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Interleukin-1 receptor associated kinase-1 (IRAK1) exhibits important roles in
inflammation, infection, and autoimmune diseases; however, only a few inhibitors have
been discovered. In this study, at first, a discriminatory structure-based virtual screening
(SBVS) was employed, but only one active compound (compound 1, IC50 = 2.25 µM)
was identified. The low hit rate (2.63%) which derives from the weak discriminatory
power of docking among high-scored molecules was observed in our virtual screening
(VS) process for IRAK1 inhibitor. Furthermore, an artificial intelligence (AI) method,
which employed a support vector machine (SVM) model, integrated information of
molecular docking, pharmacophore scoring and molecular descriptors was constructed
to enhance the traditional IRAK1-VS protocol. Using AI, it was found that VS of IRAK1
inhibitors excluded by over 50% of the inactive compounds, which could significantly
improve the prediction accuracy of the SBVS model. Moreover, four active molecules
(two of which exhibited comparative IC50 with compound 1) were accurately identified
from a set of highly similar candidates. Amongst, compounds with better activity
exhibited good selectivity against IRAK4. The AI assisted workflow could serve as an
effective tool for enhancement of SBVS.

Keywords: virtual screening, artificial intelligence, machine learning, IRAK1, inhibitors

INTRODUCTION

In the process of drug discovery, hunting for lead compounds is not only a starting point, but also a
very challenging task. With the emergence of comprehensive chemical databases, high throughput
screening (HTS), and virtual screening (VS) have been employed for finding lead compounds from
known chemicals (1). As a complementary approach to HTS (2), VS filters chemicals through
ligand- or structure-based approaches by taking advantages of high-performance computers,
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overcomes some shortcomings of HTS, and remarkably reducing
the time, money, and resources involved (3, 4). However, some
problems still exist in the individual VS method. For example, the
scoring functions of virtual screening are not accurate enough to
predict the protein-ligand binding affinity and this leads to a high
rate of false results, which needs combined strategies to improve
prediction accuracy in a sequential or parallel manner (5, 6).

In recent years, artificial intelligence (AI) has offered new
opportunities in drug discovery. The AI techniques that have
displayed superior performances (7, 8) in finding new active
chemicals include Naive Bayes, support vector machine (SVM),
random forest (RF), feed-forward artificial neural networks
(ANNs), and deep neural network approaches. It has been
reported that the hit rate of VS can be significantly improved
by combining AI methods. For example, Leong et al. developed
an accurate ensemble docking scheme, which established a
SVM based on combinatorial docking features and molecular
descriptors to predict N-methyl-D-aspartate-receptor GluN1-
ligand binding affinity (9). Tian et al. integrated ensemble
molecular docking and complex-based pharmacophore searching
using Naive Bayesian classification and recursive partitioning,
which were of great significance in the discovery of novel ROCK
inhibitors and increased the VS hit rate to 28.95% (10). Hence,
the application of AI in VS seems promising.

Interleukin receptor associated kinase-1 (IRAK1) is a
downstream member of the serine-threonine kinase interleukin
receptor associated kinase (IRAK) family. Once the IL1-Rs
and toll-like receptors (TLRs) are activated, IRAK4 is recruited
to form the signaling complex with myeloid differentiation
primary-response gene 88 (MyD88) and then IRAK1 is
phosphorylated, which plays a crucial role in inflammation,
infection, and autoimmune diseases (11). Researchers found that
the suppression of IRAK1, either by inhibitors or RNAi, has
potent activity against Waldenström’s macroglobulinemia (12),
myelodysplastic syndrome (13), and certain subtypes of acute
myeloid leukemia (14). However, IRAK1 selective inhibitors are
rare, and most of the compounds that inhibit IRAK1 are also
IRAK4 inhibitors. The benzimidazole derivative 1 shown in
Figure 1 is commonly used in bio-experiment (15). In addition,
researchers found that the anaplastic lymphoma kinase (ALK)
inhibitor 2 (16), and Pacritinib (17), the JAK/FLT3 inhibitor 3,
could be potent inhibitors of IRAK1.

