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Temporal network mining tasks are usually hard problems. This is because we need to face not only a 
large amount of data but also its non-stationary nature. In this paper, we propose a method for temporal 
network pattern representation and pattern change detection following the reductionist approach. 
The main idea is to model each stable (durable) state of a given temporal network as a community in 
a sampled static network and the temporal state change is represented by the transition from one 
community to another. For this purpose, a reduced static single-layer network, called a target network, 
is constructed by sampling and rearranging the original temporal network. Our approach provides 
a general way not only for temporal networks but also for data stream mining in topological space. 
Simulation results on artificial and real temporal networks show that the proposed method can group 
different temporal states into different communities with a very reduced amount of sampled nodes.

In real-world applications, data often arrives in streams and must be analyzed in real-time. Patterns and relations 
in such data are usually not stable but evolve over time1,2. In dynamical and non-stationary environments, the 
data distribution can change, yielding the phenomenon of concept drift2,3. One example is the stock market, 
where the massive data exchange is strongly related to macro and micro political events, economic events and 
other factors, such as natural and man-made disasters. Another example is the pattern of customersâ€™ buying 
preferences, which may depend on the season, availability, inflation rate, etc. Some common types of changes 
may include a gradual change over time, a recurring or cyclical change, and a sudden or abrupt change. Different 
concept drift detection and handling schemes may be required for each situation. In this context, uncovering 
data stream patterns is a fundamental task not only to detect concept drift but also to predict future behaviors. 
Recently, some works have employed networks as a way for representing data from many real systems4–7, leading 
to complex network research.

Complex network refers to large scale graphs with nontrivial connection patterns8–11. One of the most impor-
tant features of a complex network is the presence of communities. Detecting communities in these systems has 
become a fundamental task to help us understand how local patterns (represented by sub-networks) interact and 
produce global behavior. From a network topology point of view, a community is a sub-graph in which the inner 
links are dense while the outer connections are relatively sparse4,12,13. In terms of the information-theoretic field, 
a community is seen as the module that can diminish or retard the propagation flow of information in the sys-
tem, for a considerable period of time14–16. In the machine learning domain, community detection provides new 
unsupervised learning methods, where each community corresponds to a data cluster in the clustering problem4.

Large systems usually are high-dimensional and heterogeneous in nature, which require a discriminatory, 
while interactive, structural representation of the organization. In this way, to better improve our understanding 
of such complex systems, complex network theory has become essential to move beyond simple graphs and to 
take such multi-type interaction features into account, which include multiple subsystems and layers of connec-
tivity. When a data stream is represented in a network form, it is called as a temporal network17–21. A temporal 
network, also known as a time-varying network, is a network whose links are active only at certain points in time. 
A great variety of real systems can be represented by networks that evolve over time, examples range from social 
networks, telecommunication, traffic, climate, and neural-brain networks.
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Here, we tackle the concept drift problem proposing a new graph-based method for modeling the system data 
via temporal networks. Each stable temporal state of the system is represented as a community of the target net-
work, where the concept drift is the community transition. First, our method extracts the target network, which 
is an intermediate representation of the original network that reduces the dimensionality of the problem by sam-
pling the relevant nodes. In this way, we gain computational performance when calculating several features that 
are maintained in the target network, like persistence, cyclic pattern, abrupt and gradual changing, etc. Then, the 
method models each detected concept (or pattern) into a different community. Therefore, we identify not only the 
change point but also the number of patterns generated by the process.

Research Problem
We focus on the problem of concept drift in large data-sets, which are represented by temporal networks or data 
that can be transformed as well. The aim is to propose flexible methods that can adapt to data that evolve or 
change over time. A similar problem found in the complex network literature is the change point detection22–25, 
which seeks to detect the moments of change between one concept (or network pattern) to the other. In general, 
this approach focus on measuring the dissimilarity between one snapshot of the temporal network and the next 
one in time. A change is detected when the dissimilarity passes a fixed threshold22,23. These models usually depend 
on a set of time frames, for which a solution is proposed in24. However, in the concept drift scenario, patterns 
and relations change over time, and fixed models and thresholds may not work after a while. Other methods also 
rely on probabilistic modeling to detect and predict the changes considering short-time memory25. However, 
the authors did not consider the case of multiple edges placed at any given time, and they focused on inferring a 
model that reproduces the waiting time in the empirical data.

