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ABSTRACT
Two-dimensional (2D) ferromagnetic materials have been discovered with tunable magnetism and
orbital-driven nodal-line features. Controlling the 2Dmagnetism in exfoliated nanoflakes via
electric/magnetic fields enables a boosted Curie temperature (TC) or phase transitions. One of the
challenges, however, is the realization of high TC 2Dmagnets that are tunable, robust and suitable for large
scale fabrication. Here, we report molecular-beam epitaxy growth of wafer-scale Fe3+XGeTe2 films with TC
above room temperature. By controlling the Fe composition in Fe3+XGeTe2, a continuously modulated TC
in a broad range of 185–320 K has been achieved.This widely tunable TC is attributed to the doped
interlayer Fe that provides a 40% enhancement around the optimal composition X= 2. We further
fabricated magnetic tunneling junction device arrays that exhibit clear tunneling signals. Our results show
an effective and reliable approach, i.e. element doping, to producing robust and tunable ferromagnetism
beyond room temperature in a large-scale 2D Fe3+XGeTe2 fashion.

Keywords: 2D ferromagnetic material, Fe3+XGeTe2 film, element doping, above room temperature,
TC tunability

INTRODUCTION
Since the discovery of van der Waals two-
dimensional (2D) materials, especially graphene
[1], such 2D crystals have been widely extended
to transition metal dichalcogenides [2] and 2D
superconductors [3]. More recently, 2D magnets
have attracted enormous attention because of the
emergence of ferromagnetism in the monolayer
limit [4,5]. Novel theoretical proposals and ex-
periments in magnetic tunability and spintronic
devices have been reported. Theoretically, moiré
skyrmions [6], the nodal-line property [7], the
quantum anomalous Hall effect [8] and the ‘magic
angle’ effect on magnetism [9,10] have been pro-
posed in 2D magnets and their heterostructures.
Magneto-band-structure effect [11], described as

the electronic band structure modified by magneti-
zation directions, has also been predicted in 2D van
derWaals ferromagneticmaterials for the realization
of giant magnetoresistance. Experimentally, the
rapid exploration of new 2D ferromagnets provides
a fertile ground for exotic magnetic properties, for
instance, Curie temperature (TC) and coercive
field (HC) tunability via gate voltage [12,13],
magnon-assisted tunneling [14] and giant magne-
toresistance [15–17]. In spite of the tremendous
progress made in the CrX3 system, its TC remains
below 60 K and the exploration of highTC materials
becomes particularly appealing. Fe3GeTe2 exhibits
a relatively high TC of∼220 K in the bulk state with
a strong perpendicular magnetic anisotropy [18].
In exfoliated Fe3GeTe2 nanoflakes with a sample
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size in the order of micrometers, TC achieves a
high modulation even up to room temperature via
ionic liquid gating [19]. Characterized by mag-
netotransport and angle-resolved-photoemission
spectroscopy, the bulk Fe3GeTe2 is proposed to
be a ferromagnetic nodal-line semimetal [7] that
promises more exotic properties like magnetically
tunable nodes [20,21].(Continued from

previous page)
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An intriguing proposal,
with regard to such materials, is to realize the
quantized anomalous Hall effect at significantly
higher temperatures in the monolayer limit [22,23].
However, the approach to achieving controllable
growth with large-scale functioning devices and
high-TC ferromagnetic order remains elusive to
date.

Chemical doping, via intentionally introducing
impurities into parent materials, has been estab-
lished as a direct yet effective approach to mod-
ulating and functionalizing the intrinsic electronic
properties of 2Dmaterials [24,25].Doped transition
metal dichalcogenides exhibit tunable electronic
and optoelectronic properties [26–29].Through Cr
doping, the quantized anomalous Hall effect at mil-
likelvin temperatures was discovered in Cr-doped
(Bi, Sb)2Te3 films [30]. Dilute magnetic semicon-
ductors, such as (Ga, Mn)As, yield a large modula-
tion of TC with different Mn compositions [31,32].
Scenarios of nitrogen-decorated NbSe2 nanosheets
show the coexistence of ferromagnetism and su-
perconductivity [33]. In Fe3−XGeTe2 bulk crys-
tals [34] and films made by molecular-beam epi-
taxy (MBE) [35], the ferromagnetic behavior of TC
undergoes a monotonically decreasing trend with
the reduction of the Fe composition. Neverthe-
less, the atom-doping-engineered TC in 2D mate-
rials remains lower than 250 K, and further effec-
tive methods for magnetism modulation and the
investigation into the underlying mechanism are
indispensable.

