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Circadian clocks are fundamental, time-tracking systems that allow organisms to adapt 
to the appropriate time of day and drive many physiological and cellular processes. 
Altered circadian rhythms can result from night-shift work, chronic jet lag, exposure 
to bright lights at night, or other conditioning, and have been shown to lead to 
increased likelihood of cancer, metabolic and cardiovascular diseases, and immune 
dysregulation. In cases of cancer, worse patient prognoses and drug resistance during 
treatment have also been observed. Breast, colon, prostate, lung, and ovarian cancers 
and hepatocellular carcinoma have all been linked in one way or another with altered 
circadian rhythms. Critical elements at the molecular level of the circadian system have 
been associated with cancer, but there have been fairly few studies in this regard.  
In this mini-review, we specifically focus on the role of altered circadian rhythms in 
breast cancer, providing an overview of studies performed at the epidemiological level 
through assessments made in animal and cellular models of the disease. We also 
address the disparities present among studies that take into account the rhythmicity of 
core clock and other proteins, and those which do not, and offer insights to the use of 
small molecules for studying the connections between circadian rhythms and cancer. 
This article will provide the reader with a concise, but thorough account of the research 
landscape as it pertains to altered circadian rhythms and breast cancer.

Keywords: altered circadian rhythms, shift work, breast cancer, molecular mechanism, hormone pathways, small 
molecule modulators

inTRODUCTiOn

It was first reported in the 1960s that circadian rhythm disruptions can lead to an increased likeli-
hood of mammary tumor development, and that circadian genes may act as tumor suppressors (1). 
In previous decades, studies have suggested that alterations to circadian rhythms also accelerate 
breast epithelial stem-cell proliferation, induce mammary-gland development, and increase the 
formation of spontaneous breast tumors in mammals (2, 3). Disruptions to circadian rhythms 
in humans have also been associated with the development of several other cancer types, includ-
ing prostate (4), endometrial (5), colon (6), lung (7), and ovarian cancers (8) and hepatocellular 
carcinoma (9). In addition, the rhythmic control of cell fate is believed to affect cancer therapies: 
the efficacy and/or toxicity of radiotherapy and antitumor therapeutics have been shown to be 
dependent on the timing of dose administration (10, 11). Thus, understanding the link between 
biological rhythms and cancers can both assist in the development of new treatments, and in 
optimization of current therapies.
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In mammals, the molecular circadian clock can be divided 
into three components: input pathways, the central pacemaker, 
and output pathways. The input pathways transmit information 
from environmental cues (e.g., light) to the central pacemaker, 
which is located in the suprachiasmatic nucleus (SCN) of the 
hypothalamus (12). Within the SCN, multiple single-cell cir-
cadian oscillators are synchronized to generate daily circadian 
outputs (13). Output pathways convert the commands from the 
central pacemaker into circadian oscillations, which regulate 
physiological and behavioral functions in peripheral organs and 
tissues (14).

Circadian oscillations are mainly generated through two 
transcriptional/translational feedback loops (TTFLs) (15). The 
core loop involves four core clock genes: Circadian Locomotor 
Output Cycles Kaput (CLOCK) (16) and brain and muscle 
Arnt-like protein 1 (BMAL1) (17), which are the activators; and 
Period (PER1, PER2, and PER3) (18) and Cryptochrome (CRY1 
and CRY2) (19), which are the repressors. In the morning, the 
CLOCK:BMAL1 heterodimer binds to an E-box DNA promoter, 
activating the transcription of PER, CRY, and other clock con-
trolled genes. Late in the day, PER and CRY proteins dimerize 
and translocate from the cytoplasm to the nucleus, where they 
associate with the CLOCK:BMAL1 complex and suppress its 
transcriptional activity at the E-box site (20). The suppression 
of CLOCK:BMAL1 is released through the degradation of PER 
and CRY by ubiquitin-dependent pathways (21, 22) and casein 
kinases (CKIδ and CKIε) (23), which also control the timing of 
PER and CRY’s entrance to the nucleus. After PER and CRY are 
degraded, the cycle begins again with ~24 h periodicity.