The method proposed here differs from the previous works mainly in two points: (i) the proposed method 
models each concept (or pattern) into a different community, which can be accessed after the data is processed 
(this means that we identify not only the change point but also the number of patterns generated by the process) 
and (ii) we reduce the dimensionality of the problem by sampling the relevant nodes. We believe that these two 
characteristics are very relevant for practical purposes since they yield a better understanding of the process 
(through the number of patterns) with the advantage of not accessing the whole data-set at every timestamp.

When it comes to concept drift, there are two kinds of methods to analyze temporal networks: One is the 
direct method, where we consider a temporal network as a multiplex network and detect features directly on 
such ensemble of network’s snapshots. Interesting results have been obtained in this direction. For example, in19, 
the authors presented a set of measures to characterize the dynamical properties of general temporal networks. 
In26, the authors discussed the interpretation of temporal network theory in the context of the dynamic func-
tional brain connectome. Many other studies have been conducted to characterize temporal networks by reveal-
ing the community evolution in such networks5,15,20,27–31. In multilayer networks, including temporal networks, 
inter-layer links can potentially change the modular structure of each layer28.

In terms of practical use, the contributions of previous works are very relevant in a wide range of real-world 
applications, like the identification of terrorist groups, tax fraud detection, consumers’ behavior, and the relation-
ship between proteins and genes. In this scenario, the concept (or pattern) in interest can be analyzed through the 
relationship of the same element among several layers, enabling the community detection in multi-layer networks 
to potentially provide richer information than the single-layer approach.

To handle a large system, one needs to zoom out from the details. Therefore, the second way to analyze tempo-
ral network is to map the original network, usually a large database, to a smaller and easier handled one. Then, we 
can employ several of the available tools developed so far to analyze the sampled network and draw conclusions 
to the original large-scale network. In32, the authors presented various strategies of temporal network sampling 
and quantified the biases generated by each sampling strategy on a number of temporal network measures, such 
as link activity, temporal paths and epidemic spread.

In this work, our method constructs a sampled network, called target network from now on, to represent the 
temporal states of the temporal network. We consider that a temporal network is at a certain state at a time inter-
val. It is expected that the resulting target network contains several communities, each representing a temporal 
state of the original network and the transition from one community to another yields the concept drift, i.e., the 
temporal network changes from one state to another. For this purpose, the main steps describing our method are 
the following:

 1. Calculate some network measures for every state node of every physical node;
 2. Select a small subset of physical nodes that have the highest levels of fluctuations from the calculated net-

work measures;
 3. Run the spatial-temporal model to map the sequence of layers from a temporal network into a reduced 

(single-layer) target network;
 4. Finally, detect the communities from the target network to extract the concepts and concepts drift.

Since the target network just needs to capture the temporal changing pattern of the original network, our 
sampling method is straightforward and, therefore, the minimization of biases between the sampled network and 
the original temporal network is no longer the objective32.

Community Detection by Particle Competition
In this section, we briefly introduce the particle competition model, originally proposed in33 and improved in34–36. 
When investigated the behavior of this framework, it was showed that a certain level of randomness can largely 
enhance the learning process, similar to the phenomenon of stochastic resonance, in which the performance 
of a nonlinear deterministic system can be largely improved by a certain level of noise4. Therefore, depending 
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on the system complexity, the use of only deterministic rules might be insufficient to learn the process behind 
the system4. A recent development of this framework showed that it can identify nonlinear features in bounda-
ries between classes with overlapping structural data36. Although other community detection algorithms could 
be selected in this work, the particle competition method was adopted due to its performance in overlapping 
data and low computational complexity order, which is lower than other network-based semi-supervised algo-
rithms34,36. Other than that, this method outputs the participation rate of each node on each community (or how 
strong a node relates to a certain pattern), enabling us to take that into consideration in further developments of 
this work.

