 investigation	of	the	HP locus 
on	chromosome	15,	we	found	strong	evidence	of	genetic	colocal-
ization	between	liver	HP	expression,	LDL-	C	levels	and	parental	lifes-
pan,	but	not	plasma	Hp	 levels.	We	believe	 that	 this	 finding	might	
be due to the fact that the assessment of plasma Hp levels may not 
capture	the	full	extent	of	the	various	circulating	Hp	isoforms	(1–	1,	
1–	2	 and	 2–	2).	 Interestingly,	 our	 gene	 network	 analysis	 revealed	 a	
potential interaction of HP and APOE.	Interaction	of	Hp,	APOE	and	
beta-	amyloid	was	also	reported	in	human	brain	tissues,	where	this	
complex	might	influence	central	cholesterol	metabolism	(Spagnuolo	
et	 al.,	 2014).	This	 finding	 is	 also	 supported	by	our	phenome-	wide	
MR	 study	 in	 FinnGen	 reporting	 a	 positive	 association	 between	
liver	expression	of	HP	(but	not	blood	levels	of	Hp)	and	Alzheimer's	
Disease.	Functional	genomics	and	experimental	 investigations	will	
be needed to shed light on the mechanisms linking HP and longevity 
and to determine if HP might represent a potential therapeutic tar-
get to improve lifespan.

The majority of previous investigations into the biological deter-
minants of aging have contributed to the identification of several bi-
ological mechanisms regulating longevity in model organisms. These 
mechanisms	include,	among	others,	the	modulation	of	the	insulin-	like	
signalling	pathway,	target	of	rapamycin,	sirtuins	and	NAD+,	circadian	
clocks,	mitochondria	and	oxidative	stress,	senescence,	chronic	inflam-
mation,	 autophagy,	 proteostasis	 as	 well	 as	 genomic	 instability	 and	
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telomere	attrition	 (Campisi	et	al.,	2019).	Although	the	biological	de-
terminants	of	aging	in	humans	are	still	incompletely	understood,	aging	
mechanisms identified in model organisms appear to contrast with the 
biological	determinants	of	 aging	 in	humans.	One	exception	appears	
to	be	chronic	 inflammation,	which	might	 influence	 longevity	 in	both	
model	organisms	and	humans.	Both	our	recent	report	of	genetic	vari-
ation	in	the	interleukin	(IL)-	6	signalling	pathway	being	associated	with	
parental	lifespan	(Rosa	et	al.,	2019)	and	the	results	of	the	CANTOS	trial,	
which reported important mortality benefits in patients with elevated 
high-	sensitivity	C-	reactive	protein	 levels	 following	administration	of	
the	IL-	1β	monoclonal	antibody	canakinumab	(Ridker	et	al.,	2018)	sup-
port this hypothesis. Our study builds on this previous work showing 
that genes involved in both innate and immune response may be asso-
ciated	with	longevity	(Chignon	et	al.,	2020).	Here,	our	proteome-	wide	
MR	study	identified	variation	at	the	IL6R and ICAM5 loci to be asso-
ciated	with	parental	lifespan	(although	evidence	of	horizontal	pleiot-
ropy	in	the	IL6R-	parental	lifespan	association	was	detected).	Although	
some	cardiovascular	benefits	could	be	observed	by	targeting	the	IL-	6	
or	ICAM5	pathways,	our	phenome-	wide	MR	results	suggest	that	this	
might come at the price of increased risk of atopic disorders.

Other noteworthy findings of our study include a possible in-
teraction	between	 a	 newly	 identified	 locus,	RAD52 and WRN,	 the	
Werner	 syndrome	ATP-	dependent	helicase.	Coordination	of	 these	
two proteins activities involves telomere metabolism through their 
action	on	replication	fork	rescue	after	DNA	damage	in	cells	of	pa-
tients	with	Werner	syndrome	(a	premature	aging	disorder).	Another	
finding	of	interest	is	the	identification	of	Sushi,	von	Willebrand	fac-
tor	type	A,	EGF	and	pentraxin	domain-	containing	protein	1	(SVEP1)	
as a circulating protein causally associated with parental lifespan. 
Interestingly,	 a	 previous	 analysis	 also	 reported	 a	 potential	 asso-
ciation	 in	this	gene	with	 longevity	 in	the	Framingham	Heart	Study	
(Yashin	et	al.,	2010).	Finally,	the	association	of	CCDC71L	expression	
in arteries with shorter parental lifespan and higher risk of coronary 
artery	disease	in	FinnGen	also	warrants	further	exploration.