Here, we employ a precise control of ele-
ment flux in MBE to directly accomplish a TC
of 320 K in wafer-scale Fe3+1.80GeTe2 films.
Aberration-corrected scanning transmission elec-
tron microscopy (STEM) investigations confirm
the well-preserved layered structure in Fe-rich
films. The angle-dependent anomalous Hall effect
(AHE) evidences the persistent perpendicular
magnetic anisotropy up to its TC of 320 K, which is
consistent with that deduced from zero-field-cooled
(ZFC) and field-cooled (FC) susceptibility results
(TC ∼ 316.1 K) and X-ray magnetic circular
dichroism results (XMCD, TC ∼ 313.3 K). The TC
of the Fe3+XGeTe2 films is found to be strongly
dependent on the X value, which continuously
increases from ∼185 K (X = −0.25) to 320 K

(X = 1.80) followed by the decreasing behavior
to 290 K at X = 2.80. Density functional theory
(DFT) calculations confirm the ferromagnetic
ground state of the bulk Fe3GeTe2 via a com-
parison with different antiferromagnetic states.
Moreover, the calculations find that the doped
interlayer Fe atoms contribute significantly to the
TC enhancement. Based on these high-quality
thin films, Fe3+0.76GeTe2/MgO/Fe3GeTe2
magnetic tunneling junction (MTJ) arrays
are fabricated and clear tunneling signals are
distinguished with a low-temperature tun-
neling magnetoresistance (TMR) ratio of
∼0.25%.

Fe3+XGeTe2 FILM SYNTHESIS
The layered Fe3GeTe2 compound has a hexag-
onal structure with the lattice parameters of
a = 3.991(1) Å, c = 16.33(3) Å and a space
group of P63/mmc [36]. Figure 1a shows the
projection view of the Fe3GeTe2 atomic structure
along the [01–10] zone-axis, in which each layer
consists of five sub-layers [36] with a Fe3Ge slab
sandwiched between two neighboring Te layers
with the corresponding nominal valence state of
(Te2–)(Fe3+)[(Fe2+)(Ge4–)](Fe3+)(Te2–). By
controlling the growth temperature and the flux of
each element, high-crystalline Fe3+XGeTe2 films
can be successfully grown by MBE. Figure 1b is
an X-ray diffraction (XRD) pattern taken from a
representative film, from which diffraction peaks
can be ascribed to a series of {0002} planes
(PDF# 75–5620). Its inset displays a streaky
in-situ reflection high-energy electron diffraction
(RHEED) pattern, indicative of a layer-by-layer
growth mode for Fe-doped Fe3+XGeTe2 films (also
displayed in Fig. S1). Figure 1c is a STEM-high
angle annular dark-field (HAADF) image taken
from a typical cross section of the film and shows
the layered structure with an interlayer distance of
∼0.8 nm (close to the determined value for the
stoichiometric Fe3GeTe2 films [35,37]). Therefore,
the layered structure and high crystalline quality
in Fe-rich Fe3+XGeTe2 thin films are well pre-
served. Figure 1d shows the corresponding X-ray
energy dispersive spectrometry (EDS) profile of
the film, and the quantitative analysis suggests
the composition of the epitaxial Fe3+XGeTe2 is
Fe3+1.06GeTe2. The left inset is a photograph of a
2-inch Fe3+1.06GeTe2 film, and the right inset shows
an average surface roughness of 0.32 nm in the
area of 10 μm × 10 μm detected by atomic force
microscopy.
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Figure 1. 2D layered structure in Fe3+XGeTe2 thin films. (a) Fe3GeTe2 structure geom-
etry. (b) XRD spectrum from Fe3+0.18GeTe2, with the peaks ascribed to (0002), (0004),
(0006), (00010), (00012) and (00014) according to PDF# 75-5620. Inset, an RHEED pat-
tern. (c) A cross section HAADF image of Fe3+1.06GeTe2. Layered structure with an in-
terlayer distance of 0.8 nm is well-preserved in such Fe-rich films. The scale bar is
1 nm. (d) EDS for Fe3+1.06GeTe2. Left inset, a photograph of a 2-inch Fe3+1.06GeTe2 film.
Right inset, an atomic force microscopy image taken from a 10 μm × 10 μm surface,
showing the average surface roughness of 0.32 nm. The scale bar is 3 μm.

