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A B S T R A C T

Biopharmaceutical industrial processes are based on high yielding stable recombinant Chinese Hamster Ovary
(CHO) cells that express monoclonal antibodies. However, the process and feeding regimes need to be adapted for
each new cell line, as they all have a slightly different metabolism and product performance. A main limitation for
accelerating process development is that the metabolic pathways underlying this physiological variability are not
yet fully understood. This study describes the evolution of intracellular fluxes during the process for 4 industrial
cell lines, 2 high producers and 2 low producers (n¼ 3), all of them producing a different antibody. In order to
understand from a metabolic point of view the phenotypic differences observed, and to find potential targets for
improving specific productivity of low producers, the analysis was supported by a tailored genome-scale model
and was validated with enzymatic assays performed at different days of the process. A total of 59 reactions were
examined from different key pathways, namely glycolysis, pentose phosphate pathway, TCA cycle, lipid meta-
bolism, and oxidative phosphorylation. The intracellular fluxes did not show a metabolic correlation between
high producers, but the degree of similitude observed between cell lines could be confirmed with additional
experimental observations. The whole analysis led to a better understanding of the metabolic requirements for all
the cell lines, allowed to the identification of metabolic bottlenecks and suggested targets for further cell line
engineering. This study is a successful application of a curated genome-scale model to multiple industrial cell
lines, which makes the metabolic model suitable for process platform.
1. Introduction

The global market for biological products is driven by increased de-
mand in research activity to develop biologics against high incidence rate
diseases such as cancers, immunological or neurological disorders. Most
of the treatments rely on protein-based therapies, which are produced
essentially in Chinese Hamster Ovary (CHO) cells, due to their suitability
for large and complex recombinant protein synthesis, and their high
productivity. Today, CHO cells are used to produce more than half of all
therapeutic proteins on the market. However, one of the challenges for
CHO cells is the poor understanding of the sources of phenotypic varia-
tions during cell culture processes, despite a long and laborious cell line
development step dedicated to the selection of the best candidate. Efforts
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importance of the cell factory, and focused on energy metabolism (Irani
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2000; Meents et al., 2002). To increase cell productivity, any of the steps
involved in the production of complex proteins such as antibodies needs
to be studied as any of them could be a bottleneck. When the mechanisms
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high-producer or not. The efficiency in recombinant protein production
indeed relies on different steps, such as efficient gene transcription,
transport of messenger RNA to the membrane of the endoplasmic retic-
ulum, protein translation and translocation, protein maturation by
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posttranslational modification, and secretion of the correctly assembled
molecule (Reinhart et al., 2014). Also, as a direct observation in indus-
trial CHO cell processes, the metabolism of the CHO cell is characterized
by high consumption rates of substrates added in medium and feed, as
well as accumulation of by-products and metabolic intermediates during
the run (Pereira et al., 2018). This observation underlines that CHO cell
metabolism could be further optimized, and that cells have the potential
to increase their performances if correct metabolic targets can be iden-
tified. Bearing in mind the expectations for a more efficient metabolism,
metabolic flux analysis has emerged as a powerful technique to provide
quantitative information on the cellular machinery at the level of flux
distribution. As such, it can be used to gain fundamental understanding
in the metabolic pathways for product formation (Ahn and Antoniewicz,
2012).

Here we present an application of a curated genome-scale model to 4
different industrial cell lines, that have been characterized as high and
low producers, in order to identify bottlenecks in a number of metabolic
pathways. We will describe the mathematical approach, discuss the
predictions and compare them to experimental observations in order to
infer information on the metabolic traits of a high-producing cell line and
identify specific metabolic targets.

