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Abstract
Objectives To create a radiomics approach based on multiparametric magnetic resonance imaging (mpMRI) features extracted
from an auto-fixed volume of interest (VOI) that quantifies the phenotype of clinically significant (CS) peripheral zone (PZ)
prostate cancer (PCa).
Methods This study included 206 patients with 262 prospectively called mpMRI prostate imaging reporting and data system 3–5
PZ lesions. Gleason scores > 6 were defined as CS PCa. Features were extracted with an auto-fixed 12-mm spherical VOI placed
around a pin point in each lesion. The value of dynamic contrast-enhanced imaging(DCE), multivariate feature selection and
extreme gradient boosting (XGB) vs. univariate feature selection and random forest (RF), expert-based feature pre-selection, and
the addition of image filters was investigated using the training (171 lesions) and test (91 lesions) datasets.
Results The best model with features from T2-weighted (T2-w) + diffusion-weighted imaging (DWI) + DCE had an area under
the curve (AUC) of 0.870 (95% CI 0.980–0.754). Removal of DCE features decreased AUC to 0.816 (95% CI 0.920–0.710),
although not significantly (p = 0.119). Multivariate and XGB outperformed univariate and RF (p = 0.028). Expert-based feature
pre-selection and image filters had no significant contribution.
Conclusions The phenotype of CS PZ PCa lesions can be quantified using a radiomics approach based on features extracted from
T2-w + DWI using an auto-fixed VOI. Although DCE features improve diagnostic performance, this is not statistically signif-
icant. Multivariate feature selection and XGB should be preferred over univariate feature selection and RF. The developed model
may be a valuable addition to traditional visual assessment in diagnosing CS PZ PCa.
Key Points
• T2-weighted and diffusion-weighted imaging features are essential components of a radiomics model for clinically significant
prostate cancer; addition of dynamic contrast-enhanced imaging does not significantly improve diagnostic performance.

• Multivariate feature selection and extreme gradient outperform univariate feature selection and random forest.
• The developed radiomics model that extracts multiparametric MRI features with an auto-fixed volume of interest may be a
valuable addition to visual assessment in diagnosing clinically significant prostate cancer.
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Abbreviations
2D LBP Two-dimensional local binary pattern
ADC Apparent diffusion coefficient
AUC Area under the curve
CI Confidence interval
CS Clinically significant
DCE Dynamic contrast-enhanced
DRE Digital rectal examination
DWI Diffusion-weighted imaging
GLCM Gray level co-occurrence matrix
GLDM Gray level dependence matrix
GLRLM Gray level run length matrix
GLSZM Gray level size zone matrix
H High-pass filter
ISUP International Society of Urological Pathology
L Low-pass filter
LoG Laplacian of Gaussian
mpMRI Multiparametric magnetic resonance imaging
NGTDM Neighboring gray tone difference

matrix features
PCa Prostate cancer
PI-RADS Prostate imaging reporting and data system
PZ Peripheral zone
RF Random forest
ROC Receiver operating curve
T2-w T2-weighted imaging
TZ Transition zone
VOI Volume of interest
XGB Extreme gradient boosting

Introduction

Prostate cancer (PCa) is currently the most common can-
cer among men, and comprises approximately 20% of all
cancers in the western world [1, 2]. Although most pa-
tients with PCa can be successfully treated [3], it is still
responsible for an estimated 10% of all male cancer-
related deaths in the western world. Early and accurate
detection of clinically significant (CS) PCa is important
to initiate treatment in a timely manner and improve pa-
tient outcome [3].

Current methods used for the detection of PCa vary per
institution. Nevertheless, prostate-specific antigen (PSA)
testing with digital rectal examination (DRE) followed
by transrectal ultrasound (TRUS) biopsy is a widely used
diagnostic algorithm. However, PSA testing suffers from
a high number of false positives combined with a consid-
erable number of false negatives [4]. The high false-
positive rate leads to unnecessary TRUS biopsies.
Furthermore, TRUS biopsies also suffer from sampling
errors (i.e., both false negatives and underestimation of
the true Gleason grade) [5]. The diagnostic limitations of

PSA testing followed by TRUS biopsies lead to unneces-
sary patient discomfort, anxiety, and complications [6].