The secondary TTFL is mainly driven by transcriptional 
acti vation of the retinoid-related orphan receptors (RORs a, b, c)  
and repression of REV-ERBα/REV-ERBβ (24). To drive the 
rhythmic oscillation of BMAL1, REV-ERBα binds to the ROR 
elements in the BMAL1 promoter, suppressing BMAL1 transcrip-
tion. Conversely, RORa and RORb activate BMAL1 expression  
(25, 26). The cooperation between the two TTFLs and other 
kinases and phosphatases, which are critical for regulating 
period, phase, and amplitude of oscillations, provides robustness 
against environmental perturbations. This network also helps to 
maintain accurate circadian timing and adjust phase delays to 
align with local physiology (27).

ePiDeMiOLOGiCAL eviDenCe OF 
ALTeReD CLOCKS’ eFFeCTS On 
CAnCeR

Lifestyles have dramatically changed since the invention of the 
light bulb in 1879. Since then, the daily activities of humans have 
expanded into the night, including “night-shift” occupations 
(28). According to the U.S. Bureau of Labor Statistics, in 2016, 
the majority of the employed population worked in the service 
industry (80.3%), including health care, social assistance, and 
transportation, followed by manufacturing (7.9%) (29)—areas 
with high proportions of shift work. Another report published in 
2015 found that about 17–24% of the workforce in United States 
was assigned to irregular or on-call work schedules, including 

night and rotating shifts (30). These types of schedules can lead 
to disruption of the sleep–wake cycle and circadian time organi-
zation, in addition to exposure to light at night (LAN) for long 
periods of time (31, 32). Perturbations to sleep and circadian 
rhythms can cause metabolic changes (33) and immune suppres-
sion (34), which can lead to various health problems, including 
diabetes (35), obesity (36), and cardiovascular disease (37), in 
addition to cancer (38). As a result, the International Agency 
for Research on Cancer has classified “shift-work that involves 
circadian disruption” as a “potential carcinogenic to humans 
(Group 2A)” (39).

While debated in some instances, epidemiological studies 
have provided evidence to support the association between shift 
work and cancer risk (40, 41). Independent cohort studies of 
night workers and shift workers have observed increased inci-
dence of breast (42), prostate (4), colon (43), and endometrial 
epithelial malignancies (44) and non-Hodgkin’s lymphoma 
(45), with risk further increased among individuals who have 
spent more hours and years working at night (42, 46). A case 
control study in Western Australia found that there was a 22% 
increase in breast cancer incidence among those who worked 
between midnight and 5:00 a.m. (47). Another study in France 
showed that there was a significant association (OR  =  1.95) 
between breast cancer and women who worked night shifts for 
more than 4 years before their first full-term pregnancy. At that 
time their mammary-gland cells were found to be incomple tely  
differentiated, making them more susceptible to circadian dis-
ruption effects (48). While it is difficult to eliminate shift work 
from society, there are some aspects that can be modified, which 
may decrease the risk of developing adverse health effects.  
To further understand the contributions of shift work to patho-
logical development, extensive animal and cellular experiments 
have yielded proposed molecular mechanisms, which will be 
discussed in Section “Molecular Studies of Circadian Clocks and 
Breast Cancer.”

Jet lag is another environmental factor associated with altered 
circadian rhythms and higher incidence of cancers (49). Jet lag 
(or circadian desynchrony) is a sleep disorder arising from the 
mismatch between internal body clocks and the environmental 
light/dark cycle. This condition is typically the result of travel 
through multiple time zones over a short period of time (50). 
An early study in Finland showed that flight attendants have 
significantly higher incidence of breast cancer (81.2/100,000) 
compared with the general female population (57.4/100,000) 
(51). A later, follow-up assessment strongly suggested that the 
increased cancer incidence was related to disruption of sleep 
rhythms, caused by excess exposure of light during normal 
sleeping hours, resulting in melatonin dysregulation (52). In 
addition, a recent study published in 2017, which focused on 
the effect of exposure to LAN in the United States, showed that 
there was a 14% increased risk of breast cancer in the highest 
LAN compared with the lowest LAN (53). Similar results were 
reported in Israel, where there was a 73% higher incidence of 
breast cancer in communities with the highest LAN than lowest 
LAN, across 147 communities (54). All of these epidemiological 
studies have strongly indicated that the disruption of circadian 
rhythms contributes to cancer risk.
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MOLeCULAR STUDieS OF CiRCADiAn 
CLOCKS AnD BReAST CAnCeR