2. Material and methods

2.1. Cell culture and extracellular metabolite analysis

2.1.1. Cell culture conditions
Twelve fed-batch cell culture experiments were run independently,

for which cell phenotype, variation of extracellular metabolite concen-
trations, and process parameters were monitored. 4 CHO DG44 cell lines
producing four different monoclonal antibodies (mAb1, mAb2, mAb3
and mAb4) were cultivated in 2L stirred tank glass bioreactors in tripli-
cates, controlled by supply towers (C-DCUII, Sartorius Stedim Biotech)
and monitored by a multi-fermenter control system (MFCS, Sartorius).
The cells were grown under serum free conditions in a proprietary and
chemically defined media. Precultures were cultivated in increased vol-
ume capacity of Erlenmeyer flasks (Corning Inc, Germany) on a shaking
device at 37 �C and 5% CO2 in a humid atmosphere. The starting culture
volume was identical for the different production runs and the bio-
reactors were inoculated at similar target seeding density. The cultivation
temperature was kept constant at 36.8 �C and the impeller used was a 3-
segment blade impeller. During the cultivation, the pH was fixed at 7.0,
with an allowable variation of 0.2, and controlled by gassing CO2 and a
sodium carbonate solution. Dissolved oxygen was maintained at 40% of
the saturation concentration. Continuous nutrient feeding was started 72
hours after inoculation, with predetermined rate using a proprietary,
chemically defined concentrated feed. The feed rate was adapted every
day, following a predefined feeding profile. In addition to this continuous
feed, a bolus feed addition also started 72 hours after inoculation. Sam-
ples were taken once a day, before feeding. When the glucose concen-
tration was below 5.6 g/L, a glucose solution of 500 g/L was added as a
bolus. Specific growth rate was calculated for each experimental condi-
tion as in equation (1):

μ ¼ ΔlnðVCCÞ
Δt

(1)

The exponential growth equation is described by equation (2):

ln(X)¼ ln(X0) þ μt (2)

where μ is the specific growth rate, X is the cell density at time t (i.e. cell
mass or number per unit volume of culture medium), and X0 is the initial
cell density at the onset of exponential growth. This equation was used to
determine the specific growth rate from linear regression of cell density
measurements over time.
2

2.1.2. Analytical methods
Samples from the bioreactor were taken daily for cell density and

viability analysis using the VI-CELL® XR (Beckman-Coulter, Inc., Brea,
CA), based on the trypan blue exclusion method. Samples were centri-
fuged and supernatants were analyzed to quantify concentration of
glucose, lactate, amino acid and monoclonal antibody. Glucose, lactate,
glutamate, glutamine and ammonium concentrations were determined
using a Cedex Bio HT Analyzer (Innovatis, Bielefeld, Germany) or a
NOVA 400 BioProfile automated analyzer (Nova Biomedical, Waltham,
MA). Cell culture supernatant samples were stored at �80 �C or directly
analyzed for product titer with a ForteBio Octet model analyzer (For-
teBio, Inc., Menlo Park, CA) or protein A high performance liquid chro-
matography (HPLC). Amino acids were analyzed by reversed-phase UPLC
(Waters AccQ ⋅ Tagultra method) after ultra-filtration using Amicon
Ultra-0.5mL centrifugal filters (Merck Millipore, Billerica, MA). pH and
DO were measured on-line and the measurement accuracy was verified
through offline analysis of pH and partial pressure of CO2 (pCO2) using a
BioProfile pHOx® blood gas analyzer (Nova Biomedical Corporation,
Waltham, MA).

2.2. Modeling procedure

2.2.1. Genome-scale model
The genome-scale model used was tailored to high-yielding cell lines

(Calmels et al., 2018; under review with Metabolic Engineering). For
each cell line modeled, the reaction responsible for antibody production
in the model was tailored to the antibody produced by the cell line
chosen. The stoichiometric coefficients of the amino acids required to
produce the IgG were changed to the one corresponding to the specific
amino acid sequence of the antibody produced, thus generating 4
genome-scale models for the cell lines producing mAb1, mAb2, mAb3
and mAb4. For each cell line, three biological replicates were modeled
independently. The model-predicted fluxes are shown with error bars
which represent experimental uncertainty quantified from multiple
replicate experiments.

As multiple predicted solutions are possible due to typical under-
determination of flux-balance-based models, the following consider-
ations were addressed and are more detailed in the next sections: (1)
additional constraints were introduced at each day of the culture, (2) a
robust optimization method was employed, and (3) a set of predicted
fluxes was compared to experimental values assessed with enzymatic
assays.