Multiparametric magnetic resonance imaging (mpMRI) has
gained popularity as a non-invasive imaging technique for CS
PCa detection and biopsy guidance that may overcomemany of
the shortcomings of the combination of PSA and TRUS alone
[7–9]. Despite its potential, correct diagnosis of CS PCa based
on mpMRI requires skill and experience. With the introduction
of PI-RADS, and later PI-RADS v2, the diagnostic perfor-
mance of radiologists has improved [8, 10]. Nevertheless, PI-
RADS v2 is by no means a perfect system. Radiologists still
need extensive experience to correctly discriminate CS from
non-CS tumors [11, 12], with the additional issue that some
lesions are not visible on mpMRI [13, 14]. Computer-aided
diagnosis (CAD) aimed to increase correct diagnosis; however,
due to the use of a small group of handcrafted features, its
success is dependent on expert knowledge [15]. Therefore,
there is a need for new technology that improves CS PCa de-
tection on mpMRI without expert knowledge dependency. The
use of radiomics, which aims to extract relevant quantitative
tumor features from imaging data that may be unperceivable
by the human eye, may fill this void [16].

A limited number of studies already aimed to find such
quantitative mpMRI radiomics features for CS PCa [17–19].
However, these previous studies suffered from several method-
ological shortcomings, including small sample sizes (as low as
30 patients), heterogeneous datasets mixing peripheral zone
(PZ) with transition zone (TZ) tumors, manual delineation of
tumor suspicious regions (which introduces observer depen-
dency and decreases model generalization), and a very small
number of initial quantitative features that were explored (as
low as 10 features). Furthermore, no previous radiomics study
investigated whether the use of dynamic contrast-enhanced
(DCE, k-trans) sequences adds useful diagnostic information
to a radiomics-based approach. Finally, no research has been
performed on whether the multivariate-based diagnosis of CS
PCa onmpMRI works better with multivariate feature selection
and extreme gradient boosting (XGB) [20, 21] than the recom-
mended univariate selection and random forest (RF) [22].

The aim of this study was to create a model based on mpMRI
radiomics features extracted from an auto-fixed volume of inter-
est (VOI) that quantifies the phenotype of CS PZ PCa.

Materials and methods

Patient data

This study was institutional review board approved, and all
patients provided informed consent for the original dataset
creation. The data used for this study was originally part of
the ProstateX dataset [23]. A total of 206 patients from this
dataset were scanned at the Radboud University Medical
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Center (Nijmegen, the Netherlands) in 2012, and these pa-
tients comprised the present study population. Patients in the
ProstateX dataset had a median PSA level of 13 ng/ml (range
1 to 56 ng/ml) with a median age of 66 (range 48 to 83 years)
[24]. The mpMRI protocol was performed on a 3.0-T MRI
scanner (MAGNETOM Trio or Skyra, Siemens Healthcare);
see Table 1 for a summary of applied sequences (more detailed
information can be found in the previously published chal-
lenge) [25]. All patients in this study underwent mpMRI of
the prostate because of at least one previous negative system-
atic TRUS prostate biopsy and persistent clinical suspicion of
PZ PCa (i.e., elevated PSA and/or abnormal DRE). These
patients had a total of 262 prospectively called PI-RADS 3–
5 PZ lesions that were subsequently subjected to in-bore MRI
targeted biopsy, which was used as reference standard (all
under the supervision of a highly experienced radiologist in
prostate mpMRI, > 20 years of experience). PZ lesions with a
Gleason score of > 6 (International Society of Urological
Pathology (ISUP) grade group ≥ 2) were defined and labeled
as CS PCa, while PZ lesions with a Gleason score of ≤ 6, with
normal or benign histopathology results (e.g., prostatitis, be-
nign prostatic hyperplasia, or prostatic intraepithelial neopla-
sia), were labeled as the non-CS category.