As a continuation of our virtual screening work which
identified new inhibitors targeting NIK, CHK1, Akt, etc. (18–24).
In this study, we performed a traditional VS procedure to identify
potential inhibitors of IRAK1. Using a well-designed screening
process, only one compound (compound 1, IC50 = 2.25 µM)
was discovered, which was far from satisfactory. Considering
the advantages of AI in VS, we further established a machine-
learning model that combines multiple docking, complementary
pharmacophore mapping, and molecular descriptors on the basis
of a traditional VS workflow to increase the enrichment rate
among high- scoring compounds. Training data consisted of
IRAK1 inhibitors and decoys that were prepared for SVM,
XGBOOST, and LGBM models. Finally, we used the SVM model
that exhibited the best accuracy, to validate the activities of
molecules in the post-docking stage and found that it significantly

improved the performance of traditional VS and excluded over
half of the false positive candidates which was predicted positive
in VS but showed no activities in bioassay. Moreover, four other
active compounds (compound 2, IC50 = 2.32 µM; compound 3,
IC50 = 2.48 µM; compound 4 IC50 = 18.04 µM; and compound
5 IC50 = 23.75 µM) were identified from a series of highly similar
compounds by utilizing this model, which demonstrated that
the integrated VS strategy enhanced by AI was promising in the
process of drug discovery.

MATERIALS AND METHODS

Evaluation of the Docking Method
Crystal structure of human wild type IRAK1 (PDB ID: 6BFN)
with its inhibitor (DL1) was downloaded from RCSB Protein
Data Bank. Each chain of the protein was prepared separately
including the removal of water, alternate position of residues,
the addition of hydrogens, the assignment of bond orders,
the optimization of H-bonds and the restrained minimization
of energy using Schrödinger’s Protein Preparation Wizard.
The receptor grids were generated using the Receptor Grid
Generation module and all preparation parameters were set
to default. The inhibitors were re-docked into their receptors
to calculate the root mean square deviation (RMSD) value
and compared with their original structure. Furthermore, 594
inhibitors with known IC50 values were collected from the
ChEMBL database (Supplementary Table S1) and 150 potent
inhibitors were selected after structural clustering to generate
a decoy dataset using the DUD-E database (25). All 150
inhibitors and 9200 decoys were prepared using the Ligprep
module to generate the possible ionization states and three-
dimensional conformations. Lastly, the compounds were docked
separately to the prepared chains of 6BFN using the SP and
XP patterns in the Ligand Docking module. Similarly, the
compounds and proteins were docked using AutoDock after
preparation via AutoDockTools with a grid size of 54 points. The
docking scores were collected to calculate the p-value after the
docking process.

Pharmacophore Construction
The best conformation of 6BFN_B re-docking complex was
applied to construct the pharmacophore model for ligand-based
VS. The pharmacophore containing at most 7 features and a
receptor-based excluded volume shell was created using Develop
Pharmacophore Model in the Schrödinger module, with the
method set to E-Pharmacophore.

Virtual Screening
A database containing 1.5 million compounds was downloaded
from ChemDiv and was filtered using Lipinski’s Rule-of-Five
before commencing the process of VS. Molecules which passed
the filter were further aligned to the established pharmacophore
model in the Ligand Screening module of Schrödinger so
that all compounds with similar structural features could be
considered for the next step. After the preparation in Ligprep,
the molecules preserved were docked in Ligand Docking module
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FIGURE 1 | Examples of compounds with IRAK1 inhibitory activity.

under standard precision (SP) and default parameters. The
top-scoring compounds were subjected to extra precision (XP)
docking in order to exclude the molecules that were low-ranking
in the XP mode. The compounds which underwent the entire
screening protocol were clustered based on their structural
similarity and selected manually for the bioactivity test.

IRAK1 Bioactivity Test
Mobility shift assay was applied to test the bioactivity of the
candidates at a concentration of 20 µM using Staurosporine
as the positive control. All compounds were dissolved in 100%
DMSO to yield a final concentration of 2 mM. IRAK1 kinase and
kinase substrate (including ATP) were dissolved in 1 × Kinase
buffer. A mixture of 250 nL of the test compound and 10 µL
kinase solution were centrifuged at 1000 rpm for 30 s and
incubated for 10 min at 25◦C in a 384-well white plate. The
plate was centrifuged at 1000 rpm and incubated for 60 min after
the addition of 15 µL kinase solution (including ATP). Finally,
30 µL stop buffer was added to terminate the reaction and the
conversion rate was evaluated using ELIASA (Caliper EZ Reader,
Perkin Elmer) to calculate the rate of inhibition.