2.2.2. Theoretical approach for modeling
The modeling framework can be represented by a stoichiometric

matrix (S) and a vector of reaction fluxes (v) indicating the reaction rates.
The basic steady-state mass balance constraint can be enforced by the
linear equation (5). Additional constraints can be introduced by
restricting fluxes with upper or lower bounds through inequality 6. To
find the flux distribution, parsimonious enzyme usage Flux Balance
Analysis (pFBA) (Lewis et al., 2010) was employed. This optimization
method is based on the assumption that the cell is using a minimum
amount of enzymes to reach a maximized objective, under the hypothesis
of steady-state. The mathematical formulation of the objective function is
given by equation (3), and the requirement for the minimum absolute
values among all the alternatives optima is described by equation (4). To
find the flux distributions, the network is constrained by imposing lower
and upper bounds for each flux, and by assuming a steady-state condi-
tion, which leads to the following optimization problem:

maxcv (3)

min
X���v

��� (4)

s:t: Sv ¼ 0 (5)
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and,

vmin � v � vmax (6)

Where cv corresponds to the objective function and c is a vector of
weights, indicating how much each reaction contributes to the objective
function.

Linear programming was performed using Gurobi Optimizer (Gurobi
Optimization Inc., Houston TX) in Python 2.7.12 (Python Software
Foundation, Delaware, United States).

2.2.3. Data processing and transforming primary data into flux constraints
Substrate concentrations at each day of the cell culture were trans-

formed into rates in mmol of product per gDW of cells per hour. The
modeling time frame chosen was between day 2 and day 7 of cell culture,
which corresponds to the exponential growth phase where the pseudo-
steady-state is assumed. All the input flux rate values were calculated
using an average dry cell weight of CHO cells as 330 pg/cell, as derived as
an average of published values (Bonarius et al., 1996; Vriezen, 1998; Xie
and Wang, 1994; Zupke and Stephanopoulos, 1995). Daily experimental
uptake or production rates of 24 metabolites in medium were calculated
from experimental measurements, as followed:

rA;i ¼ QA; iþ1; BF � QA;i; AF
VCCiþ VCCiþ1

2

Where rA,i indicates the rate of metabolite A at day i, and i¼ [0, 14]; Q
A,iþ1,BF is the measured quantity of metabolite A at day iþ1 before
feeding; Q A,i,AF is the theoretical quantity of metabolite A at day i after
feeding; and VCC is the cell number. Q A,i,AF is the sum of Q A,iþ1,BF and
the theoretical quantity of metabolite A added after feeding (Qth),
calculated with the concentration of metabolite A in the feed and the
volume of feed added:

QA;i;AF ¼ QA;i;BF þ Qth

The calculated rates were post-processed with a smoother function in
order to reduce experimental noise and normalized with one value cor-
responding to a specific growth rate of the mAb 1 producing cell line. The
experimental variation can be explained by several factors, including the
sensibility and technical variability of the analytical quantification
method, but also the degree of biological reproducibility inter-process.

Experimental production and consumption rates calculated were
smoothed using a kernel smoother statistical function, in order to avoid
irregular data points and noisy observations obtained from experimental
results (Hastie et al., 2009). The Kernel smoother method was applied on
calculated experimental flux rates with the support of SAS software JMP
11 ©.

The calculated and smoothed experimental values were then used to
set the upper or lower limit of the consumption or production rate of the
metabolites measured daily in the extracellular environment. Exceptions
were made for ammonium, alanine, and lactate which were set to be
equal to the experimental value in order to constrain the model with the
metabolic switch between consumption and production.

The final set of constrained metabolite exchanges comprised the up-
take and secretion of 24 metabolites. The limitations for uptake and
production rates were set for each day of the time frame chosen for
modeling the cell culture process. The objective function chosen was
maximization of growth. Estimation of metabolic fluxes was performed
using CobraPy (Ebrahim et al., 2013).

2.2.4. Pathway analysis
Metabolic fluxes predicted in selected pathways in the genome-scale

model were analyzed. The pathways chosen were: glycolysis (glucose
uptake rate, hexokinase, Glucose-6-phosphate isomerase, Phosphofruc-
tokinase, Triose phosphate isomerase, Glyceraldehyde-3-phosphate de-
hydrogenase, Enolase, Pyruvate kinase), pentose phosphate pathway
3