The functions of clock genes in each tissue are unique and show 
specific oscillation patterns (55). Their expression and regulation 
play important roles in breast biology. It has been shown that 
the core clock genes exhibit different mRNA expression pat-
terns during mammary-gland development and differentiation 
in mice (56). Among 14,070 tested genes in human epithelial 
cells, 1,029 genes showed rhythmic oscillations during lactation. 
The expression patterns of these genes can be clustered into two 
groups, one high in the morning and another in the evening, 
indicating that the expressions change with a period of 24  h 
(57). Not only are the expression levels of clock genes variable, 
but they are affected by different developmental stages of breast 
tissue, and the extracellular microenvironment (58). Thus, it is 
posited that disruption of clock genes can affect normal breast 
biology and induce or affect cancerous development.

Breast cancer is heterogeneous and can be classified into 
subtypes based on histology, tumor grade, lymph node status, 
and the presence of specific biomarkers (59). The three markers 
generally used in characterization are estrogen receptor (ER), 
human epidermal growth factor receptor 2 (HER2), and pro-
gesterone receptor (PR) (60, 61). Based on marker status, breast 
cancer can be grouped into at least four subtypes: luminal A (ER+, 
PR+/−, HER2−), luminal B (ER+, PR+/−, HER2+), HER2 (ER−, PR−, 
HER2+), and Basal (ER−, PR−, HER2−) (62, 63). Basal tumors 
are typically difficult to treat and have poor prognoses. Because 
they lack ER, PR, and HER2, they are sometimes referred to as 
“triple-negative.”

The disruption of nuclear hormone levels and signaling has 
also been posited to alter circadian rhythms, drawing another 
connection between rhythms and breast cancer (64). The estro-
gen receptor-α (ERα) signaling pathway (65) has been linked to 
the disruption of PER2 in breast cancer (Figure 1) (66, 67). It is 
known that PER2 is a direct transcriptional target of ERα and its 
expression is inducible by 17 β-estradiol (E2) simulation (64, 68).  
In normal human breast epithelial cells, both ERα and PER2 
show rhythmic oscillations. The ubiquitous presence or absence 
of clock proteins has been predominantly used to investigate 
the relationship between circadian rhythms and breast cancer 
development (Table  1) (69–71). Knockdown of either PER2 
or ERα results in aberrant circadian oscillations of ERα, PER2, 
BMAL1, and RARA (another direct ERα target gene) and affects 
breast acinus structures (66). It was first reported in 2007 that 
suppression of PER2 leads to ERα stabilization, and conversely, 
overexpression of PER2 in breast cancer cells significantly 
inhibited cell growth and promoted apoptosis (64, 72). This 
work was corroborated by showing that complete loss of PER2 
mRNA oscillations occurred only in ERα-positive breast cancer 
cells, while ERα-negative breast cancer cells retained partially 
rhythmic oscillations (66, 67). In mice, downregulation of PER2 
enhanced breast tumor growth, leading to further enhancement 
of amplitude and phase delay (70). All of these studies have sug-
gested that the expression of clock genes may be disrupted by 
hormone levels and their signaling circuits (Figure 1) (73, 74). 
In addition, genome-wide DNA methylation profiling has shown 

that PER1 is significantly hypomethylated in ER+/PR+ breast 
cancer tissues (75). A separate study also showed that PER1, 2,  
and 3 exhibited deviant protein expressions in 55 resected 
breast cancer tissue sections, when compared with adjacent  
non-cancerous tissue samples. These fluctuations may be the 
result of methylation of the PER promoter (76). However, the 
detailed mechanisms of how hormone signaling affects circa-
dian clocks and vice versa are still unclear.