Training and test dataset

Radiomics features [16] for the training dataset were calculated
from prostate mpMRI scans of 130 patients who had a total of
171 prospectively called PI-RADS 3–5 PZ lesions, of which 35
proved to be CS PZ PCa and 136 were grouped in the non-CS
PZ category according to MRI targeted biopsy results.
Importantly, the test data set (which consisted of 76 patients with
91 prospectively called PI-RADS 3–5 PZ lesions, of which 20
were CS PCa and 71 were non-CS PZ entities) was kept separate
from the training set and remained untouched until the develop-
ment of the model, to avoid a biased result [26].

Auto-fixed segmentation

An auto-fixed tumor VOI was used for the extraction of
the radiomics features in order to increase their repro-
ducibility and robustness [27]. By using identical VOIs
placed in the same manner, observer variability and de-
pendency can be reduced. Originally, the prospectively
called PI-RADS 3–5 PZ lesions were marked with a pin
point in the visually most aggressive part of the lesion
(area with the lowest apparent diffusion coefficient
(ADC) value). Marking of this visually most aggressive
part of the PZ lesion was performed under the supervi-
sion of an expert prostate radiologist (> 20 years of
experience). Future clinical implementation of a model
with auto-fixed segmentation requires the user to manu-
ally perform the marking. Scanner coordinates corre-
sponding with the supervised marking were stored and
converted to image coordinates. In this study, we then
automatically created a spherical VOI with the lesion
image coordinates at its center. The raster geometry
package (Python Software Foundation) was used for
the spherical volume calculation. For each of the image
directions, a radius was calculated based on VOI size
and image voxel spacing. The auto-fixed VOI size was
set to 12 mm in order to sufficiently cover most pros-
tate lesions which have an average diameter of 10 mm
[28]. For a number of patients in the ProstateX dataset,
deviations were discovered from the dimensional infor-
mation reported in Table 1. Interpolation of these voxels
was omitted due to uncertainty about the interpolation
size and technique for mpMRI [29]. Solving these un-
certainties for each mpMRI sequence requires a large
number of experiments which is outside the scope of
the current article. Additionally, no issues were expected
due to the equal representation of the deviations in both
the training and test datasets and the fact that feature
calculation was based on a collection of voxels.

Table 1 Summary of sequences used for mpMRI of the prostate

Sequence T2-weighted imaging
Turbo spin echo

Dynamic contrast-enhanced imaging
3D turbo gradient echo

Diffusion-weighted single-shot echo-planar imaging

In-plane resolution (mm) 0.5 1.5 2

Slice thickness (mm) 3.6 4 3.6

Temporal resolution (s) 3.5

Sequence orientation Axial, sagittal, and coronal Axial Axial

Additional remarks No endorectal coil No endorectal coil
Used for K-trans calculation

No endorectal coil
b-values of 50, 400, and 800 s/mm2

Used for calculated b-value of 1400 s/mm2

and mono-exponentially calculated apparent
diffusion coefficient map

mpMRI multiparametric MRI
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Radiomics features extraction

Ninety-two quantitative radiomics features which comprised
six different feature types were calculated in Python using
Pyradiomics [30]. Eighteen first-order features which use basic
statistics to characterize the voxel intensity distribution, 23 gray
level co-occurrence matrix features (GLCM), 16 gray level run
lengthmatrix features (GLRLM), 16 gray level size zonematrix
features (GLSZM), 14 gray level dependence matrix features
(GLDM), and 5 neighboring gray tone difference matrix fea-
tures (NGTDM) were used to quantify the image texture in the
VOI. Previous work by Aerts et al and Zwanenburg et al pro-
vide full feature names and their mathematical descriptions [16,
29]. Pixels used for the calculation of the 80 texture features
were discretized in fixed gray level bins (for further details, see
supplemental digital content 1). An overview of the radiomics
feature extraction pipeline is given in Fig. 1.