The	results	of	this	study	need	to	be	interpreted	in	the	context	
of	certain	limitations	of	our	approach,	beginning	with	the	definition	
of	the	study	outcome.	By	definition,	parents	have	to	reach	their	re-
productive	age	to	be	included	(i.e.,	have	children	that	were	enrolled	
in	the	study	cohorts),	which	may	introduce	selection	bias.	Although	
efforts	were	made	to	exclude	relatives	as	well	as	parents	that	died	
before	the	age	of	40,	the	cause	of	parental	death	was	not	available.	
Parents	were	 also	 exposed	 to	 a	 different	 environment	 than	 their	
children	 (exposure	 to	world	wars,	 famine,	 higher	 rate	of	 smoking,	
heterogeneous	 living	 conditions,	 sanitation	 and	 access	 to	medical	
care,	etc.).	This	observation,	combined	with	 the	 fact	 that	parental	
lifespan	is	a	self-	reported	trait,	may	have	introduced	misclassifica-
tion.	The	effect	sizes	of	the	variants	that	were	used	to	assess	our	
study	 exposures	 (eGenes,	 eProteins	 and	 eMetabolites)	 were	 ob-
tained	in	modern	cohorts	from	individuals	not	necessarily	exposed	
to such conditions and it is unsure if these could have influenced the 
effect	of	these	variants	on	our	exposures	of	interest.	We	were	not	
able	to	replicate	the	effect	of	genetic	variants	on	study	exposures	in	
a	second	cohort	as,	to	our	knowledge,	only	GTEx	provides	enough	

variation	on	common	variants	with	effect	sizes	on	gene	expression	
levels	across	such	as	wide	range	of	tissues.	For	eProteins,	although	
other	datasets	 are	 available,	most	 report	only	 top	pQTLs	 and	 the	
summary	statistics	are	not	available.	Therefore,	whether	the	ther-
apeutic	targets	 identified	 in	this	study	will	help	extend	 lifespan	of	
future generations need to be validated and replicated in additional 
genetic association studies from modern cohorts and more impor-
tantly,	 in	 prospective	 randomized	 clinical	 trials.	 Finally,	 although	
several methods were used to correct for false positives and spu-
rious	gene	prioritization	(genetic	colocalization)	with	regards	to	the	
eGene	analysis	and	to	control	for	horizontal	pleiotropy	and	outliers	
for	eProteins	and	eMetabolites	(use	of	multiple	Mendelian	random-
ization	method),	these	methods	are	not	definitive,	especially	since	
we could not validate these results in an independent cohort.

In	 conclusion,	 our	 study	 identified	 new	 genetically	 regulated	
genes	across	43	tissues,	as	well	as	genetically	regulated	circulating	
proteins and metabolites that could potentially regulate human lifes-
pan.	Many	of	these	genetic	determinants	of	parental	lifespan	repre-
sent	potential	therapeutic	targets	for	aging-	associated	diseases.	Our	
study also underscores the importance of global population health 
measures such as adopting stricter tobacco control measures as well 
as	the	globalization	of	interventions	targeting	all	apolipoprotein-	B-	
containing particles to prevent the onset of diseases of the cardio-
vascular system and possibly promote longevity.