BMAL1 has also been proposed to act as a tumor sup-
pressor. In separate studies performed in lung cancer and 
glioma cells, knockdown of BMAL1 promoted cancer cell 
proliferation, invasion, and tumor growth, while its overexpres-
sion reduced cellular invasiveness (71, 79). Effects occurred in a 
p53-independent manner (p53 expression was decreased in all 
BMAL1 knockdowns) and were accompanied by activation of 
the phosphoinositide 3-kinase (PI3K)–Akt–MMP-2 signaling 
pathway (79). While these studies used other cancer models to 
study the role of BMAL1, the findings are likely relevant to breast 
cancer. p53 mutations in breast cancer are relatively frequent 
(~20%) (85, 87), and the PI3K/Akt pathway is commonly affected 
(~70%) (88). However, the same study found that p21 (a p53 tar-
get protein) and c-myc exhibited different expression levels in 
various BMAL1-knockdown colon cancer cells, indicating that 
the relationships among BMAL1, p21, and c-myc are probably 
cell-type specific (71).

By contrast, CLOCK has been indicated as a tumor driver. 
Healthy breast patient tissues showed lower CLOCK expres-
sion than breast tumor tissues (77, 78). Knockdown of CLOCK 
resulted in attenuation of breast cancer proliferation (77) and 
downregulation of several cancer-associated genes, including 
ones related to breast tumor progression and metastasis initiation, 
such as CCL5, BDKRB2, and SP100 (78). Furthermore, increased 
methylation in the promoter region of CLOCK has been associ-
ated with decreased breast cancer risk (78). While these studies 
provide valuable insight to the involvement of clock proteins in 
breast cancer development, most of these experiments do not 
account for the dynamic nature of circadian rhythms, and the fact 
that they may be altered but not abolished with human behavior 
and disease.

More recently, a number of in vitro studies have investigated 
clock gene expression profiles in a time-dependent manner in 
various breast cancer cell lines, including: MCF7 and T47D 
(luminal A subtype); HCC-1954 (HER2 positive subtype); 
MCF10A and MDA-MB-231 (basal-like subtype), and others 
(67, 80–83). Intrinsic circadian oscillations in cultured cells 
can be entrained through treatment with high concentrations 
of serum to serum starved cells (89), or by chemical induction 
of signaling pathways, such as protein kinase A (via forskolin) 
(90) or the glucocorticoid receptor (via dexamethasone) (91). 
After entrainment, the expression patterns of clock genes, 
including BMAL1, CLOCK, PER1, PER2, CRY1, and CRY2, have 
largely been analyzed through quantitative real-time PCR, with 
conflicting results. While some studies revealed rhythmic gene 
expression in all breast cancer cell lines (67, 82), others did not  
(80, 83). Major factors contributing to the discrepancies were 
likely non-uniform cell culture and synchronization methods 
(i.e., varied serum depletion times before serum shock), which 

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive


FiGURe 1 | Cross talk between E2–estrogen receptor-α (ERα) signaling pathways and circadian rhythms in breast cancer. Two of the four estrogen signaling 
pathways involve E2 stimulation and are shown here (65). In the classical genomic pathway, E2-bound estrogen receptor (ER) (either ERα or ERβ) dimerizes, 
changes conformation, translocates to the nucleus, and binds to the estrogen response elements (EREs). After binding to the EREs, the E2–ER complex recruits 
other co-activators, including Circadian Locomotor Output Cycles Kaput (CLOCK) and possibly brain and muscle Arnt-like protein 1 (BMAL1) (74), to initiate the 
transcription of target genes. CLOCK overexpression in breast tumors and promotion of tumor cell proliferation may be caused by co-activation with E2–ER 
complexes (77, 78). In the non-genomic pathway, E2–ERα complexes accumulate near the membrane and then recruit protein kinases [Src and phosphoinositide 
3-kinase (PI3K)] to activate signaling cascades (Akt and Ras/MAPK). BMAL1 has been shown to suppress the Akt/MMP2 pathway and further inhibit cancer cell 
invasion (79). BMAL1 can suppress cancers, and its expression is downregulated or disrupted in various breast cancer cell lines (67, 80–83). By contrast, REV-ERBβ 
(a repressor in the secondary transcriptional/translational feedback loop) is generally overexpressed in breast tumor samples; its protective function can allow cancer 
cells to develop chemotherapy resistance (84). PER2 is a direct ERα target gene and can bind to ERα and cause its degradation. In ERα-positive breast cancer cells, 
both PER2 and ERα lose their circadian oscillations, the underlying mechanism of which is not well understood. The cancer suppressor p53 can directly bind to the 
PER2 promoter and inhibit its transcriptional activity (85). E2–ER complexes can block the induction of proapoptotic p53 target genes by binding to p53 protein in 
ER-positive breast cancer cells, thus helping cancer cells avoid apoptosis (73). Re-introduction of PER2 into the ER-positive breast cancer cells can induce p53 
expression (72). Abbreviations: TF, transcriptional factor; RE, response element; E2, 17 β-estradiol.
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may affect dampening rates over time, due to loss of synchronicity.  
In addition, the short-term data collection (typically ≤48 h) and 
insufficient numbers of data points (generally ≥4  h intervals) 
utilized in these studies are generally insufficient to yield good 
statistical curve fittings (92, 93), contributing to inaccurate 
analysis of rhythmic oscillations. However, within each study, it 
is apparent that oscillations of clock proteins vary across different 
breast cancer cell models. Application of luciferase reporters and 