ROOM-TEMPERATURE
FERROMAGNETISM
IN Fe3+1.80GeTe2 FILM
To experimentally probe the high-TC ferromag-
netism in Fe3+1.80GeTe2 films, we carried out
magnetotransport and M-H measurements. Unless
specifically mentioned, hereafter, the thickness of
Fe3GeTe2 films is ∼10 nm. The Hall effect for
general ferromagnetic materials can be described as

Rxy = RH B + RAHM,

where the Hall coefficient RH stands for the ordi-
nary Hall effect that is linearly dependent on the
magnetic field (B), and the anomalous Hall effect
RAHM comes from the magnetization (M) contri-
bution. The AHE component can be obtained by
subtracting the linear Hall resistance from the to-
tal Hall effect data, as illustrated in Fig. 2a. By in-
creasing the temperature, the coercive field (HC)
decreases correspondingly. Up to 300K, the anoma-
lous Hall resistance (RXY) still shows a hysteresis as
the magnetic field scans back and forth; and even-
tually HC vanishes at 330 K (Fig. 2a inset), based

on which TC is estimated to be ∼320 K. It should
be noted that in exfoliated Fe3GeTe2, perpendicu-
lar magneto-crystalline anisotropy persists tomono-
layer even though TC has been largely suppressed
[19].

To characterize the Fe-doping effect on its
magnetic anisotropy, the angle-dependent AHE
at different temperatures is investigated. Here, the
angle θ is defined as the angle between themagnetic
field and the normal vector of the sample surface,
as illustrated in the inset of Fig. 2b. At 2.5 K, the
easy axis is confirmed to be along the out-of-plane
direction with a perpendicular magnetic anisotropy
due to the fact that theHC increases simultaneously
with the angle rotating from 0◦ to 90◦, thus sharing
the same anisotropy property as the stoichiometric
Fe3GeTe2 [35]. This perpendicular anisotropy per-
sists up to 320 K, as verified by the angle-dependent
AHE at 270 K, 300 K and 320 K, shown in Fig. S7.
Analyzedwith the Stoner-Wohlfarthmodel [19,38],
the perpendicular magneto-crystalline anisotropy
energy density (Ku) is estimated to be ∼1.08 ×
107 erg/cm–3 (Supplementary Note S2), which is
comparable to that of the Fe3GeTe2 bulk crystals
[38]. We have further explored the zero-field-
cooled/field-cooled (ZFC-FC) magnetization
curves for Fe3+1.80GeTe2 film (Fig. 2c, details in
Supplementary Note S3), which exhibit different
trends as the temperature decreases; they start to
separate at ∼320 K. The variation of magnetization
as a function of temperature is positively propor-
tional to the magnetic susceptibility, which can be
fitted by the Curie-Weiss law

χ = χ0 + C/(T − TC ),

where χ0 is a temperature-independent parameter
resulting from the density of states at the Fermi en-
ergy level, and C is the Curie constant. The best
fit to the experimental FC curve yields a TC of
316.1 ± 2.6 K (Fig. 2c inset), consistent with the
value tracked fromthe temperature-dependentAHE
(Fig. 2a). TheM-H curves at different temperatures
are illustrated in Fig. S12a, where the coercive field
of 40 Oe can be distinguished at 300 K.

Now the global room-temperature ferromag-
netism in the millimeter-level flakes has been
verified both by AHE and magnetization measure-
ment. We further carried out the surface-sensitive
polar reflective magnetic circular dichroism
(RMCD) measurement where the focused laser
spot was ∼3 μm to investigate its local mag-
netism. Figure 2d displays temperature-dependent
RMCD measurement as a function of B. Consis-
tent with the decreasing HC and RXY in the AHE
measurements, the HC and remanent magneti-
zation decrease with the increasing temperature.
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Figure 2. Out-of-plane ferromagnetic anisotropy of Fe3+1.80GeTe2 film with TC of ∼320 K. (a) Temperature-dependent AHE under the perpendicular
measurement geometry. Top inset, a schematic configuration of the perpendicular geometry between the sample surface and the magnetic field.
Bottom inset, coercive field tracked from AHE. Up to 320 K, visible hysteresis can be distinguished, and vanishes at 330 K. TC can be determined to be
∼320 K. (b) Angle-dependent AHE at 2.5 K. Because HC increases with θ tilting from 0◦ to 90◦, the easy axis is determined to be out-of-plane. Inset,
the schematic geometry that defines the angle θ . (c) Zero-field-cooled (ZFC) and field-cooled (FC) susceptibility curves under a magnetic field of 200 Oe.
TC is determined to be 316.1 ± 2.6 K by the Curie-Weiss law as shown in the inset. The detailed estimation process is described in Supplementary
Note S3. (d) Temperature-dependent polar RMCD curves. HC and remanent magnetization decrease as the temperature increases, while ferromagnetic
order still exists at 287 K.