4  |  METHODS

4.1  |  Multi- tissue transcriptome- wide association 
study of parental lifespan

The	main	study	outcome	was	parental	survival,	which	was	obtained	
from	summary	statistics	of	the	study	of	Timmers	et	al.	(2019)	who	per-
formed	a	GWAS	of	survival	in	a	sample	of	1,012,240	parents	from	the	
UK	Biobank	(691,621	parental	lifespans)	and	cohorts	of	the	LifeGen	
consortium	 (320,619	 parental	 lifespans	 from	 26	 additional	 popula-
tion	cohorts).	This	study	identified	parental	 lifespan	was	defined	by	
the	age	of	parent	death	or	dead/alive	status.	Parents	with	an	age	of	
death <40	were	excluded.	The	association	test	was	conducted	under	
the	Cox's	proportional	hazards	model,	which	implies	a	positive	effect	
size	for	a	longer	life.	Transcriptome-	wide	association	studies	(TWAS)	
integrate	GWAS	and	eQTLs	to	identify	genes	with	a	genetically	regu-
lated	level	of	expression	(eGenes)	associated	with	human	quantitative	
traits and/or diseases. In an attempt to implicate eGenes in the etiol-
ogy	of	parental	lifespan	across	multiple	tissues,	Timmers	et	al.	(2019)	
used	Summary-	level	Mendelian	Randomization	and	Heterogeneity	in	
Independent	Instruments	(HEIDI)	tests	from	eQTL	mapping	in	48	tis-
sues	of	the	GTEx	consortium.	Although	this	approach	helped	identify	
the	causal	gene	implicated	in	parental	lifespan	from	the	main	GWAS	
signal,	few	if	any	new	longevity	genes	were	identified	using	TWAS.	
We	used	data	from	the	Genotype-	Tissue	Expression	Project	 (GTEx)	
resource	(version	8)	to	perform	TWAS	on	parental	lifespan.	GTEx	is	
a	large-	scale	multi-	omic	dataset	where	DNA	and	RNA	were	collected	
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postmortem	from	53	tissue	samples	from	635	donors.	Tissues	with	
less than 70 samples were removed to provide sufficient statistical 
power	for	eQTL	discovery,	resulting	in	a	set	of	48	tissues.	Only	non-	
sex-	specific	tissues	(N =	43)	were	analyzed.	Alignment	to	the	human	
reference	genome	hg28/GRCh38	was	performed	using	STAR	v2.6.1d,	
based	on	the	GENCODE	v30	annotation.	RNA-	seq	expression	outli-
ers	were	excluded	using	a	multidimensional	extension	of	the	statistic	
described	by	Wright	et	al.	 (2014)	Samples	with	 less	 than	10	million	
mapped	reads	were	removed.	For	samples	with	replicates,	replicate	
with	the	greatest	number	of	reads	were	selected.	Expression	values	
were	 normalized	 between	 samples	 using	 TMM	 as	 implemented	 in	
edgeR	(Robinson	&	Oshlack,	2010).	For	each	gene,	expression	values	
were	normalized	across	samples	using	an	inverse	normal	transforma-
tion.	Gene-	level	analyses	were	performed	with	S-	PrediXcan	(Barbeira	
et	 al.,	 2018),	 which	 estimates	 cis-	eQTL	 effect	 sizes	with	 reference	
datasets.	Resulting	eQTL	effects	sizes	were	used	to	impute	eGenes	
that were tested using summary statistics of the parental lifespan 
GWAS	 described	 above.	 S-	PrediXcan	 enables	 TWAS	 without	 the	
need	of	individual-	level	data	based	on	the	MetaXcan	framework.	S-	
PrediXcan	uses	a	parametric	model	(elastic	net)	that	assumes	a	com-
bination	of	LASSO	and	Ridge	penalties	on	the	eQTL	effect	sizes.	eQTL	
prediction	models	were	performed	using	elastic	net,	a	regularized	re-
gression	method,	as	implemented	in	the	PredictDB	pipeline	(Barbeira	
et	al.,	2018;	Gamazon	et	al.,	2015).	We	used	SNPs	with	a	minor	al-
lele	frequency	greater	than	1%	from	European	ancestry	participants.	
Expression	of	protein	coding,	antisense,	 long	 intergenic	non-	coding	
and	micro	RNA	was	considered.	The	first	three	ancestry-	based	prin-
cipal	components,	a	set	of	covariates	identified	using	the	probabilistic	
estimation	of	expression	residuals	method	(Stegle	et	al.,	2012)	with	
genotyping	platform	and	sex	were	used	as	covariates.