SVM-Assisted Selection and Bioactivity
Test
Machine Learning Dataset
An inhibitor dataset and a decoy dataset made up the training
set of the machine- learning model. The inhibitors of IRAK1
were collected from ChEMBL Database and 150 potent inhibitors
were extracted after a structural clustering. For the decoy dataset,
150 chemicals were randomly selected from the single-target
compounds database of ChEMBL. Compounds in the training set
were prepared and docked into each chain of 6BFN using Glide-
SP, Glide-XP, and AutoDock. All docking parameters used were
the same as those in the evaluation process.

A group of novel pharmacophore models were generated
using the 3D QSAR Pharmacophore Generation module of
Discovery Studio Client 2.5 using the 594 inhibitors found in
the ChEMBL Database. H-bond acceptors, H-bond donors,
hydrophobic molecules, and aromatic compounds were

considered and the upper limit of each feature was set to 5. For
every molecule, at most 255 conformations were generated to
find the best conformation and the maximum pharmacophores
was set to 10. Since the pharmacophore models were built, the
best conformations of compounds in the training dataset were
generated and mapped to the pharmacophores flexibly in the
Ligand Pharmacophore Mapping module of Discovery Studio
Client 2.5. The fit value of each molecule was extracted. The
compounds that failed to map onto the pharmacophore model
were assigned fit values that were set to 0 uniformly.

PaDEL v2.20 was used to calculate the 1D and 2D descriptors
of the compounds in the inhibitor and decoy sets. Salts
were removed and the nitro groups were standardized before
the calculation.

Data Preprocessing
In this study, we conducted data pre-processing including index
elimination and data normalization. We collected almost 1460
indices to represent each molecule, which is large for any machine
learning model to analyze. Thus, we used several approaches
to eliminate some indices. This process mainly consisted of the
following 4 steps:

(1) Counting: We counted the value of each index. Some of the
indices on the condition were excluded if more than 90%
molecules had the same value which indicates that there is
no crucial significance of such indices.

(2) Correlation analysis: The correlation values of all indices
were calculated between any pairs. If the value was larger
than 0.85, one of the pairs was excluded because of their
high collinearity.

(3) T-test analysis: Then we calculated the T-test scores for
the means of two indices. This test assumed that the
populations had identical variances by default.

(4) Principal components analysis (PCA): Finally, we utilized
PCA for dimensionality reduction.

After conducting these four steps, only 244 of the 1460 indices
remained. Then, the normalization on the basis of mean and
standard deviation of a batch was conducted.
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Model Construction
In this paper, we constructed three traditional machine learning
models including SVM, LGBM, and XGBoost using Scikit-
learn package.

(1) Support vector machine (26) is one of the most commonly
used binary classification model. Its basic principle is to
defy a linear classifier in the feature space with the largest
spacing. In this study, we set C as 1, using a kernel function
of RBF. RBF was calculated as follows:

RBF = exp(−γ |u− v|2)

Besides, we used “degree 3, coef 0” for the kernel function.
We used the shrinking heuristic and probability methods.
When training error was less than 1e-3, we stopped
further training.

(2) LightGBM is a gradient boosting framework, based on a
histogram decision tree algorithm. Using leaf-wise growth
strategy with depth limitation, LightGBM model can yield
better performance and prevent overfitting. In this study,
we used the gbdt boosting method and set the learning rate
as 0.1 in order to prevent overfitting. We constructed the
classifier with 10 leaves, with “max depth 3” and “minimum
child samples 31.”

(3) XGBoost uses depth-wise strategy. It first ranks all features
according to their values using a pre-sorted algorithm
and then splits samples. However, pre-sorted algorithm
may cause additional memory space. In this study, an
XGBoost model with 150 estimators, max depth 3, and
minimum child weight 1 was conducted. We randomly
selected 80% of samples and 80% of features to build a
decision tree and used binary logistic function to learn and
update parameters.

Metrics
In this study, to compare the performance of different models,
we utilized the area under the curve (AUC) and accuracy (ACC)
as metrics. AUC was defined as the area of the receiver operating
characteristic (ROC) Curve, which was defined by true positive
rate (TPR) and false positive rate (FPR). The TPR and FPR are
given by:

TPR =
TP

TP + FN

FPR =
FP

FP + TN

Where TP, FP, TN, and FN were true positives, false positives, true
negatives and false negatives, respectively. AUC and ACC were
computed using the following equations.