Let’s consider a network G = (V,L), in which V = {v1, …, v|V|} is the set of nodes and L = {l1, …, l|L|} ⊆ N × N 
is the set of links or edges, where l(i,j) is the weight of the link between nodes vi and vj — or {1, 0} for unweighted 
networks. The particle competition method starts by uniform deploying K particles in the network. Each particle 
is a random walker with the mission of dominating as many nodes as possible while defending its current domain 
(i.e., nodes) from other particles. Formally, this is a stochastic dynamical process in which the behavioral rules are 
determined as follow37: At each iteration time (t), a particle selects a neighbor vj to visit choosing between a ran-
dom walking or preferential walking. The latter means, the particle come back to visit a high dominated neighbor. 
However, the particle lost energy if it visits a node that is in the domain of a rival particle. On the other hand, it 
re-chargers its energy when visiting an already dominated node by itself. If the particle has energy below a pre-
defined low-energy level, then, the particle becomes exhausted and it will be reset to a randomly selected node in 
the next iteration. The probabilities of given particle k located at node vi do a random walk (rand) or preferential 
walk (pref) are given by Eq. 1 37,
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where λ ∈ [0, 1] is a balancing parameter. The smaller the λ, the more randomly the particle walk; The larger 
the λ, the more preferential walking it performs. We define the position of the particles at time t as the vector 
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where = …S t S t S t S t( ) [ ( ), ( ), ( )]K T(1) (2) ( )  is the δ function that indicates whether or not the particle is active or 
exhausted.

For each of the K  particles, a neighbor node is selected using the transition matrix by Eq. 2. Then, the target 
node of each particle is determined by Eq. 3 and the number of visits (domination level) by Eq. 4. After that, the 
energy levels of particles is updated by Eq. 5. Finally, we check whether each particle is active or exhausted by 
Eq. 6. If the particle is with enough energy, it continuous walking in the network; otherwise, the particle is reset 
to a randomly selected node and its energy level is recharged to the maximal level. This process is repeated until 
the system converges, when it is expected that each particle dominates a set of nodes corresponding to a commu-
nity of the network.

Method
In this section, we present the method of the static reduced network (target network) construction from a usu-
ally very large temporal network. After that, the community detection is performed on the target network and a 
method for finding out the best number of communities is also proposed.

Target network construction. Given a temporal network, G(t) = (V, L(t)), we firstly transform it into a 
reduced single-layer network (target network), Gr = (Vr, Lr), preserving the spatial-temporal pattern of G(t). In a 
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temporal network, there are N physical nodes vi, i = 1, 2, …, N and each of them has T state nodes vi(t), t = 1, 2, 
…, T. For each state network of the original temporal network, we calculate network measures for each state 
node. Many metrics can be used, such as communicability, betweenness, Katz centrality and PageRank4,38. In our 
method, we use the communicability measure as described in38, which accounts not only for the shortest paths 
connecting two nodes but also the longer paths with a lower contribution. In spite of the high computational 
complexity of this measure in comparison to some other alternatives, like the PageRank, we understand that the 
sampling step of our method is not critical for its overall applicability since the sampling is done once for each 
segment of data that contains several time instants. Therefore, we chose the metric that presented better overall 
results. The communicability Mvi

 from node vi to all other nodes of the network is described by,
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where for nodes vi and vj, i j,  is the shortest path length between the nodes, Φ v v min( , , )i j  is the number of shortest 
paths and Φ v v z( , , )i j  is the number of paths connecting vi and vj of size > z . The reasoning behind this choice is 
that the shortest paths are significantly affected by structural changes in a network.