4.2  |  Assessment of genetic colocalization

Genetic	colocalization	was	used	to	filter	our	LD-	contaminated	asso-
ciations.	A	stringent	Bayesian	model	is	used	to	estimate	the	posterior	
probability	 of	 each	eGene	 containing	 a	 single	 eQTL	affecting	both	
the	eGene	and	the	outcome(s)	of	interest.	We	used	COLOC	R	pack-
age to estimate the probability of five hypotheses: H0 corresponds to 
no	eQTL	and	no	GWAS	association,	H1	and	H2	correspond	to	eQTL	
association	but	no	GWAS	association	or	vice-	versa,	H3	corresponds	
to	 eQTL	 and	 GWAS	 associations	 but	 independent	 signals	 (weaker	
eQTL	 signal	 or	 GWAS	 hit)	 and	 H4	 corresponds	 to	 shared	 eQTL	
and	GWAS	signal	(the	lead	eQTL	is	also	among	the	top	GWAS	hits)	
(Giambartolomei	et	al.,	2014).	We	kept	eGenes	with	evidence	of	ge-
netic	colocalization	(PP.H4	>	0.75).	To	assess	the	role	of	the	prior,	we	
varied the critical parameter p12,	which	codes	for	the	prior	probability	
that	a	variant	is	associated	with	the	exposure	and	the	outcome	(1e−4,	
1e−5	and	1e−6).	For	cis-	eQTL	analyses,	a	p12 =	1e−4	threshold	is	usu-
ally	suggested.	Table	1	presents	the	PPH4	results	with	the	prior	set	at	
the more conservative threshold of p12 =	1e−5.	Locuscompare func-
tion from the LocuscompareR	R	package	(Liu	et	al.,	2019)	was	used	to	
depict	the	colocalization	events.	This	software	enables	visualization	

of	the	strengths	of	eQTLs	and	outcomes	associations	by	plotting	p-	
values	for	each	within	a	given	genomic	 location,	thereby	contribut-
ing	 to	distinguish	candidates	 from	 false-	positive	genes.	To	account	
for	multiple	testing,	a	Bonferroni	correction	for	all	gene-	tissue	pairs:	
<0.05/number	of	gene-	tissue	pairs	tested	was	applied.

4.3  |  Associations of eGenes with parental lifespan 
using Mendelian randomization

The	 association	 of	 eGenes	 linked	with	 parental	 lifespan	 in	 TWAS	
analysis	and	parental	lifespan	was	investigated	using	GTEx	and	eQTL-
Gen.	We	 used	 IVW-	MR	with	 the	mr function from TwoSampleMR 
package.	The	IVW-	MR	is	comparable	to	performing	a	meta-	analysis	
of	 each	 Wald	 ratio.	 Additional	 MR	 analyses	 were	 performed	 to	
evaluate heterogeneity (intercept p-	value,	from	MR	Egger	(Bowden	
et	 al.,	 2017))	 and	 the	 presence	 of	 outliers.	We	 used	MR-	PRESSO	
(Verbanck	et	al.,	2018),	an	outlier	robust	method,	to	detect	the	pres-
ence of outliers (variants potentially causing pleiotropy and influenc-
ing	causal	estimates)	and	causal	estimates	were	obtained	before	and	
after	 excluding	 outliers.	We	 also	 used	 the	 contamination	mixture	
method as this method was recently identified as a robust modelling 
method to identify causal relationships in the presence of potentially 
invalid	genetic	instruments	(Burgess	et	al.,	2020).