AUC =
∫ 1

x=0
TPR

(
FPR−1 (x)

)
dx

ACC =
TP + TN

TP + TN + FP + FN

Prediction and Bioassay
Similarity search was carried out using the MolPort database.
Ten chemicals, whose Tanimoto similarity was larger than 0.8
compared with compound 1, were collected along with their
multiple docking scores, pharmacophore scores, and molecular
descriptors. These data were processed using the best model to
predict their inhibition toward IRAK1. Candidates in the last
stage of virtual screening procedure were also predicted similarly.

Lastly, compounds derived using the similarity search were
bought from TargetMol and their inhibition rate was tested
using the method described above. The dose-effect curve (all
compounds were dissolved in DMSO and diluted 10-fold from
100 µM to 1 nM) was fitted to calculate the IC50 value.

Molecular Dynamics Simulation
The binding mode of compound 1 was confirmed using
molecular dynamics simulation. The parameter files of
compound 1 were generated in antechamber module of
Amber and was combined with 6BFN_B under ff99SB and gaff
force field. After six chloride ions were added, the neutralized
system was solvated in a tetrahedral box of TIP3P and the
distance between box boundary and IRAK1 protein was set to
10.0 Å. At first, the energy of the entire system was relaxed using
three steps: the hydrogen atoms, chloride ions, and water were
optimized using 2500 steps of steepest descent minimization
and 2500 steps of conjugate gradient minimization; the side
chains of the protein, chloride ions, and waters were relaxed
using 2500 steps of steepest descent minimization and 2500
steps of conjugate gradient minimization; the system was
minimized using 2500 steps of steepest descent minimization
and 2500 steps of conjugate gradient minimization. The system
was heated to 300 K in 100 ps and equilibrated for 100 ps in
NPT mode (temperature = 300 K; pressure = 1 atm) with the
heavy atoms of the complex being restrained. Then, the whole
system was equilibrated in NPT mode for 100 ps. Lastly, a five
nanosecond MD simulation was carried out and the binding
energy was decomposed.

RESULTS

Virtual Screening
In order to select the most effective screening method, we
evaluated the performance of different proteins and molecular-
docking software. For each monomer of the IRAK1 crystal
structure (6BFN_A and 6BFN_B from protein data bank) (27),
we docked the original ligand into the binding pocket to evaluate
the reproducibility of several frequently-used docking methods.
We then shortlisted 150 potent IRAK1 inhibitors and used
9200 random decoys to judge whether the docking methods
and protein chains could distinguish the inhibitors from decoys
effectively. As seen in Table 1, the RMSD value for each docking
approach was less than 1, which indicated that all approaches
could reproduce the structure of each complex accurately. The
best capabilities of discrimination power were exhibited by
6BFN_B coupling with Glide SP and Glide XP, which reached
the smallest p-value of 10−32 (Supplementary Figure S1).
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TABLE 1 | Evaluation of docking methods.

PDB_ID Method RMSD Docking score p_value

6BFN_A AutoDock 0.5755 −10.0 8.92E−27

6BFN_B AutoDock 0.5665 −9.9 4.79E−26

6BFN_A Glide_SP 0.4728 −9.8 2.24E−30

6BFN_B Glide_SP 0.9543 −9.3 6.87E−32

6BFN_A Glide_XP 0.4742 −6.8 5.27E−32

6BFN_B Glide_XP 0.9438 −6.4 4.60E−32

The ROC curve and the AUC are shown in Figure 2. Since
the performances of the docking methods used in our study
were not adequately satisfactory, we established a pharmacophore
model to filter out molecules that we did not wish to pursue
beyond the docking process. According to the conformation
of the 6BFN_B re-docking results, we analyzed the binding
mode of the IRAK1 inhibitor (Figure 3A) and constructed
a pharmacophore, which contained a hydrogen-bond donor,
a hydrogen-bond acceptor, and an aromatic ring, using the
Develop Pharmacophore Model of Schrödinger which is suitable
for the preliminary virtual screening and saving the time costs of
calculation (Figure 3B).