At this step, each state network is treated separately and the evolution nature is ignored, therefore Mvi
 is calcu-

lated for each node of each state network. With these values at hand, we start to construct the target network. For 
this purpose, we divide the modeling into three phases:

 1. Sampling. For each physical node vi, we calculate the standard deviation of the state network measure. 
Considering the communicability measure, σvi

 is the standard deviation of the values Mv t( )i
, 

= ...T T1, 2, , . Then, we select the P physical nodes with the highest standard deviation to create the 
target network. P is empirically defined. Our simulation results show that usually P ≪ N, which means that 
the original network size can be largely reduced and the target network still captures its dynamics. The 
resulting target network will have the following elements:
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where <P N  (usually < <P N) is the number of selected physical nodes. At this stage we want to find the 
temporally stable pattern of the input network, therefore, we just make spatial sampling, while maintain the 
whole temporal sequence of selected nodes. The sampling process is illustrated in Fig. 1.

 2. Temporal coding. For each selected physical node vri
, we calculate the similarity of network measures of 

every pair of the state nodes, = ... ≠S t t i m T l m( , ), , 1, 2, , ,i l m . Then, each pair of state nodes, say nodes 
v t( )r li

 and v t( )r mi
, receives a weight C S t t( , )i l m1 , where ∈C [0, 1]1  is a parameter to define the influence 

strength of temporal feature in the final target network. In this way, we construct P separated networks. 
Figure 2 illustrates the relationship of the introduced symbols regarding the selected physical node vri

 and 
its states.

 3. Spatial coding. In a similar way, the similarity of network measures between every pair of spatially selected 
nodes, say nodes v t( )r li

 and v t( )r mj
, is calculated, ≠S t t i j( , ),ij l m . Correspondingly, the weight of connection 

between v t( )r li
 and v t( )r mj

 is C S t t( , )ij l m2 , where the constant C2 characterizes the influence strength of spatial 
correlation in the target network. Figure 3 illustrates the introduced symbols in the sampled network at the 
spatial coding stage.

Figure 1. Sampling process illustration. For each physical node, the predefined network measure and its 
standard deviation along time are calculated and only the P nodes with the highest standard deviation values are 
selected. In this figure a small example is depicted, where three nodes are selected (in red). vri

, vrj
 and vrk

.
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According to the network construction criteria, we expect that the network presents community structure, 
where each community represents a system state and the concept drift happens when the process changes from 
one community to another. For this purpose, we detect communities of the target network = 〈 〉G V E,r r r . 
Specifically, the particle competition method is used here to find out communities due to its robustness, efficiency 
and rich information generated during the detection process.

Discovering the best number of communities. To discover the best division of the network into commu-
nities using the particle competition method, it is necessary to determine the optimal number of particles K . For 
this purpose, we describe the localized average domination level measure, previously introduced by this author37:
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where ∞N( ( ))u maxk  indicates the domination level of particle k on node u at the end of the particle competition 
process. The subscript max means that particle k has the highest domination level on u among all particles. Nk is a 
set of nodes, in which particle k has dominance.

In terms of process, first we calculate the average highest domination level for the nodes occupied by each 
particle. Then we choose the minimum of the K  average highest domination levels as the proposed measure 
〈 〉R K( ) . The reasoning behind this strategy can be intuitively inferred by the following examples. If we put exactly 
K  particles in a network with K  communities, each particle is expected to dominate a community. In this case, the 
maximal domination level of the nodes 〈 〉R K( )  will be high. If, however, we put more particles than the number of 
communities, at least one community will have more than one particle competing for dominance, resulting in a 
low value of 〈 〉R K( ) . On the other hand, if we put less than K  particles in the network, the competition within the 
same community also happens, due to the equal behavior of all particles. So, again, 〈 〉R K( )  will be a low value.