It remains visible at 287 K and therefore con-
firms the enhanced ferromagnetism and the film
uniformity. Combined with the persistent perpen-
dicular magneto-crystalline anisotropy at various
temperatures (Figs 2b and S7), this high TC be-
havior in Fe3+1.80GeTe2 films can be confirmed
and the presence of either Fe films or magnetic
clusters can be unambiguously excluded [39–41]
(Supplementary Note S2). In addition, XMCD
results are also presented next to safely exclude
these extrinsic effects.

The element-specific XMCD was further
performed to probe the localized magnetism.
Left (blue) and right (red) circularly polarized
X-rays, denoted as μ+ and μ–, were used to resolve
the XMCD signals, which was in parallel to the
external magnetic field and in the normal incidence
with respect to the sample surface (Fig. 3a inset).
The XMCD signals were obtained by taking the
difference of the X-ray absorption spectroscopy
(XAS) spectra, i.e. XMCD = μ− − μ+. The XAS
spectra obtained in total-fluorescence yield mode
were subtracted by a two-step function [42] and

a strong XMCD signal was acquired at 300 K, as
shown in Fig. 3a. The agreement with the XAS of
Fe3GeTe2 bulk crystals [43] in the spectra shape
further confirms its intrinsic high TC ferromag-
netism in the doped films, possessing two similar
sites of Fe with such crystals [44–47]. The lower
the temperature, the stronger the observed XMCD
intensity (Fig. 3b). Here, to estimate the magnetic
order, the XMCD percentage β , defined as the
intensity ratio of XMCD to XAS in the equation
β = (μ− − μ+)

(μ− + μ+) , is utilized as a parameter, which is
calculated to be (10.9 ± 1.0)% and (1.5 ± 0.1)%
for the two peaks at L3 edge. As the critical peak
on the left side of Fe L3 edge (marked as P1) gives
the strongest dichroism, which suggests a larger
magnetic contribution, we focus on P1 during
the XMCD analyses. As shown in Fig. 3c, the
temperature-dependent XMCD percentages can be
fittedwith an empirical function (1 − T/TC )γ to ex-
tract theCurie temperature [48,49], based onwhich
TC is determined to be 313.3± 9.5 K.These results
confirm our findings regarding the above-room-
temperature ferromagnetism in Fe3+1.80GeTe2. In
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Figure 3. XAS spectra and XMCD signals of an Fe3+1.80GeTe2 sample at Fe L2,3
edges. (a) Room-temperature XAS and XMCD spectra of Fe L2,3 edges at the field
of 5T. The agreement with the XAS of Fe3GeTe2 bulks [43] in the spectra shape fur-
ther confirms the intrinsic room-temperature ferromagnetism. The two peaks at the
Fe L3 edge suggest two sites of Fe, with the XMCD percentages calculated to be
(10.90 ± 1.0)% and (1.47 ± 0.1)%, respectively. Inset, schematic of the XMCD ex-
periments. (b) Temperature-dependent XMCD of Fe L2,3 edges where the spectra at dif-
ferent temperatures have vertical offsets for clarity. The magnetic field is fixed at 5T. (c)
XMCD percentage versus temperature. As the temperature rises, the XMCD percent-
age decreases continuously. The dashed lines represent the XMCD percentages fitting
to the empirical equation (1 − T /TC )γ . TC values are determined to be 313.3± 9.5 K,
which further confirms the above-room-temperature ferromagnetism in Fe3+1.80GeTe2.
(d) Field-dependent XMCD percentage, showing a large remanent XMCD percentage
of 26.7% at zero-field.

addition, solid ferromagnetism can be identified
with a strong remanent XMCDpercentage of 26.4%
under zero magnetic field at 3 K (Fig. 3d).