4.4  |  Tissue specificity of gene expression

The	tissue-	specific	gene	expression	metric	 (τ)	was	obtained	from	all	
genes	 identified	 by	 TWAS.	We	 used	 the	 formula	 from	 Yanai	 et	 al.	
(2005)	 to	compare	 the	 level	of	gene	expression	across	 selected	 tis-
sues	based	on	RNA	sequencing	data	from	European	ancestry	donors	
from	GTEx.	All	the	genes	with	expression	<1	RPKM	were	set	as	not	
expressed.	The	RNA-	seq	data	were	 first	 log-	transformed.	After	 the	
normalization,	a	mean	value	from	all	replicates	for	each	tissue	sepa-
rately	was	calculated.	A	τ value closer to 1 indicates tissue specificity 
while a τ	value	closer	to	0	indicates	ubiquitous	gene	expression.	We	
considered	that	eGenes	had	tissue-	specific	expression	when	their	τ 
statistic	was	≥0.80.

4.5  |  Associations of eProteins and eMetabolites 
with parental lifespan

We	used	GWAS	summary	statistics	from	the	INTERVAL	cohort	(Sun	
et	 al.,	 2018)	 to	 identify	 eProteins	 that	 could	 potentially	 be	 caus-
ally associated with parental lifespan. Relative concentrations of 
3,622	plasma	proteins	or	protein	complexes	were	assayed	using	an	
aptamer-	based	 multiplex	 protein	 assay	 (SOMAscan)	 in	 3,301	 par-
ticipants	 from	 the	 INTERVAL	study.	A	minimum	of	4	 instrumental	
variables	(IVs)	were	constructed	using	cis-	pQTLs	in	a	1Mb	window,	
clumped using plink 1.9 with a r2 < 0.1 (from 1000 genomes phase 
3	European	ancestry	 LD	 reference	panel),	 a	p-	value	<5e−8,	 and	a	
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physical	 distance	 threshold	 of	 250	 Kb.	 The	 MHC	 (6:28,477,797–	
33,448,354)	and	APOE	regions	were	removed	as	well	as	ABO	gene	
and	immunoglobulins.	Association	of	279	circulating	eProteins	and	
parental	lifespan	was	assessed	with	IVW-	MR	using	mr function from 
TwoSampleMR	package	and	a	Bonferroni	correction	was	applied	(p-	
value = 1.79e−4	(0.05/279	eProteins).	Additional	MR	analyses	were	
performed	 to	 evaluate	 heterogeneity	 (MR	 Egger	 (Bowden	 et	 al.,	
2017))	and	 the	presence	of	outliers	 (MR-	PRESSO	 (Verbanck	et	al.,	
2018)).	We	also	used	 the	 contamination	mixture	method	 (Burgess	
et	al.,	2020).	The	same	MR	framework	was	used	to	identify	eMetab-
olites	potentially	associated	with	parental	lifespan.	We	used	GWAS	
summary	 on	 123	 metabolites	 from	 the	 study	 of	 Kettunen	 et	 al.	
(2016)	 In	 this	 study,	123	blood	 lipids	 and	metabolites	were	meas-
ured	 in	 24,925	 individuals	 from	 10	 European	 cohorts	 using	 high-	
throughput	nuclear	magnetic	resonance	spectroscopy.	Metabolites	
measured	 by	 NMR	 represent	 a	 broad	molecular	 signature	 of	 sys-
temic metabolism and includes metabolites from multiple metabolic 
pathways	 (lipoprotein	 lipids	 and	 subclasses,	 fatty	 acids	 as	 well	 as	
amino	acids,	glycolysis	precursors,	etc.).	 IVs	for	eMetabolites	were	
constructed using independent genetic variants clumped using plink 
1.9 with a r2 <	0.1,	a	p-	value	<5e−8	and	a	physical	distance	thresh-
old	of	250	Kb.	Association	of	115	circulating	eMetabolites	and	pa-
rental	 lifespan	was	assessed	with	IVW-	MR	using	mr function from 
TwoSampleMR	package	and	a	Bonferroni	correction	was	applied	(p-	
value = 4.35e−4	(0.05/115	eMetabolite).	MR-	PRESSO,	MR-	Egger	and	
contamination	mixture	methods	were	also	used	as	described	above.