Therefore, the optimal number of particles K  will result in the highest value of 〈 〉R K( ) . In practical terms, we 
check the value of 〈 〉R K( )  by putting 2 to an estimated Kmax number of particles to the network and running the 
particle competition method until it converges. After that, we calculate the measure 〈 〉R K( ) . The best number of 
particles Kbest is the one where 〈 〉R K( )  reaches the maximal value:

= … .k max R R R k( (1) ), ( (2) ), , ( ( ) ) (10)best max

Figure 2. Temporal coding illustration. In this example, we show the network constructed from temporal 
relations of node vri

. The weights are the similarities between the communicability measure at each time instant. 
At this stage, the state nodes of each selected physical node from the sampling process form an isolated network. 
Therefore, P networks are constructed at this stage and these will be connected in the spatial coding process.

Figure 3. Spatial coding illustration. In this example we show the connections generated from node vri
 to vrj

. 
This stage reconnects the P networks constructed during the temporal coding stage generating the final target 
network.
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Experimental Results
In this section, we present the simulation results applying the proposed method for temporal network pattern 
characterization. Three experiments were performed in synthetic temporal networks. In the first experiment, the 
input temporal network presents one structural change; in the second experiment, three structural changes with 
repetition; and in the third experiment, gradual changes. These scenarios simulate abrupt, cyclical and gradual 
pattern changes in temporal networks.

In all the cases, each state network is generated by the following rule: a pair of nodes is connected with proba-
bility pin if they are in the same community, whereas a pair of nodes belonging to different groups are connected 
with probability pout. We choose pin and pout in order to control the number of intracommunity links zin and the 

Figure 4. Input temporal network used in the first experiment. Generated in Python (Python Software 
Foundation. Python Language Reference. Available at http://www.python.org).

Figure 5. Target networks and their respective detected communities. In these simulations, each state network 
is a random clustered network and it is generated using the parameter corresponding to: (a) for the first 10 
state networks, zin/〈k〉 = 0.5. For the second 10 state networks, zin/〈k〉 = 0.9; (b) for the first 10 state networks, 
zin/〈k〉 = 0.55. For the second 10 state networks, zin/〈k〉 = 0.85; (c) for the first 10 state networks, zin/〈k〉 = 0.6. 
For the second 10 state networks, zin/〈k〉 = 0.8; (d) for the first 10 state networks, zin/〈k〉 = 0.65. For the second 
10 state networks, zin/〈k〉 = 0.75; (e) for the first 10 state networks, zin = 0.7. For the second 10 state networks, 
zin = 0.7; (f) the Modularity calculated for the reduced networks from (a–e). Generated in Python (Python 
Software Foundation. Python Language Reference. Available at http://www.python.org).
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number of inter-community links zout for a given network average degree 〈 〉k . Based on these parameters, we can 
define the fraction of intra-community links 〈 〉z k/in  and the fraction of inter-community links 〈 〉z k/out  of the 
network, where 〈 〉 + 〈 〉=z k z k/ / 1in out .

In the first experiment, the input temporal network consists of 20 random cluster networks each with 32 nodes 
divided into 2 communities. The first 10 state networks are generated with a value of inter-cluster parameter zin, 
while the other 10 state networks are generated with a different zin value. It means that the first 10 networks repre-
sent a temporal state, while the second 10 represent another state. This input network is illustrated in Fig. 4.

To generate the target network, we calculate the communicability measure for each state node and only 5 
nodes of each network with the largest temporal standard deviation of communicability values are chosen. 
Therefore, each target network contains 5 × 20 = 100 nodes. According to our method, those 100 nodes should be 
divided into 2 communities each representing a temporal state of the original network.

Five different scenarios are tested with different values of zin. This example (Fig. 5) shows the abrupt changing 
situation. In these simulations, each state network is a random cluster network with N  nodes equally divided into 
M groups39.

From Fig. 5(a), we see clearly the two communities each representing a temporal state. From Fig. 5(a–d), the 
two states of the temporal network are closer, therefore, the inter-connection of the two communities are denser. 
Specially, Fig. 5(e) doesn’t present any community structure because the first 10 and the second 10 networks have 
the same structure, with 〈 〉 = .z k/ 0 7in .