TUNABLE MAGNETISM AND
THEORETICAL CALCULATION
In stark contrast to the continuously-decreased TC
in Fe-deficient Fe3−δGeTe2 samples [34,35] where
the Fe composition deviates negatively (δ < 0.3)
from Fe3GeTe2, here we present a large enhance-
ment of the ferromagnetic order in Fe3+XGeTe2
films by systematically tuning the X value from
−0.25 (Fe-deficient) to 2.80 (Fe-rich). As illus-
trated in Fig. 4a, TC initially increases with the in-
creasing Fe doping, reaches a maximum value of
320 K at X = 1.80 and finally drops to 290 K in

Fe3+2.80GeTe2. This TC behavior is a prominent
extension to that of the Fe-deficient Fe3−δGeTe2
samples. Utilizing the high-TC and large-scale thin
films, we have built MTJ device arrays (Fig. 4a in-
set) with an Fe3+0.76GeTe2/MgO/Fe3GeTe2 de-
vice structure (Supplementary Note S4). Clear tun-
neling magnetoresistance signals can be detected as
the magnetic field scans back and forth. However,
the tunneling magnetoresistance ratio is still low
(∼0.25%), which calls for further improvements on
the crystalline quality of MgO.

In order to provide insight into the observed
room-temperature ferromagnetic behavior in
Fe3+XGeTe2 films, we performed DFT calculations
within the LSDA+U framework to understand the
bulk Fe3GeTe2 and its doping effect (Supplemen-
tary Note S5 and Fig. S17). We chose four different
magnetic states, namely, the FM, AFM1, AFM2 and
inter-AFM states, as illustrated in Fig. 4b. For the
bulk, the LSDA + U calculations using the exper-
imental lattice parameters confirm the FM ground
state as summarized inTable 1. It ismore stable than
the inter-AFM state by 18 meV per formula unit
(f.u.), indicating a relatively weak ferromagnetic
interlayer coupling associated with the van der
Waals bonding of the 2D material. However, due to
the metallic behavior of Fe3GeTe2, the intralayer
itinerant FM is quite strong. Compared with the
FM ground state, the AFM1 state lies much higher
in energy (by 300 meV/f.u.). This energy cost is
due to the suppressed electron itinerancy in the
AFM1 state (with one AFM Fe1-Fe3-Fe1 zigzag
channel, see Fig. 4b) and the corresponding reduced
kinetic energy gain. If two AFM zigzag channels
(Fe1-Fe3-Fe1 and Fe2-Fe3-Fe2, see Fig. 4b) appear
as in the AFM2 state, the energy cost is calculated
to be 624 meV/f.u., being nearly doubled compared
with the AFM1-FM energy difference with the
change of one magnetic channel. Therefore, in our
calculations, we employed the AFM1-FM energy
difference to characterize the stability of the FM
ground state and to trace the varying FM stability
with the changing Fe concentrations.

Owing to the van der Waals layered structure
of Fe3GeTe2, the additional Fe atoms most prob-
ably lie in the interlayer interstitial region. We use
LSDA + U calculations to search the stable inter-
layer interstitial positions by optimizing the c-axis
lattice parameter and atomic z coordinates. Our cal-
culations find that, for a doped Fe atom, there are
three most stable interlayer occupation positions on
the 1 × 1 plane, (0,0), (1/3,2/3) and (2/3,1/3),
which have almost the same potential well depth,
as seen in Fig. 4c. This finding explains why the Fe
concentration inFe3+XGeTe2 canexperimentally be
largely enhanced.
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bulk Fe3GeTe2.

Table 1. Relative total energy (meV/f.u.) and local spin moments (μB) of different
magnetic states calculated by LSDA + U for bulk Fe3GeTe2.

Magnetic state �E (meV/f.u.) Fe1 (μB) Fe2 (μB) Fe3 (μB)

FM 0 2.74 2.74 1.96
AFM1 300 − 2.74 2.62 1.77
AFM2 624 2.88 2.88 − 1.64
Inter-AFM 18 2.72 2.72 1.95

To study the impact of the doped interlayer
Fe atoms on the magnetism of Fe3+XGeTe2,
we first compare the two cases of Fe3+0.5GeTe2
with one doped Fe atom on either the (0,0) or
(1/3,2/3) position (Fig. 4d), using the LSDA + U
calculations including a full atomic relaxation.
The AFM1-FM energy difference is calculated to
be 530 and 521 meV/f.u., respectively, showing
insignificant site dependence of the FM strength
in Fe3+0.5GeTe2 on the interlayer Fe positions.
We then simulate Fe3+XGeTe2 (X = 0.5–3) by
adding the interlayer Fe atoms in the AB stacking
Fe3GeTe2 unit cell one by one, at A(1/3,2/3),
B(2/3,1/3), A(2/3,1/3), B(1/3,2/3), A(0,0) and
B(0,0), to minimize the interlayer Fe–Fe coor-
dinations in each case. As seen in Fig. 4a, upon
increasing the interlayer Fe concentrations, the
calculated AFM1-FM energy difference increases
from 470 meV/f.u. (after atomic relaxation) for