We collected 1.5 million chemicals from the ChemDiv
database. Firstly, compounds in the database were pre-processed
using a filter which could exclude chemicals that did not conform
to the Lipinski’s rule of five (28). Next, we screened the remaining
1.2 million compounds in the established pharmacophore model
and 56,000 molecules having a structure similar to that of the
IRAK1 inhibitor were preserved. Glide SP docking was applied
and all docked compounds were ranked by their docking scores.
We selected the first 506 molecules for Glide XP docking in order
to eliminate the compounds with lower docking scores. Thus,

we obtained 353 molecules that possessed both, high docking
scores and different docking precision. These compounds were
clustered according to their molecular fingerprints. The most
representative 43 candidates (38 compounds were purchasable)
from each cluster were selected for biological assay (Figure 3C).

Biological Evaluation
To test whether the selected molecules were active, kinase activity
experiments were carried out using the mobility shift assay,
in which staurosporine was chosen as the positive control.
Each compound was dissolved in DMSO at a concentration
of 20 µM and used in the assay (Supplementary Table S2).
Compound 1 (Y041-8246) showed a moderate inhibition rate
(85.5% at 20 µM) compared to staurosporine (IC50 = 59.29 nM;
Supplementary Figure S2). The screening hit rate was 2.63%
(1/38). The Tanimoto similarities between compound 1 and
the known IRAK1 inhibitors were below 0.34, thus indicating
that this was a new structure which bears benzofuran scaffold
for IRAK1 inhibition. Moreover, structure clustering of IRAK1
inhibitors collected from ChEMBL was performed, the result
indicated that benzofuran derivatives were different from any of
these scaffolds (Supplementary Figure S3).

Establishment of Machine Learning
Model
Considering the unsatisfactory performance of the traditional VS
method with a hit rate of 2.63% in this study, which could not
completely meet the demand of drug discovery, we attempted
to find a better approach to discriminate lead compounds
from a set of high-scored compounds. Ten molecules from the
MolPort database1 whose Tanimoto similarities were higher

1www.molport.com

FIGURE 2 | ROC curve of different combination of receptors (6BFN_A, 6BFN_B) and docking software (Glide SP, XP, and AutoDock).
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FIGURE 3 | (A) Binding mode of the ligand (DL1) in 6BFN_B; (B) Pharmacophore model; and (C) Work flow of virtual screening.

than 0.8, when compared with compound 1, were chosen
to be further studied. In order to take the pharmacophore
and structural information into consideration, we calculated
multiple docking scores, complementary pharmacophore
mapping scores, and molecular descriptors (Figure 4).
The molecules in the training set consisted of 150 potent
IRAK1 inhibitors and 150 decoys (Supplementary Table S3).
Their docking scores were obtained using AutoDock (29),
Glide SP, and Glide XP toward 6BFN_A and 6BFN_B,
respectively. In this model, since it was need to construct
different pharmacophore models according to known ligands,
Discovery Studio was employed and all selected molecules
were then mapped to pharmacophores to calculate their fit
values, which demonstrated their extent of conformity to
the pharmacophore models. The one- and two-dimensional
molecular descriptors were calculated using PaDEL (30) to
complement the physicochemical properties. Lastly, 6 docking
scores, 9 fit values, and 1444 molecular descriptors were obtained
for each compound.

Based on the characteristics of the data, we employed several
traditional machine learning methods for activity prediction.
In this section, we describe how data pre-processing was
performed and the three machine-learning models for activity
prediction was constructed. Considering the inactivity of most
molecules, we used ACC and AUC to measure the performance
of each model. For a fair comparison, we divided the 300
molecules into 5 groups to conduct a 5-fold cross validation.
For the final test, all parameters were selected based on the best
ACC performance of models on validation sets. All models were
developed using python 3.7.3 with TensorFlow deep learning
library and all experiments were constructed on an NVIDIA
GeForce GTX 1080Ti GPU.

In this study, we compared the performance of each model
using data with different inputs. The mean AUC and ACC
scores of different models on 5-fold validation sets are shown
in Table 2, different inputs (docking scores, pharmacophore
mapping scores, and molecular descriptors) are presented in the
first column and simply denoted as DS, PS, and MD, respectively.
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FIGURE 4 | Construction of training dataset.