4.6  |  Investigation of genetic colocalization across 
multiple traits at the HP locus

We	investigated	genetic	colocalization	across	multiple	traits	at	chro-
mosome	15	within	1	Mb	of	the	HP	gene	between	liver	expression	of	
the HP	gene	(from	GTEx	(Lonsdale	et	al.,	2013)),	plasma	Hp	levels	(from	
INTERVAL	(Sun	et	al.,	2018)),	plasma	LDL-	C	levels	(from	GLGC	(Willer	
et	 al.,	 2013))	 and	 parental	 lifespan	 (from	UK	Biobank	 and	 LifeGen	
(Timmers	et	al.,	2019))	using	the	hyprcoloc	R	package.	HyPrColoc	is	
a	deterministic	Bayesian	algorithm	using	GWAS	summary	statistics	
that	 can	 detect	 colocalization	 across	 vast	 numbers	 of	 traits	 simul-
taneously	(Foley	et	al.,	 ,	2021).	Posterior	probabilities	of	colocaliza-
tion heatmap was performed with the sensitivity.plot function from 
the hyprcoloc R package with default settings (regional and alignment 
thresholds:	0.6,	0.7,	0.8	and	0.9,	prior	probabilities	of	colocalization:	
0.98,	0.99	and	0.995).	Regional	association	plot	was	obtained	 from	
the stack_assoc_plot function from the gassocplot R package and the 
1000G	phase	3	LD	reference	panel	(European	ancestry).

4.7  |  Resources used to identify drug candidates 
for aging- associated diseases

We	used	the	Open	Targets	Platform	to	determine	the	potential	ther-
apeutic	areas	of	 the	eGenes	and	eProteins	associated	with	parental	

lifespan and to identify approved therapies that may target these 
eGenes	 or	 eProteins.	 Briefly,	 the	Open	 Targets	 Platform	 developed	
a	user-	friendly	web	interface	(available	at:	https://www.targe	tvali	da-
tion.org/)	that	enables	the	search	of	therapeutic	areas,	drug	targets,	
pathways,	 gene	 ontology,	 and	 tractability	 information	 simultaneous	
for gene lists prepared by the user. This information is made available 
by	 the	 platform's	 integration	 of	 evidence	 from	 genetics,	 genomics,	
transcriptomics,	drugs,	animal	models	and	scientific	literature	to	score	
and	rank	target-	diseases	associations	for	drug	target	identification.	We	
also	used	the	DrugBank	encyclopedia	to	identify	potential	drug	repo-
sitioning opportunities and drug targets that may interact with eGenes 
and	eProteins	identified	in	the	course	of	this	investigation.	DrugBank	is	
a publicly available resource with drug and drug target information on 
over	13,000	drug	entries	available	at:	https://www.drugb	ank.ca/.	The	
Drug Gene Interaction database is an open source resource than ena-
bles the query of genes of interest with respect to known drug gene 
interactions	and	potential	druggability,	 it	 is	available	at:	http://www.
dgidb.org/	(Cotto	et	al.,	2018).	We	also	queried	eGenes	and	eProteins	
in	the	GeneMANIA	prediction	server	to	gain	new	information	on	path-
ways and genetic interactions mostly connected with the eGenes and 
eProteins	(Warde-	Farley	et	al.,	2010).	Briefly,	GeneMANIA	integrates	
data from thousands of genomics and proteomics datasets such as the 
Gene	Expression	Omnibus	(GEO),	BioGRID,	IRefindex,	I2D	as	well	as	
organisms-	specific	 functional	 genomics	 datasets	 to	 enable	 users	 to	
query	 list	of	genes	 in	a	user-	friendly	web	portal.	GeneMANIA	algo-
rithms	use	patterns	of	gene	co-	annotations	in	the	Gene	Ontology	(GO)	
biological	functions	hierarchy,	which	are	weighted	to	find	closely	con-
nected	genes	and	generates	networks	of	gene	co-	expression,	proteins	
with	physical	interactions,	shared	domains,	etc.