As we expected, Fig. 5(f) shows that the modularity values, which correspond to the target networks of 
Fig. 5(a–e), decrease as the two temporal states of each case become closer.

Figure 6 shows the pattern (community) evolution of the first temporal network. Here, all the selected nodes 
over time are plotted. The value of each node represents the community number, to which it belongs. We see that 
the first 10 networks form a state, while the second 10 networks form another state.

The second example intends to show how the proposed method represents and detects periodic patterns of a 
temporal network. The input network consists of 10 random cluster networks with 〈 〉 = .z k/ 0 55in , 10 random 
cluster networks with 〈 〉 = .z k/ 0 7in , 10 random cluster networks with 〈 〉 = .z k/ 0 9in , and this pattern repeated 
once (Fig. 7). In total, we have 60 networks in 3 states. Again, only 5 nodes are selected for each state network. 
Figure 8(a) shows the target network and we see the three correctly detected communities.

Figure 6. The temporal state evolution of all selected nodes of the first experiment (abrupt change simulation). 
Each line represents a community.

Figure 7. Input temporal network used in the second experiment. Figures generated in Python (Python 
Software Foundation. Python Language Reference. Available at http://www.python.org).
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Figure 8(b) shows that the localized average domination level reaches its maximal value when 3 particles are 
put in the network in the community detection process, indicating that the three community structure is the best 
way to partition the target network.

Figure 8(c) shows the temporal evolution of all selected nodes regarding their respective communities. We see 
three different states (communities) and such states repeated once. The results match well the temporal network 
design.

The third example presents the community structure of the gradually changed temporal network. The input 
network consists of 30 random cluster networks with zin = 0.5, 5 random cluster networks with zin = 0.6, 5 random 
cluster networks with zin = 0.7, 5 random cluster networks with zin = 0.8, and 30 random cluster networks with 
zin = 0.9. In total, we have 75 networks (Fig. 9). The first and the last groups of networks represent two durable 
states, while the three middle groups represent gradual changing states. Again, only 5 nodes are selected for each 
state network. Figure 10(a) shows the target network and we see the 5 correctly detected communities. The two 
big communities correspond to the two durable states and the three small communities correspond to interme-
diate states. It means that a temporal network undergoes an abrupt change if the state transition occurs directly 
between big communities, while a gradual change happens if the state transition occurs from one big community 
to another through various small communities. Figure 10(b) shows the community evolution of the target net-
work with long-term states and three intermediate short-term states.

We test our method with a public available real-world temporal network dataset related to fires events5. In a 
global scale, the fire event activity is collected mainly through satellite instruments like the Moderate Resolution 
Imaging Spectroradiometer (MODIS), and the dataset is specifically from the Global Daily Fire Location Product 
(MCD14ML)40. The MODIS runs in both, Aqua and Terra satellites, which are operated by the National 
Aeronautics and Space Administration (NASA). In this research, we use the last version (C6) of MODIS. The 

Figure 8. The target network and the communities detected: (a) for the first 10 state networks, zin/〈k〉 = 0.55; 
for the second 10 state networks, zin/〈k〉 = 0.7, and for the third 10 state networks, zin/〈k〉 = 0.9. Then this pattern 
is repeated once; (b) the localized average domination level in relation to the number of particles used in the 
particle competition process; (c) the temporal state evolution of all selected nodes in this experiment (cyclic 
pattern change simulation). Each line represents a community. Figures generated in Python (Python Software 
Foundation. Python Language Reference. Available at http://www.python.org).
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studied period is between 01 May 2011 and 31 April 2012 and the region under study is a portion of the Amazon 
basin, that is located between longitude W70o , W50o  and latitude S15o , N5o  (Fig. 11(a)). This region is divided into 
900 grid cells, in which each one is a physical node in the constructed network.

The network characterization process for spatio-temporal events is based on these three steps5:

•	 Grid-division: A geographical region under consideration is divided into a grid. Each grid cell is represented 
as a node in the network. We divided the studied area in a grid of 30 × 30 cells.