fluorescent proteins (e.g., GFP) can provide better resolution 
for long-term tracking of circadian oscillations in synchronized 
cells (14). However, cancer cells can be heterogeneous even in 
culture conditions (94). Future work should focus on real-time 
analysis at the single-cell level to reveal how circadian rhythms 
are involved, disrupted, and deviate from one another in breast 
cancer. Furthermore, posttranscriptional and -translational 
modifications to core circadian clock components should also 
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TABLe 1 | Roles of clock genes in breast cancer development.

Circadian 
genes

experimental approaches Phenotype Possible mechanism Reference

CLOCK Immunohistochemical  
assay(s) and qRT-PCR

Overexpressed in breast cancer cells;  
low expression in healthy breast tissue

Increased methylation in CLOCK promoter  
decreases breast cancer risk

(77, 78)

Knockdown(s) Reduced cell proliferation; downregulation  
of cancer-associated genes (CCL5,  
BDKRB2, and SP100)

E2–estrogen receptor (ER) pathway may couple  
to the circadian machinery due to presence of  
estrogen response element in the CLOCK promoter

(77, 78)

BMAL1 qRT-PCR Disrupted mRNA expressions in breast  
cancer cells

Not clear (67, 80–83)

Knockdown(s) Promoted cancer cell proliferation and  
invasion in vitro and tumor growth in vivo

Antagonized Bcl-w oncogene, which can activate 
phosphoinositide 3-kinase (PI3K)/Akt/MMP2 pathway; 
effects on p53 and c-myc are cell-type specific

(71, 79)

PER1, 2, 
and 3

Immunohistochemical  
assay(s) and qRT-PCR

Downregulated in ER-positive breast  
cancer cells

Methylation in PER promoter in ER+/PR+ breast  
cancer tissues

(70, 75, 76)

Knockdown(s) Aberrant circadian oscillation of other clock 
genes; enhanced tumor growth in vivo; 
changed the structure of breast acinus

Coupling with E2–ER pathway and p53 pathway (66)

Overexpression Significantly inhibited cell growth and  
promoted apoptosis

Inhibit the activation of ER and p53 target genes (64, 72)

CRY1 and 2 qRT-PCR Disrupted mRNA expressions in breast  
cancer cells

Not clear (67, 80)

REV-ERBα RNAi screen Co-expression in ERBB2-positive  
breast tumors (HER2+ subtype)

Upregulating several genes that are involved in  
de novo fatty acid synthesis, which further  
enhance the energy production for survival

(86)

REV-ERBβ Overexpression Protect tumor cells against chemotherapy Not clear (84)
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in immutable modifications, small molecules can be used in 
reversible, time- and dose-dependent manners (102, 103). One 
common example is the amelioration of jet lag via use of the 
hormone melatonin (104, 105). A double-blind trial showed that 
melatonin can significantly reduce jet lag and sleep disturbance 
in an international cabin crew (106). Small molecules can also be 
used to modify circadian rhythm periods to minimize chrono-
disruption resulting from shift work. Since the entrained phase 
is associated with circadian period, the period modification 
should change the preferred phase of behavior (107). Amplitude 
enhancement has also been shown to combat metabolic syn-
dromes (108), reverse age-related effects (109), and protect 
against psychiatric diseases (110).