(Glucose-6-phosphate dehydrogenase, Ribulose-5-phosphate-3-
epimerase, Transketolase 1 and Transketolase 2), tricarboxylic acid
cycle (Citrate synthase, Aconitate hydratase, Isocitrate dehydrogenase, 2-
oxoglutarate dehydrogenase, Succinyl-CoA synthetase, Succinate-CoA
ligase, Fumarase, Malate dehydrogenase, Malic enzyme, Pyruvate de-
hydrogenase, and Glutamate dehydrogenase), lipid (Acetyl-CoA carbox-
ylase, Palmitoyl-CoA synthesis, Phosphatidylinositol synthase,
Cardiolipin synthase, Diacylglycerol phosphate kinase, Glycogen syn-
thase, Glycerol-3-phosphate acyltransferase, Lipase, Phosphatidylgly-
cerol phosphate phosphatase, Phosphatidylserine decarboxylase, Sterol
O-acyltransferase, and Glycerol-3-phosphate dehydrogenase). To com-
plete the predictions, the analysis was read in conjunction with experi-
mental metabolite exchanges (consumption rate of the 20 amino acids
and secretion rate of lactate and ammonia), as well as specific growth
rate and specific antibody productivity. A total of 59 reaction rates were
collected for each individual replicate of the 4 cell lines at day 2–7.
2.3. Statistical analysis

In order to quantify comparisons between predicted and experimental
enzymatic activities, a multiple linear regression (MLR) method was
used.

As enzymatic activities and flux predictions were not expressed in the
same units, each individual cell culture replicate (for both experimental
and predicted) were normalized with the highest value inside the dataset.
Thus, the statistic test was based on data ranging from 0 to 1.

The statistical analyses were performed using SAS software JMP 8.0
©. The null hypothesis corresponded to the absence of significant dif-
ferences between observations. This hypothesis was tested in the multi-
ple regression model. The parameters tested were the time (days), the
dataset type (experimental or predicted datasets) and cell clone (HP1 or
HP2) with linear, quadratic and interactions effects (level 2) in order to
assess statistical difference of datasets over cell culture time. If this test
proved significant (p-value <0.05), the null hypothesis was rejected.
2.4. Enzymatic activities

2.4.1. Sample preparation
For each kit, the required amount of cells was collected depending on

the test and according to the manufacturer protocol. Cells were imme-
diately incubated in cold methanol (5 min, �20 �C), which decreases the
temperature of the sample down to 4 �C in less than a minute, in order to
stop enzymatic reactions while avoiding liquid freezing. Samples were
then washed twice, by two centrifugation steps at 3 �C for 8min, at
1400 rpm and resuspension in cold PBS. Cell pellets were put in dry ice
for 5min and stored at �80 �C until needed. Samples were thawed and
pellets were resuspended with cold corresponding assay buffer. Cells
were lysed by sonication with 3 cycles of 30s pulse, 5s interval, on ice
(Branson Sonifier 250). Cells were centrifuged (10min, 10 000 g, 3 �C)
and supernatant were transferred to new tubes to be used immediately
for enzyme quantification.

2.4.2. ELISA assay kits

2.4.2.1. Activities of mitochondrial ETC complexes I, II, and V. Respiratory
complex activity was determined using the Complex I enzyme activity
microplate assay kit (Abcam, ab109721), the Complex II enzyme activity
microplate assay kit (Abcam, ab109908) and the Complex V enzyme
activity microplate assay kit (Abcam, ab109714). All assays were per-
formed following the manufacturer’s instructions.

For complex I, 60 μg proteins were added to the pre-coated wells. In
this assay, complex I activity is measured by the oxidation of NADH to
NADþ and the simultaneous reduction of a provided dye, which leads to
increased absorbance measured at 450 nm (Thermo Scientific Multiskan
Go) every 30s for 30min.
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60 μg proteins were added to the pre-coated wells with capture
antibody for complex II. In this assay, the production of ubiquinol by
complex II protein is related to the reduction of the 2,6-diclorophenolin-
dophenol (blue) to DCPIPH2 (colorless), and the decreasing absorbance
is measured at 600 nm every 20s for 60min.

Complex V or ATP synthase is immunocaptured within the wells of
the microplate, which has a monoclonal antibody pre-bound to the wells.
50 μg proteins from the samples were used for this assay. In this assay, the
conversion of ATP to ADP is coupled to the oxidation of NADH to NADþ,
which is monitored as a decrease in absorbance at 340 nm every minute
for 120min.

2.4.2.2. Activity of citrate synthase. Citrate synthase was quantified with
enzymatic assay kit (Abcam, ab119692). Cell pellets were solubilized by
adding extraction buffer to the samples, and 125 μg proteins were used
for this assay. The activity of citrate synthase was determined in an
immunocapture based manner by recording the color development of 5-
thio-2-nitrobenzoic acid at 412 nm every 30 s for 30min.