4.8  |  Variation in PCSK9 and parental lifespan 
using individual participant data in the UK Biobank

We	 selected	 independent	 SNPs	 (r2 <	 0.10)	 at	 the	 PCSK9 locus 
(within	 100	 Kb	 of	 the	 gene)	 associated	 with	 LDL-	C	 levels	 at	 a	
genome-	wide	 level	 of	 significance	 in	 the	 Global	 Lipids	 Genetics	
Consortium	(GLGC)	(Willer	et	al.,	2013).	This	approach	yielded	11	
SNPs	independently	associated	with	LDL-	C	levels.	We	constructed	
a	weighted	genetic	score	(GS)	of	SNPs	at	the	PCSK9 locus scaled to 
a	1	mmol/L	 reduction	 in	 LDL-	C	 levels.	 The	 associations	between	
the	GS	and	parental	 lifespan	 in	the	UK	Biobank	was	tested	using	
logistic	regression	adjusted	for	age,	sex	and	the	first	10	ancestry-	
based	principal	 components	using	R	 (version	3.5.1).	We	used	 the	
definition	of	Pilling	et	al.	(2017)	to	assess	high	parental	lifespan	in	
participants	of	the	UK	Biobank.	Only	participants	between	55	and	
69	years	were	included.	Participants	who	were	adopted,	had	miss-
ing information on age of parents’ death or who had parents who 
died at a young age (<46	 for	 the	 father	and	<57	 for	 the	mother)	
were	excluded	 from	 these	analyses.	Parents	were	 separated	 into	
three	categories:	 long-	lived	(father	still	alive	and	older	than	90	or	
father's	age	of	death	≥90	and	mother	still	alive	and	older	than	93	
or	mother's	age	of	death	≥93),	medium-	lived	(age	of	death	≥66	and	

https://www.targetvalidation.org/
https://www.targetvalidation.org/
https://www.drugbank.ca/
http://www.dgidb.org/
http://www.dgidb.org/
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<89	 for	 the	 father	 and	 ≥73	 and	<92	 for	 the	mother)	 and	 short-	
lived	 (age	of	death	≥46	and	<65	 for	 the	 father	and	≥57	and	<72 
for	the	mother).	We	defined	high	parental	lifespan	as	at	least	one	
long-	lived	 parent	 (i.e.,	 long/long	 or	 long/medium).	 The	 control	
group	 included	participants	with	 parents	 considered	 as	 short-		 or	
medium-	lived	(i.e.,	short/short,	short/medium	or	medium/medium).	
Participants	discordant	for	mothers'	and	fathers'	age	of	death	(one	
long-	lived	parent	 and	one	 short-	lived	parent)	were	 also	excluded	
from the present analyses. These analyses were conducted under 
UK	Biobank	data	application	number	25205.

4.9  |  Effect of parental lifespan eGenes on other 
traits and human disease

The association between parental lifespan eGenes (presented 
in	 Table	 1)	 and	 human	 traits	 and	 disease	 was	 investigated	 using	
PhenomeXcan	 (Pividori	 et	 al.,	 2020).	 PhenomeXcan	 is	 a	 queryable	
platform	 that	 combines	GWAS	 summary	 statistics	 on	4091	human	
traits	 and	 transcriptome-	wide	 expression	 data	 on	 22,515	 genes	 in	
49	tissues	from	GTEx	v8.	We	interrogated	results	from	the	Summary	
MultiXcan	platform,	an	analytical	method	that	uses	summary	statis-
tics	and	aggregate	results	across	tissues.	We	present	parental	lifespan	
eGene-	trait	 associations	 with	 a	 p-	value	<1.2e−5	 (0.05/4091	 traits).	
The	fastENLOC-	assessed	regional	colocalization	probability	 (RCP)	 is	
also presented.