•	 Time interval: The network data modeling can be defined for specific periods. Specifically, the networks were 
constructed in consecutive intervals of seven days.

•	 Links: From the data set, two successive fire events create a link between the grid cells where they are located.

Since the Amazon basin is mostly located at the south-hemisphere, the period from July to December corre-
sponds to the dry season with a high tendency of fires and the period from January to June corresponds to the wet 
season, with a low frequency of fires5,42. Figure 11(b) shows the two communities detected in the target network, 
one represents the season with high wildfire activity and the other represents the one with the low wildfire activ-
ity. In this simulation, just 10 among 900 physical nodes were selected to construct the target network. Figure 11(c) 
shows the node-community disposition over time, where the low and high wildfire states are identified by our 
method. Note that the points outside of the temporal state patterns are explained by the fraction of cells where 
happen wild-fires and are located in the north-hemisphere, i.e., in a different temporal phase5,42.

Figure 9. Input temporal network used in the third experiment. Generated in Python (Python Software 
Foundation. Python Language Reference. Available at http://www.python.org).

Figure 10. The target network and the communities detected for the gradually changed temporal network (the 
third experiment). (a) For the first 30 state networks, zin/〈k〉 = 0.5; for the second 5 state networks, zin/〈k〉 = 0.7; 
for the third 5 state networks, zin/〈k〉 = 0.7; for the fourth 5 state networks, zin/〈k〉 = 0.8; and for the fifth 30 
state networks, zin/〈k〉 = 0.9. (b) The temporal state evolution of all selected nodes of this experiment. Each 
line represents a community. Figures generated in Python (Python Software Foundation. Python Language 
Reference. Available at http://www.python.org).
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Discussion
In this work, we have presented a reductionist method to treat temporal networks, usually composed of large 
data-sets. Moreover, each durable temporal state is modeled as a community of the target network and the con-
cept drift is represented by the transition from one community to another. There are two approaches to treat 
temporal networks. On one hand, one can handle the temporal changing problem directly to detect communities 
of the temporal network and analyze the community evolution. However, this approach presents high complex-
ity and high computational cost. On the other hand, one can just extract some statistical measures from the 
temporal network to characterize the temporal changing. But, such characterization simplifies too much of the 
original network and we may need a set of measures to represent the states. Our method brings a trade-off of both 
approaches, in which an intermediate representation (the sampled target network) is generated. In this way, our 
method is computationally efficient while many features of the original temporal network, like persistence, cyclic 
pattern, abrupt and gradual changing, are still maintained in the target network.

One important product of this work is that the communities detected in the target network represent the 
patterns contained in the data segment. This means that not only can we identify the changes in the data concept, 
but we can study the patterns and their relations in the constructed target network. In future works, this property 
can be used to evaluate other behaviors not explored here, like pattern recurrence, pattern stability, and even some 
predictive model based on node location, diffusion and link prediction43.

Finally, this framework can be adapted while maintaining the general idea. Although the use of the particle 
competition method yielded good results, in principle, any community detection method could be used in its 
place, e.g., Louvain44 or InfoMap16. Thus, one could, for example, use a different similarity measure or a different 
community detection technique depending on the problem domain. Moreover, it can be applied to other real 
data-sets, including different types of data, such as multivariate time series.

Received: 21 August 2019; Accepted: 20 December 2019;
Published: xx xx xxxx

Figure 11. Real fire events data of the Amazon-basin, from first May 2011 to April 31, 2012. (a) The selected 
area (inner rectangle) is delimited from latitude 5 N to 15 S and from longitude 70 W to 50 W. (b) The target 
network and the two detected community of the wildfire temporal network. (c) The temporal state patterns of 
the wildfire events according to temporal network. Figure (a) was generated using Basemap Matplotlib (https://
matplotlib.org/basemap/)41; figures (b,c) were generated using Python (Python Software Foundation. Available 
at http://www.python.org).
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