2.4.2.3. Activity of pyruvate dehydrogenase. PDH activity in samples was
quantified using a microplate assay kit (Abcam, ab109902). Cell pellets
were solubilized by addition of detergent, and 400 μg of total proteins
were added to anti-PDH antibody–coated wells of a microplate. PDH
activity was then determined spectrophotometrically by monitoring
every 20 s for 15 min the reduction of NAD þ to NADH, coupled to the
reduction of a reporter dye at absorbance 450 nm.

2.4.2.4. Activity of malate dehydrogenase. Malate Dehydrogenase 2 ac-
tivity assay (Abcam, ab119693) was used to determine mitochondrial
malate dehydrogenase activity. Cells were lysed in extraction buffer, and
150 μg of proteins were added to the antibody capture plates. Buffer
containing a reagent dye was added and the increased absorbance at
450 nm was recorded every 30 s for 30min.

2.4.2.5. Colorimetric assay kits. Glyceraldehyde 3 Phosphate Dehydro-
genase activity was assessed by assay kit (Abcam, ab204732), as well as
glucose 6 phosphate dehydrogenase (Abcam, ab102529), isocitrate de-
hydrogenase (Abcam, ab102528), and glutamate dehydrogenase
(Abcam, ab102527).

2.4.2.6. Total protein quantification. Total proteins were quantified with
the RC DC™ protein assay manufactured by Bio-Rad. This colorimetric
assay is based on a modification of the Lowry protocol (Lowry et al.,
1951), and can determine protein concentration in the presence of both
reducing agents and detergents. Fatty acid free bovine serum albumin
was used as a standard.
Fig. 1. Phenotype of 4 industrial cell lines cultivated in 2L stainless steel bioreactor
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3. Results

3.1. Unwanted phenotypic heterogeneity observed for industrial cell lines in
upstream process development

Fig. 1 is showing the growth rate and Qp phenotypes of 4 different
industrial production cell lines under pharmaceutical development, sta-
bly transfected with a vector-expressing recombinant protein, all derived
from the DG44 lineage and cultivated under the same conditions.

In the same growing conditions, cells exhibit different phenotypic
features. All the cell lines, which produce a different therapeutic anti-
body, display a comparable growth rate but a significantly different
antibody production rates (Qp). On day 7, the specific productivity of HPs
is twice larger than LP1 and four times larger than LP2. We have cate-
gorized 2 cell lines as high producers (HP) and 2 as low producers (LP),
given the evolution of the specific productivity over cell culture time. The
first HP has a significantly higher Qp from day 2–7 which is at least twice
as large as the other cell lines, and the second HP has a later increase of
titer, starting from day 5 to exceed the average Qp of LPs. Despite a
comparable cell growth, specific production rates of recombinant pro-
teins for the 2 LPs remain on average around half of the HPs value.

This unwanted phenotypic heterogeneity is usually tackled by in-
dustrial CHO production platforms with media and process optimization.
In this study, the metabolic status of these cells was evaluated at different
days of the process, in order to identify specific metabolic traits for HP
and potential bottlenecks that prevent a higher recombinant protein
production.
3.2. Modeling performances of the industrial cell lines

A curated genome-scale model specific to CHO DG44 cell lines was
used to predict intracellular metabolic flux distributions of the 4 cell
lines. For each cell lines, all the biological replicates were modeled
independently, for each day between 2 and 7. The model was semi-
constrained with exometabolomics data, which means that the experi-
mental consumption rates of amino acid and other metabolites were used
to set the theoretical maximal bounds in the model. The IgG production
rate was set strictly equal to the experimental observation. The predicted
nutrient consumption rates and by-product production rates were then
compared to the experimental setting, as a way to calibrate the model
and to validate that the predictions correspond to the environmental
conditions were the cells evolved.

As the objective function to maximize was the growth rate, in the
defined modeling conditions the predicted growth rate was compared to
the experimental specific cell growth. Suppl. Fig. 1 shows the correlation
coefficient of all the independent bioreactor run, which is on average
s in a fed-batch process. HP1 (n¼ 3), HP2 (n¼ 3), LP1 (n¼ 3), and LP2 (n¼ 3).
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above 0.7 for all the cell lines. This apparent elevated correlation with in
vivo observations promotes the use of the model to further analyze
intracellular fluxes and to compare them for HP and LP cell lines.