Extreme gradient boosting, expert-based feature
pre-selection, and the use of filters

Due to the uncertain complimentary role of DCE imaging for
the diagnosis of CS PCa [31, 32], an additional analysis was
performed to determine the effect of DCE features in the
radiomics approach. A total of two different mpMRI training
datasets were created (Table 2). The first mpMRI dataset
consisted of T2-weighted (T2-w) imaging, diffusion-
weighted imaging (DWI) with b-values of 50, 400, 800, cal-
culated 1400 s/mm2, and an calculatedADCmap (abbreviated

as T2-w + DWI). The second mpMRI dataset expanded on
this with DCE imaging, k-trans (abbreviated as T2-w +DWI +
DCE). For each of the two mpMRI training datasets, two
radiomics models were created. One of these models used a
previously suggested machine learning approach for
radiomics [22] with a combination of univariate feature selec-
tion and RF classifiers. In an effort to improve this, we first
introduced another model based on a combination of multi-
variate feature selection and XGB classifiers. This can be con-
sidered a good fit for high-dimensional tabular data like in
radiomics [20, 21]. Both univariate and multivariate feature
selection aim to find features with strong relationships with
the output labels (CS PCa, non-CS entities). Multivariate fea-
ture selection also takes relationships between features into
account. Detailed information about the machine learning ap-
proach can be found in supplemental digital content 2.
Second, we investigated whether expert-based feature pre-
selection could increase the performance of the radiomics
model [27]. Feature selection was performed by a specialized
uro-radiologist (D.Y.) with 5 years of experience in mpMRI of
the prostate. The selection was based on clinical experience
and domain knowledge [33]; selected quantitative features
were thought to correspond to clinical characteristics of CS
PZ PCa or the non-CS category. Third, we investigated wheth-
er the use of image filters (e.g., edge enhancement and voxel
intensity enhancement) improved the diagnostic accuracy of
our model. Previous research has shown that applying certain
image filters before feature extraction can enhance certain
lesion type differences and improve diagnosis [34–38].

Fig. 1 Schematic pipeline for the extraction of radiomics features from mpMRI data. ADC = apparent diffusion coefficient map, DCE = dynamic
contrast-enhanced, DWI = diffusion-weighted imaging, T2-w = T2 weighted

Table 2 Summary of mpMRI dataset composition

mpMRI dataset 1 mpMRI dataset 2

T2-weighted imaging (axial, sagittal, and coronal planes) T2-weighted imaging (axial, sagittal, and coronal planes)

Diffusion-weighted imaging
(b-values of 50, 400, 800, and calculated b-value of 1400 s/mm2)

Diffusion-weighted imaging
(b-values of 50, 400, 800, and calculated b-value of 1400 s/mm2)

Calculated ADC map Calculated ADC-map

K-trans (axial plane, calculated from DCE imaging)

ADC apparent diffusion coefficient map, DCE dynamic contrast-enhanced, mpMRI multiparametric MRI
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Detailed filter descriptions and their effect can be found in
supplemental digital content 3. Using the best combination
of mpMRI dataset (T2-w + DWI vs. T2-w + DWI + DCE),
machine learning approach (RF vs. XGB), with or without
expert-based feature pre-selection, and the effect of features
taken from filtered images (e.g., edge enhancement), different
models were created.

Statistical analysis

Each developed model was used to create an area under the
curve (AUC) score based on 10 × 10-fold receiver operating
curves (ROCs) on the training data. Training AUCs were
checked for normality using Shapiro-Wilk’s test and com-
pared using the Wilcoxon signed rank test [39, 40].
Additionally, all models from the different experiments were
evaluated on the separate test dataset. ROCs were created with
corresponding AUCs and 95% confidence intervals (CI) cre-
ated with 5000 times bootstrapping. AUCs were compared
using 5000 times bootstrapping. Statistical analyses were per-
formed using R version 3.5.2 software (R Foundation for
Statistical Computing) with the pROC package [41].