Small molecules have been used to elucidate the connections 
between circadian rhythms and breast cancer, for example the 
role of REV-ERBs in the HER2+ subtype (111). The NR1D1 
(REV-ERBα coding gene) is connected to ERBB2 (HER2 coding 
gene) in the 17q12 amplicon, resulting in their co-expression in 
ERBB2-positive breast tumors (86). The same study suggested 
that REV-ERBα serves as a survival factor for HER2+ breast 
cancer cells. However, more recent work has shown disagree-
ments. By activating REV-ERBs via the synthetic agonist SR9011, 
decreased cell proliferation was observed in various breast 
cancer cells, independent of their ER or HER2 status (112). 
Another study found that dual inhibition of REV-ERBβ and 
autophagy by ARN5187, a novel REV-ERBβ ligand, can induce 
cytotoxicity in breast cancer cells (84). It was also shown that 
REV-ERBβ was dominantly expressed in breast tumor samples, 
while REV-ERBα was the predominant form in normal tissues. 

be taken into consideration (95), since many malignant transfor-
mations occur posttranscriptionally.

CiRCADiAn CHROnOTHeRAPY AnD 
CAnCeR TReATMenT

Nearly, all metabolic functions are regulated in a circadian man-
ner: food intake, digestion, detoxification, breakdown, and storage  
of sugars and fats (96–98). When organs are exposed to xeno-
biotics (e.g., drugs or environmental toxicants), they undergo 
classical absorption, distribution, metabolism, and elimination 
processes, which are all regulated by circadian clocks (11). 
Hence, accounting for circadian rhythms in the development 
of treatments and dosing regimens has the potential to improve 
disease outcomes. Two recent studies reported the effects of 
chemotherapy on circadian rhythms in patients with metastatic 
colorectal cancer (99, 100). It was found that chemotherapy-
induced disruption was observed in approximately 50% of the 
patients and was correlated with shortened overall survival rate. 
Eliminating this perturbation has been suggested to reduce 
toxicity and enhance efficacy of chemotherapy.

Recently, compounds that specifically target clock compo-
nents and/or modulate its oscillations have received a great 
deal of attention (101). There are many advantages to the usage 
of small molecules in studies of circadian-related diseases: (1) 
they can help us to better understand the molecular circadian 
network; (2) they can serve as lead structures for developing 
drugs; and (3) unlike genetic approaches, which can result 
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Overexpressed REV-ERBβ appeared to result in protection that 
made tumor cells resistant to chloroquine, a clinically relevant 
lysosomotropic agent suppressing autophagy. With ARN5187 
treatment, REV-ERB-mediated transcription was inhibited. 
Grimaldi et al. suggested that this compound has the potential 
to serve as an anticancer agent (84). Although clock modulators 
alone may not be sufficient to induce anticancer effects, com-
bined treatment with well-established anticancer drugs should 
enhance their potency and efficacy, and reduce toxicity of the 
drugs. Characterization of disrupted circadian patterns in vari-
ous types of cancer can provide clues for the application of clock 
modulators in combination with anticancer drugs to achieve the 
best possible therapeutic results.

COnCLUSiOn

Circadian rhythms are essential to the regulation of many 
physiological and behavioral functions in mammals. Their 
disruption has been linked to development of many health 
problems, including breast cancer. This is supported by 
epidemiological evidence, assessing both shift workers and 
people exposed to chronic jet lag. The status of core circadian 
clock components has also been evaluated in cancerous versus 
healthy tissues, and the significance of these components has 
been investigated via overexpression or deletions. While more 
recent studies have addressed changes in oscillations across 
cancer types, investigations at higher resolutions are required 
to facilitate more thorough analysis. From the work reviewed 
here, it is clear that circadian rhythms and proto-oncogenes/

signaling pathways (e.g., PI3KCA, p53, or E2–ER) can both 
affect one another. However, the molecular mechanisms behind 
these associations are not well understood, and currently very 
few studies exist that examine the effects of altered rhythms on 
oncogenic pathways. Future work should also take advantage 
of existing technologies (including high-resolution confocal 
microscopy) (113) to track and analyze dynamic circadian 
oscillations at the single-cell level. While posttranscriptional 
and -translational modifications are also critical elements of 
the puzzle, real-time monitoring of these processes remains 
difficult to achieve. By increasing knowledge of the molecular 
mechanisms associated with disrupted clocks in cancer, new 
therapeutics and adjuvants can be developed with enhanced 
efficacy against the disease.
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