We have decided to focus the next part of the study on comparing
trends of intracellular predicted fluxes with experimental fluxes, for the
two high producers, in order to validate the predictions of the model. To
find the best straightforward approach for assessment of experimental
fluxes, we have to consider flux definition. Flux rates predicted by the
model are defined as the turnover enzymatic rate of molecules through a
metabolic pathway, and the level of regulation is function of 3 factors,
namely (i) the activity level of the enzyme catalyzing the reaction, (ii) the
properties and affinities of the enzyme, and (iii) the concentrations of the
reactants and products (Nielsen, 2003). Thus, we have decided to mea-
sure enzymatic activities of cell lines HP1 and HP2 in order to compare in
silico flux rates to in vivo activities. In order to account for difference in
cell growth, all the enzymatic activities measured were normalized ac-
cording to the total amount of protein synthesized in cells.
3.3. Enzymatic activities comparable with predicted fluxes highlight
specific metabolic traits for each HPs

The objectives of the following experiments were both to compare
predicted fluxes to in vivo activities, and to compare the metabolism of
cell lines HP1 and HP2 that have an elevated antibody productivity.

3.3.1. Experimental approach for model validation
Regarding the modeling approach, for the different cell lines intra-

cellular metabolic fluxes were quantified based on the predictions from
the tailored genome-scale model (details in section 2.2.4.). One genome-
scale model was generated for each cell line with their specific antibody
composition. They were individually constrained with experimental
exometabolomics data sets, in triplicate for each cell line.

Regarding the experimental approach, the two HPs cell lines were
cultivated under the same conditions as the one applied to generate the
dataset included in the model, in order to be able to compare enzymatic
activities to the predicted fluxes obtained from data collected from pre-
vious experiments. Sampling for enzyme quantification was performed
on day 3, 6 and 9 for enzymatic activity measurements (Fig. 2).

For cell line HP1 and HP2, cell growth obtained in the more recent
experiment was comparable to historical data. Enzymatic results for HP1
on day 9 have to be analyzed with more caution as the average viable cell
count is 35% lower than historical data. Except from this time point,
observations made for all days for HP1 and HP2 regarding the performed
enzymatic study can be extrapolated to the control conditions.
5

3.3.2. Enzymatic activity in electron transport chain confirms predictive
trends and shows similar activities for both high producers

As electron transport chain catalyzes the phosphorylation of ADP to
ATP by exploiting the transmembrane proton motive force, this is one of
the most important cellular process that ensures cell survival and pro-
liferation. The activity of protein complexes involved in oxidative
phosphorylation was measured, for complexes I, II and V.

Our results show no visual difference in the activity of ATP synthase
between the experimental and predicted values for HPs. The activity is on
average higher for HP1 at the beginning of the process (Fig. 3), which is
observed in the predicted flux rates at day 4.

However, the activities of complex I and complex II are very com-
parable and relatively constant during the process. According to the
enzymatic activities, HP1 seems to have on average a more efficient
metabolism at the beginning of the process, when HP2 seems to be at the
highest energetical level at day 6. For complex II the trends are compa-
rable between experimental and predicted values.

We can also note that experimental activity of ATP synthase is on
average slightly higher than complex I and complex II, which is the case
as well for predicted fluxes. However, predictions describe a lower ac-
tivity in complex II compared to complex I, which is not confirmed
experimentally.

3.3.3. Examination of pyruvate fluxes indicate a more active glycolysis for
HP2 in the early days when HP1 seems to be transitioning earlier to efficient
energy metabolism

Pyruvate obtained from glycolysis can be metabolized in several key
metabolic pathways. Pyruvate can be reduced by lactate dehydrogenase
leading to production of extracellular lactate, it can be converted into
fatty acids, or to energy by pyruvate dehydrogenase (PDH). Indeed, when
processed towards the TCA cycle, pyruvate decarboxylation produces
Acetyl-CoA which is converted to Citrate, a tricarboxylic acid cycle in-
termediate (Fig. 4). Additionally, pyruvate can be converted to alanine
and produced from cysteine.