Results

Effect of DCE on radiomics

The comparison of models based on the two different mpMRI
datasets (T2-w + DWI vs. T2-w + DWI + DCE) showed that
the addition of DCE imaging did lead to a significant improve-
ment on the training dataset (p < 0.001, Table 3). This signif-
icant improvement found in the training dataset did not trans-
late to the test dataset for both RF and XGB (AUC 0.780 vs.
0.745 p = 0.657, AUC 0.870 vs. 0.816 p = 0.119). ROCs for
the test dataset of the models are given in Fig. 2, with corre-
sponding AUCs in Table 5. The best scoring model from
Table 5, AUC 0.870 (95% CI 0.980–0.754), sensitivity 0.86
(63/73), and specificity 0.73 (11/15), takes a shared first place
when compared to the original 71 entries and the over 200
ongoing entries in the ProstateX challenge [23, 42], which
was the original purpose of the data used in this study.
Figure 3 gives an evaluation example for model 3 (XGB +
T2-w + DWI, AUC: 0.816, sensitivity 0.75 (55/73), and spec-
ificity 0.67 (10/15)) which was predicted correctly while Fig.
4 shows an example of a false positive.

Multivariate selection and XGB versus univariate
selection and RF

For both thempMRI datasets defined in Table 2, the combination
of multivariate feature selection and an XGB classifier achieved
significantly higher AUCs when compared to univariate Ta
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Fig. 2 Test dataset receiver
operating curves (ROCs) for
models 1 to 4 based on mpMRI
dataset 1 (T2-w + DWI) and
mpMRI dataset 2 (T2-w + DWI +
DCE). Model 1 (blue, mpMRI
dataset 1) and model 2 (green,
mpMRI dataset 2) curves are cre-
ated by a combination of univari-
ate feature selection and a random
forest (RF) classifier. The curves
for model 3 (red, mpMRI dataset
1) and model 4 (cyan, mpMRI
dataset 2) were created using
multivariate feature selection and
extreme gradient boosting (XGB)

Fig. 3 True-positive example for model 3 (T2-w +DWI) which predicted
a clinically significant (CS) prostate cancer (PCa) lesion. This patient had
a peripheral zone (PZ) lesion (classifiable as PI-RADS 4) which was
pinpointed (the visually most aggressive part) originally by an expert
(arrow, first row), which proved to be CS PCa (Gleason score > 6). a

T2-w (axial), b ADC, c DWI b-value 800 s/mm2, d DWI calculated b-
value 1400 s/mm2. Second row, segmentations using the auto-fixed vol-
ume of interest (VOI, marked in white) were placed around the visually
most aggressive lesion pinpoint

Eur Radiol (2020) 30:1313–13241318



selection and RF (p = 0.003, Table 3). Of note, the features
selected by univariate selection (strongest relationwith the labels,
CS PCa vs. non-CS entities) originate from a single mpMRI
sequence, while multivariate selection features are selected from
multiple sequences. When applied to the test dataset, the models
based on multivariate feature selection and XGB outperformed
the models based on univariate selection and RF (AUC 0.870 vs.
0.780 p= 0.028). ROCs for thesemodels are given in Fig. 5, with
corresponding AUCs in Table 5.

Expert-based pre-selection and filtered images

The XGBmodel based on the best performing mpMRI dataset
(T2-w + DWI + DCE), performed significantly better than the
model which used expert-based feature pre-selection (XGB +
T2-w + DWI + DCE + expert-based pre-selection; p < 0.001,
Table 4). On the test dataset, there was no significant differ-
ence between both models (AUC 0.870 vs. 0.800 p = 0.273,
Fig. 4 and Table 5). Adding features taken from filtered im-
ages (supplemental digital content 3) to this best performing
dataset (XGB+ T2-w +DWI+DCE+ filters) did not lead to an
improvement when compared to the XGBmodel (XGB + T2-
w + DWI+ DCE, p = 0.208). The results on the test dataset did
not show a significant improvement either (AUC 0.870 vs.
0.800, p = 0.177, Fig. 4 and Table 5).