4.10  |  Association of eGenes, eProteins, 
eMetabolites and PCSK9 with disease traits 
in FinnGen

For	MR	analysis,	cis-	eQTL	were	identified	using	QTLtools	(Delaneau	
et	al.,	2017)	with	the	first	three	principal	components,	a	set	of	co-
variates	identified	using	the	probabilistic	estimation	of	expression	
residuals	method	(Stegle	et	al.,	2012)	with	genotyping	platform	and	
sex	as	covariates.	Variants	were	included	if	they	had	a	minor	allele	
frequency	≥1%.	Missing	genotypes	were	imputed	as	the	mean	of	
the	other	participants'	genotypes.	The	cis-	window	size	was	set	to	
1Mb.	We	used	the	get_r_from_pn and get_r_from_lor functions from 
the TwoSampleMR	package	to	calculate	variance	of	each	eQTL	for	
quantitative	and	binary	data	respectively.	SNPs	that	explain	more	
of	the	variance	in	the	outcome	compared	to	the	exposure	was	not	
included	as	instrumental	variables	(IV).	Removing	eQTLs	that	show	
evidence of reverse causality is of particular importance in the 
setting of human longevity studies as aging might influence genes 
in	a	 tissue-	specific	manner	 (Yang	et	al.,	2015).	 IVs	were	clumped	
using plink 1.9 with a r2 <	0.1,	a	p-	value	<0.01 and a physical dis-
tance	threshold	of	250	Kb.	If	an	eGene	was	significant	in	multiple	
tissues,	 the	 tissue	 that	 provided	 the	 strongest	 eGenes-	parental	
lifespan	 estimate	 from	 S-	PrediXcan	 was	 prioritized.	 Instruments	
for	 eProteins	 and	 eMetabolites	were	 the	 same	 as	 those	 used	 to	
determine	 their	 association	with	parental	 lifespan.	 In	FinnGen,	 a	

method	 called	 SAIGE	 (Scalable	 and	 Accurate	 Implementation	 of	
Generalized	Mixed	Models),	which	is	based	on	generalized	mixed	
models	was	developed	to	control	for	case-	control	imbalance,	sam-
ple	 relatedness	 and	 population	 structure.	GWAS	was	 performed	
using	over	16	million	genetic	markers	genotyped	with	the	Illumina	
or	Affymetrix	arrays	or	imputed	using	the	population	specific	SISu	
v3	reference	panel.	Variables	included	in	the	models	were	sex,	age,	
the	10-	main	ancestry-	based	principal	components	and	genotyping	
batch.	This	analysis	was	performed	using	publicly	available	GWAS	
summary	statistics	from	the	FinnGen	data	freeze	3	(June	16,	2020).	
Outcomes with <400	cases	were	excluded	leaving	1169	traits	for	
PheWAS.	Since	several	of	the	phenotypes	that	were	investigated	
were	genetically	correlated,	accounting	for	all	phenotypes	as	they	
were	 independent	may	 be	 too	 conservative.	We	 therefore	 used	
the	PhenoSpD	tool	(Zheng	et	al.,	2018),	to	estimate	the	number	of	
independent	 tests	 that	are	performed.	PhenoSpD	applies	GWAS	
summary	statistics	to	LD	score	regression	to	estimate	the	pheno-
typic	correlation	matrix	of	the	traits	and	estimates	the	number	of	
independent	 variables	 among	 the	 traits.	We	 considered	 associa-
tions that had a p-	value	<6.5e−5	(0.05/773	traits)	(instead	of	1169)	
to	be	statistically	significant.	We	used	IVW-	MR	to	determine	the	
association	 between	 genetic	 instruments	 for	 eGenes,	 eProteins,	
eMetabolites,	 single	 SNPs	 without	 TWAS	 (APOE,	 LPA,	 LDLR,	
MAGI3	and	9p21	region)	or	LDL-	C	reductions	associated	with	vari-
ants at the PCSK9	 locus	with	these	disease-	specific	binary	traits.	
We	used	genetic	instruments	mentioned	above	while	keeping	the	
SNPs	in	common	between	the	compared	datasets.
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