That is to say, the AUC and ACC results of different models in
the first row are obtained by models receiving docking scores,
pharmacophore mapping scores and molecular descriptors at
the same time, while results in the last row are obtained by
models merely receiving molecular descriptor. Obviously, a
slight improvement of AUC or ACC is observed when docking
and pharmacophore information were taken into consideration.
Besides, it is notable in each row that SVM outperforms all
the other two models. Therefore, we use SVM with all the
three kind of inputs as the final model, denoted as SVM
(DS+PS+MD). Table 2 and Figure 5 illustrate the performance
of each combination of model and input data.

TABLE 2 | Comparison of our three traditional machine-learning models for
activity prediction.

Model SVM LGBM XGBoost

Data AUC ACC AUC ACC AUC ACC

DS+PS+MD 0.8889 0.78 0.8022 0.75 0.8522 0.77

PS+MD 0.8933 0.75 0.8044 0.72 0.8633 0.78

MD 0.8767 0.77 0.8267 0.73 0.8178 0.70

SVM-Model Can Identify Active
Compounds Accurately
To verify the practicality of the SVM (DS+PS+MD) model, we
predicted the activity of molecules at later stages of VS (Figure 6).
Among the molecules exhibiting superior docking scores in
Glide SP and Glide XP, our model identified 51.78% selected
from Glide SP, and 56.66% from Glide XP docking as inactive.
Among the 38 candidates whose inhibitory had been tested, 21
inactive chemicals were accurately identified. Although there also
existed several inactive candidates that were classified as active,
compound 1 was picked precisely.

Ten compounds in the MolPort database with a Tanimoto
similarity greater than 0.8 as compared to compound 1 were
collected. Since almost all multiple docking scores appeared
similar and very close (Table 3), the docking software was unable
to yield accurate results. When the training information of these
compounds was fed into the SVM model, the results classified
two compounds as inactive, although one of them had the best
average docking score. The decrease in the exclusion rate from
50 to 20% indicated that this model was competent to identify
the structural features of IRAK1 inhibitors, which could thus help
computational chemists select lead compounds more accurately.
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FIGURE 5 | ROC curves of different combination of models and input data. (A) corresponds to feed model with data containing DS, PS, and MD; (B) for PS and
MD; and (C) for data with MD only.

FIGURE 6 | SVM model performance on IRAK1 VS candidates (top scoring compounds derived from Glide SP docking, Glide XP docking, visual selection, and SVM
prediction).
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Next, the activities of these compounds were tested. Ten
candidates were bought from TargetMol and their IC50s were
determined. The initial concentration was set to 100 µM and a
serial 10-fold dilution was made to 1 nM. Compounds 2 (Y041-
7950) and 3 (Y041-6433) exhibited similar IRAK1 inhibition and
their IC50 values were determined to be approximately 2 µM.
Additionally, two other chemicals showed weaker inhibition and
their IC50 values were determined to be 18.04 µM (compound
4: 11570480 from Otava Database) and 23.75 µM, (compound
5: Y041-7951), respectively (Figure 7 and Supplementary
Figure S2). We further tested the activity against IRAK4 of
the three most potent IRAK1 inhibitors such as compound 1,
2, and 3. The result indicated that all the compounds showed
extreme low inhibitory activities against IRAK4, which IC50s
were > 100 µM (Supplementary Figure S4). The compounds
bearing benzofuran scaffold were demonstrated an over 40-fold

selectivity to IRAK4, showing its potential to be developed as
selective IRAK1 inhibitor. When these compounds were used
in our model, it accurately predicted the results that were
determined earlier in the similarity search results. The AI model
proved to be an effective tool in this prediction.

Molecular Dynamics Simulation
Since the active compounds share same scaffold, the most potent
compound 1 was chosen for the analysis of binding mode with
IRAK1. In order to analyze the most stable binding pattern, we
performed 5 ns molecular dynamics simulation of compound 1
using AmberTools (31). As seen in Figure 8, the RMSD value of
the IRAK1 backbone and the ligand reached equilibration after
3 ns and 1 ns simulation, respectively. The average RMSF value
of compound 1 was 2.47 Å, indicating a stable binding pattern.
Compound 1 formed two hydrogen bonds with the H-bond

TABLE 3 | Detailed information of compounds predicted by SVM model (compound ID; docking scores from Glide SP, Glide XP, and AutoDock; average docking scores;
predicted labels and IC50 values).