Discussion

Our best scoring model uses a combination of mpMRI fea-
tures taken from T2-w, DWI, and DCE imaging, extracted

with an auto-fixed VOI, and achieved a relatively high AUC
of 0.870 (95% CI 0.980–0.754) in the test dataset.
Nevertheless, we found that the addition of features from
DCE did not lead to a significantly improved radiomics model
compared to features taken from T2-w and DWI alone.
Furthermore, a combination of multivariate feature selection
and XGBwas found to be the best machine learning approach,
while expert-based feature pre-selection and the addition of
features taken from filtered images did not lead to a significant
improvement. Importantly, we used datasets with prospective-
ly called PI-RADS 3–5 lesions, in which the overall detection
rate of CS PCa is known to be only 55% [12]. Therefore, our
results indicate that the developed model may provide addi-
tional diagnostic value and might potentially reduce the num-
ber of unnecessary biopsies.

Interestingly, we found that the addition of features taken
from DCE imaging did not lead to a significant increase in
diagnostic test performance (p = 0.119). This is in line with
and supports the current trend of omitting DCE imaging from
the routine MRI protocol and using the so-called biparametric
MRI (bpMRI) to decrease study time and costs [43]. For rou-
tine prostate examinations, there is no difference in diagnostic
performance between mpMRI and bpMRI [31, 32]. However,
our results show a non-significant increase in diagnostic per-
formance for models that did include DCE features. This non-
significant increase might be explained using PI-RADSv2.1
which identifies five special patient scenarios where mpMRI
should be preferred over bpMRI [44]. Our results also show
that multivariate feature selection and XGB should be pre-
ferred over univariate feature selection and an RF classifier
(AUC of the latter, 0.780 (95% CI 0.900–0.661), p = 0.028).

Fig. 4 False-positive example for model 3 (T2-w + DWI) which
predicted a clinically significant (CS) prostate cancer (PCa) lesion. This
patient had a peripheral zone (PZ) lesion (classifiable as PI-RADS 4)
which was pinpointed (the visually most aggressive part) originally by
an expert (arrow, first row), which proved to be a non-CS entity (Gleason

score < 6). a T2-w (axial), b ADC, c DWI b-value 800 s/mm2, d DWI
calculated b-value 1400 s/mm2. Second row, segmentations using the
auto-fixed volume of interest (VOI, marked in white) were placed around
the visually most aggressive lesion pinpoint
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This contradicts the results of a previous study by Parmar et al
[22] that reported univariate feature selection and an RF clas-
sifier to be the best machine learning approach for radiomics
[22]. This contradiction may be due to the different data types
used, since Parmar et al [22] used computed tomography in-
stead of mpMRI. Furthermore, our results showed that the
univariate feature selection tends to focus on a single se-
quence, suggesting a good correlation between the single se-
quence of concern and the differentiation between CS PZ PCa
and non-CS entities. However, given the fact that multivariate
selection performed significantly better and did not focus on a
single sequence, it appears that feature redundancies between
features taken from a single sequence that are not tested in
univariate selection diminish the performance of the model.
Including expert-based pre-selection of radiomics features did
not lead to a significant change in performance (AUC 0.800
(95%CI 0.941–0.650), p = 0.273). Though interestingly, it did
lead to the least difference between the training and test
datasets. A possible explanation for this finding may be that
pre-selection based on clinical experience and domain

knowledge eliminated the least reproducible features [27].
However, due to the loss in performance on the training
dataset, the approach in which a single radiologist selects fea-
tures based on experience and knowledge might not be viable
and more research should be performed. The inclusion of
features extracted from filtered mpMRI images, which should
theoretically enhance lesion differences, did not significantly
improve results (AUC 0.800 (95% CI 0.920–0.651), p =
0.177). This finding is in contrast to previous studies [35,
37, 45] and may be explained by the use of a broad selection
of multiple filter types while relying on the feature selection
algorithms rather than domain knowledge. However, further
investigation is needed before fully dismissing them.