PDH activity is very comparable with in silico predictions. A higher
activity is observed on day 3 for HP1 (Fig. 3), which confirms the trend
predicted by the model. The activity decreases from day 3–6 for HP1, and
increases on the day 6 for HP2 followed by a significant decrease on day
9.

Extracellular pyruvate available in the medium and feed starts to be
consumed for HP1 by day 3 (Suppl. Fig. 2), which can explain the higher
PDH activity for this cell line, whereas for HP2 pyruvate is secreted in the
medium. On day 3, both cell lines have a similar glucose consumption
rate and lactate is efflux is negligible. As a general observation, from day
0–3 HP1 has a lower glucose consumption, a lower lactate production
Fig. 2. Normalized viable cell count of the
control 2L cell culture processes that were
performed to collect samples for enzymatic
activity measurements. Red dots: 2L control
bioreactor runs (n¼ 2) repeated for collect-
ing cell pellets; Black squares: 2L control
bioreactor runs (n¼ 3) data that was used to
model the cell lines; Red arrows: time points
for performing enzymatic assays. Normali-
zation according to maximum viable cell
count reached. (For interpretation of the
references to color in this figure legend, the
reader is referred to the Web version of this
article.)



Fig. 3. Normalized experimental and predicted enzymatic activity. The detec-
tion was based on ELISA assay and the activity was measured in mOD/min/mg
of proteins. The data are normalized to the highest activity measured for these
tests. Error bars of predicted fluxes are standard deviation of predicted values
for each replicate. Dashed lines highlight the potential higher error rate for HP1
at day 9, as average viable cell density was lower than expected. CS, Citrate
synthase; MDH, Malate dehydrogenase; PDH, Pyruvate dehydrogenase.
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rate and consumes pyruvate at a higher rate than HP2. Coupled with PDH
activity on day 3, for HP1 these results highlight an earlier transition of
fluxes from glycolysis to tricarboxylic acid cycle for ATP production.

As HP2 has a lower specific productivity than HP1 until day 5 of the
process (Fig. 1), we could hypothesize that cells that are able to funnel
pyruvate fluxes early in the process towards TCA cycle will obtain a
higher specific productivity. PDH activity in the beginning of the process
could be a marker to isolate high producers.

3.3.4. Bottlenecks identified in TCA cycle for both HPs
Malate dehydrogenase (MDH) catalyzes the oxidation of malate to

oxaloacetate using the reduction of NAD þ to NADH. The product of this
reaction is then used as a substrate by citrate synthase (CS) to form cit-
rate, which constitutes the first step of the TCA cycle (Fig. 4).

Quantifications of MDH and CS show a constant elevated activity
during the run for both cell lines (Fig. 3). The trends are comparable with
predictions, characterized by a slightly higher activity for HP1 in the first
days. However, what was not predicted is that among all the enzymatic
activities measured in the same units, these two enzymes show the
highest activity. Moreover, constant and elevated experimental CS ac-
tivity during the run is observed for the two cell lines. As in TCA cycle
MDH reaction is preceding CS, these results give a new hint that malate
dehydrogenase can be a bottleneck. Indeed, if MDH is a bottleneck, a
constant amount of oxaloacetate is produced in the mitochondria, which
limits CS activity. In another study (Chong et al., 2010), conducted
exometabolomics analysis during a CHO cell fed-batch run, and revealed
that extracellular malate accumulation was the most significant among
all the metabolites they identified. MDH was identified as a bottleneck of
6

TCA cycle, and its overexpression led to an increased cell growth. This
could be applied to the cell lines used in the industrial production process
to further improve their performances.

3.3.5. Higher PPP activity potentially linked to a better Qp
Cancer cells perform aerobic glycolysis at high rates and display high

levels of glucose uptake and lactate production, as it has been observed
by Otto Warburg more than 80 years ago (Kim and Dang, 2006). One
enzyme in the glycolytic pathway has been quantified as a marker of
glycolysis rate, the glyceraldehyde 3 phosphate dehydrogenase
(GAPDH). This enzyme is the most concentrated among all the enzymes
tested, both for the experimental and predicted activities (Fig. 5). The
predicted trend for HP1 is similar to the experimental one, with an ac-
tivity that is divided by 2 between day 3 and 6. The activity is correlated
to the glucose uptake rate, HP1 has a lower glycolytic rate on day 6
whereas glucose uptake rate and thus GAPDH activity is similar on day 3
and 6 for HP2.