Comp_ID SP_A SP_B XP_A XP_B AD_A AD_B AVG AI_Pred IC50/µ M

2 −10.25 −10.39 −11.06 −11.07 −8.1 −8.1 −9.83 1 2.32

3 −10.22 −10.28 −10.92 −10.91 −9 −9 −10.06 1 2.48

4 −9.51 −7.27 −10.58 −10.68 −11.7 −11.7 −10.24 1 18.04

5 −10.32 −10.52 −11.25 −11.88 −9.4 −9.4 −10.46 1 23.75

6 −9.95 −10.12 −11.84 −11.03 −11.2 −11.2 −10.89 0 NAa

7 −9.9 −9.93 −11.81 −11.01 −7.9 −7.9 −9.74 0 NA

8 −9.26 −9.66 −10.26 −10.53 −9.9 −9.9 −9.92 1 NA

9 −9.66 −9.6 −11.26 −11.57 −10 −10 −10.35 1 NA

10 −9.7 −9.33 −10.95 −10.95 −10.1 −10.1 −10.19 1 NA

11 −9.36 −6.19 −8.65 −8.89 −9.4 −9.4 −8.65 1 NA

aNA = No Activity.

FIGURE 7 | Structure of compound 1 and those predicted using SVM (compounds 2–11).
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FIGURE 8 | Analysis of MD simulation. (A) root mean square deviation (RMSD) and root mean square fluctuation (RMSF) of the IRAK1 backbone during MD
simulation; (B) 3D-plot of the complex; (C) length of the hydrogen bond (compound 1_O-Leu_291_H, compound 1_C = O-Lys_239_N); and (D) plot of free energy
decomposition.

donors from LYS_239 and LEU_291, and also formed stable
Van der Waals interaction through hydrophobic or hydrophilic
amino acid residues such as ILE_218, PHE_294, LEU_347, and
ASP_358. The lengths of the H-bonds and MM-GBSA free energy
confirmed that the hydrogen bond between compound 1 and
LYS_239 was more stable and contributed significantly to the
formation of the complex.

DISCUSSION AND CONCLUSION

In this study, we discovered a novel IRAK1 inhibitor (compound
1) through traditional virtual screening and also obtained four
similar compounds which exhibited good to moderate IRAK1
activity in the AI-aided selection process. As the screening
power of docking-based virtual screening was significantly
weak (hit rate = 2.63%) to select hit compounds from highly
scored molecules, an AI-based discriminatory virtual screening
protocol was conducted to assist the final selection procedure of
virtual screening.

The major strength of this protocol is a comprehensive
integration of activity-related factors through machine learning.
Comparing with other machine learning studies (9, 10), this
research integrated both protein-ligand binding information,
ligand-based pharmacophore information and molecular
physiochemical properties into an SVM classifier which can yield

satisfactory performance without the requirement of a great
deal of known inhibitors. Since diverse receptor structures and
pharmacophores were considered, more reliable judgments can
be made after dimension reduction and model training. Whereas,
there still exists some limitations in the screening process. For
example, since the virtual screening targeted a specific binding
pocket, it was possible that some positive compounds showing
different interaction mode would be excluded. It is necessary to
further combine virtual screening with different AI methods for
improving its prediction ability more accurately.

Experiments showed that this SVM model can effectively
exclude over 50% of the inactive compounds in virtual screening
and retain the most promising candidates, which can improve
the hit rate prominently in the last phase of VS. Moreover,
four molecules were successfully predicted using this model,
from a set of compounds that were similar to compound 1.
The model displayed better discriminatory power among highly
similar candidates.

The identified compounds all bear benzofuran scaffold, which
was different from other IRAK1 inhibitors. The acetamide
group seems important in maintaining the inhibitory activity
of compounds, such as the IC50 values of compound 1 vs
compound 7, compound 2 vs compound 9, and compound
4 vs compound 11. Moreover, compound 1, 2, and 3 were
demonstrated an over 40-fold selectivity to IRAK4, showing its
potential to be developed as selective IRAK1 inhibitor. The results
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provide valuable knowledge for further optimization and
development of IRAK1 inhibitors and demonstrate that AI can
assist VS strategy in a sequential manner for identifying new
IRAK1 inhibitors.
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