the stoichiometric Fe3GeTe2 to the maximal 670
meV/f.u. for X = 2 and then drops to 600 meV/f.u.
for X = 3. The maximal enhancement of the FM
strength by ∼40% at the optimal concentration
X = 2 agrees well with our experimental findings.
This composition-dependent TC in Fe3+XGeTe2
films correlates with the electron doping effect
which enhances the itinerant FM up to an optimal
doping level (Supplementary Note S6).

CONCLUSION
In summary, we have demonstrated a direct dop-
ing approach in MBE growth to achieve high-TC
2D ferromagnetic Fe3+XGeTe2 films beyond room
temperature. Through systematically tuning the Fe
composition, TC experiences an efficient modula-
tion from 185 K to 320 K, which arrives at the
peak value of 320 K at Fe3+1.80GeTe2, validated by
the temperature-dependent XMCDmeasurements.
We further demonstrated large-scale MTJ device
arrays based on Fe3+XGeTe2 films. Moreover, our
DFT study suggests that the doped interlayer Fe
atoms provide a strong tunability to the magnetic
order, achieving the optimal enhancement of FM
strengthby40%atX=2.Therefore, this studyopens
an avenue to a significant enhancement of the TC
in emerging 2D ferromagnetic Fe3+XGeTe2 films,
which may facilitate their practical application in
spintronic devices.

METHODS
Thin film synthesis and characterization
Fe3+XGeTe2 thin filmswere synthesized on (0001)-
sapphire in a Perkin Elmer 430 MBE system (base
vacuum: ∼2.5 × 10−9 Torr). The substrates were
firstly cleaned using a standard process, and before
the growth, substrates were annealed at 600◦C for
30minutes, whichwas then cooled to the target tem-
perature of 340◦C.The growth temperatures forGe-
cell and Te-cell were 1020◦C and 285◦C, and the
Fe composition was tuned via varying the Fe-cell
temperature.The crystal oscillator was used to mea-
sure each element’s flux. XRD results weremeasured
in a Bruker D8 Discover facility and transmission
electronmicroscopemeasurements were performed
using JEOL JEM-ARM 200F and FEI Titan G2
systems.

Electrical and magnetization
measurement
Magnetotransport results were collected by SR830
in the Physical Properties Measurement System
(PPMS) and the devices were in the six-Hall-bar

Page 6 of 8



Natl Sci Rev, 2022, Vol. 9, nwab117

geometry. The magnetization measurements were
accomplished by DC-Superconducting-Quantum-
Interface-Devices (SQUID) by QuantumDesign.

RMCD and XMCD measurements
RMCD measurements were performed in a closed-
cycle helium cryostat with measurable temperature
ranges from 15 to 287K. A 633 nm HeNe laser
with the power of ∼0.3μW and the focused beam
spot of 3μm was in the normal incidence onto
the sample. A lock-in amplifier was utilized to ac-
quire the RMCD signals. XMCD measurements at
Fe L2,3 edge were performed on beamline I10 at the
Diamond Light Source.

DFT calculation
DFT calculations were processed using the Vienna
ab initio Simulation Package (VASP) [50,51]. Local
density approximation to the exchange-correlation
function was used [52], which has previously been
shown to describe the structural properties of
Fe3GeTe2 well [53]. A plane wave cut-off of at least
400 eV was employed. The Brillouin zone was sam-
pled using an 8× 8× 3 k-point mesh.The ionic po-
tentials, including the effect of core electrons, were
described by the projector augmented wavemethod
[54]. The atomic relaxations were implemented un-
til the Hellmann-Feynman force on each atom was
smaller than 0.01 eV/Å. We used the experimental
lattice constants with atomic relaxations to study the
magnetism of Fe3+XGeTe2. In addition to LSDA,
the LSDA plus Hubbard U (LSDA + U) method
was employed [51], and we chose U = 3.5 eV (and
Hund exchange J = 0.9 eV) for the Fe 3d electrons
to calculate themagnetic properties.The calculation
details are shown in Supplementary Note S6.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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