There are a number of other studies that aimed to build an
mpMRI radiomics model that quantifies the phenotype of CS
PZ PCa [18, 19, 46]. Although it is difficult to fully compare the
quantitative features we found with earlier research, e.g., due to
different patient populations and variations in imaging proto-
cols, some comparison between the present results and previous
studies can be made. A recent study by Bonekamp et al [19]

Fig. 5 Test dataset ROCs for model 4 (cyan, mpMRI dataset 2, T2-w + DWI + DCE and repeated from Fig. 2), model 5 (magenta, T2-w + DWI + DCE +
expert pre-selection), and model 6 (yellow, T2-w + DWI + DCE + filters (supplemental digital content 3)) based on multivariate selection and XGB
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compared a radiomics model with the mean ADC and radiolo-
gist assessment for the diagnosis of CS PCa lesions. However,
the approach used for the development of their radiomics model
was limited by manual tumor lesion delineation and mixing of
both PZ and TZ lesions. Not unimportantly, quantitative ADC
measurements have a limited role in clinical practice. This is
due to the variety of acquisition and analysis methodologies
that do not allow for comparison of ADC values between cen-
ters and establishment of universally useful diagnostic cut-off
values [47, 48]. Furthermore, manually delineating tumor
boundaries is prone to making results observer dependent (be-
sides being labor intensive) and mixing PZ and TZ lesions
ignores the fact that both types of PCa are phenotypically dif-
ferent [19, 49–51]. Another study by Khalvati et al [18] pro-
posed a radiomics model which used a set of radiomics features
with some statistical and textural features that partly matched
our selection. Nevertheless, they did not investigate all mpMRI
sequences such as DCE imaging and validated their radiomics
model on a very small dataset of only 30 patients again without
separating PZ from TZ lesions. Finally, a study by Xu et al
introduced a radiomics model based on bpMRI radiomics fea-
tures and a small set of clinical parameters [46]. Besides iden-
tical limitations to the ones mentioned above (manual delinea-
tion, mixing PZ and TZ lesions), Xu et al created a test dataset
based on the date of the study instead of a random division.
This, in combination with the observation that their test scores
were higher than the then training scores, raises bias concerns.
Additionally, they did not include a high calculated b-value
which we found to be essential for models 1, 3, and 4 (Table 3).

The present study had several limitations. First, its results are
only applicable to PZ lesions, and the model does not hold up for
lesions in the TZ. TZ lesions, which are phenotypically different
[49–51], should be investigated separately with the use of a ded-
icated model. Second, our study focused on lesion characteriza-
tion and not on automatic detection of lesions suspicious of PCa.
A recently published study [52] investigated an automatic detec-
tion system for PCa lesions prior to a radiologist’s interpretation.
The authors of that study concluded that such a system intro-
duced more false positives than a radiologist [52]. This raises the
question of whether such automatic detection systems are suited
for clinical practice at themoment. Third, due to the retrospective
nature of the present study, mpMRI protocols were heteroge-
neous and performed on two differentMRI systems. On the other
hand, these differences yielded more diverse data that may actu-
ally have helped to increase reproducibility of the radiomics fea-
tures [27]. Nevertheless, to be able to say with certainty that the
model, and by extension the set of quantifying radiomics fea-
tures, exhibit proper generalization, external validation should be
performed in future studies. Finally, all patients underwent in-
bore MRI targeted biopsy, whereas prostatectomy may have
served as a better reference standard. However, this reflects clin-
ical practice, and only including patients who had undergone
prostatectomy could have introduced selection bias [53].

In conclusion, the phenotype of CS PZ PCa lesions can be
quantified using a radiomics approach based on features ex-
tracted from T2-w + DWI using an auto-fixed VOI. Although
DCE features improve diagnostic performance, this is not sta-
tistically significant. Multivariate feature selection and XGB
should be preferred over univariate feature selection and RF.
The developed model may be a valuable addition to traditional
visual assessment in diagnosing CS PZ PCa.
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