Glucose-6-phosphate dehydrogenase (G6PD) is the first step of the
pentose phosphate pathway (PPP), generating reducing energy from the
first glycolytic intermediate D-glucose 6-phosphate. Activity assay shows
a negligible G6PD activity for HPs at the beginning of the process on day
3 (Fig. 5). For HP1, on day 6 the activity is seven times higher than on the
day 3, whereas HP2 shows an activity as low as on day 3.

This observation can also be linked with GAPDH activity, as on day 6
a lower ratio of glucose 6 phosphate is addressed in glycolysis for HP1. In
HP1, glucose 6 phosphate is funneled to PPP on day 6, which makes it
less available for glycolysis and leads to a decrease of GAPDH
concentration.

Given that HP1 is transitioning faster than HP2 towards a highQp, the
ability to overexpress G6PD at the middle of the exponential phase might
be a marker for identification of HPs. The results suggest that recombi-
nant protein production could be the cause or the consequence of an
increased activity in pentose phosphate pathway. Overexpression of
G6PD has often been used to improve protein production in many hosts
(Davy et al., 2017).

The primary results of PPP are the generation of NADPH, which is
used to prevent oxidative stress and also in fatty acid synthesis, and the
production of precursors used in the synthesis of nucleotides and amino
acids. Based on the NADPH outcome, two hypotheses could explain the
difference of level of G6PD expression on day 6. Either HP1 has to cope
with more oxidative stress than HP2, and then needs a higher amount of
NAPDH on day 6, either HP1 is more efficient to orientate glucose 6
phosphate to PPP when oxidative stress increases in cells.

3.3.6. Isocitrate dehydrogenase requires more experimental data to interpret
difference in early days

Isocitrate dehydrogenase (IDH) is an enzyme involved in the TCA
cycle (Fig. 4). Three isoforms are present in CHO cells and have been
quantified (Fig. 5). The IDH3 isoform catalyzes the oxidative decarbox-
ylation of isocitrate, producing oxoglutarate, carbon dioxide and NADH.
The isoforms 1 and 2 are NADP-dependent; IDH1 is located in the cytosol
and peroxisome, and IDH2 in the mitochondrion.

A fair prediction of IDH fluxes can be confirmed with the enzymatic
assay, as the only difference is noticed for the activity of HP2 on day 3,
which is more elevated than HP1. On days 6 and 9, experimental IDH
activity is similar for both cell lines, whereas on day 3 HP2 shows a
higher activity. As citrate synthase is at constant high rate for both cell
lines, this difference could be explained by a higher activity of the re-
action upwards or downwards IDH for HP2 on day 3. Either aconitase
activity concentration is higher, then producing higher amounts of IDH
substrate, or oxoglutarate dehydrogenase is more concentrated and thus
IDH’s product -oxoglutarate- turnover is higher than in HP1.

3.3.7. Glutamate dehydrogenase highlights a significant difference between
HP1 and HP2 in terms of glutamate processing

Glutamate dehydrogenase (GLUD) is an enzyme that reversibly



Fig. 4. Normalized experimental enzymatic activities and net influx and efflux measured during the process.
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converts glutamate to α-ketoglutarate (Fig. 4). Experimental results show
that the enzyme is not initially detected in HP1, and its concentration
increases until day 9, while GLUD shows a constant elevated activity for
HP2 (Fig. 5). This result is surprising because glutamine consumption
rate is similar for both cell lines, and according to the high release of
ammonium from day 0 to day 3 glutamine seems indeed to be converted
to glutamate (Suppl. Fig. 3). The data suggest that for HP2 all glutamate
is converted by GLUD and injected into TCA cycle, while for HP1
glutamate is addressed into another pathway.

3.3.8. Statistical summary
As seen in Table 1, statistically significant differences between

experimental and predicted enzymatic activities over timewere found for
the following reactions: Complex II, CS, MDH, GAPD, GLUDH and G6PD.
When combining data from both cell lines, 40% of the enzymatic re-
actions are statistically similar between predicted and experimental
values. This result can be explained by the poor match between predicted
7

and experimental obtained for HP1 (20% similitude), whereas 60% of the
data are statistically similar for HP2.

The poor comparability obtained for HP1 can be explained by the
uncertainty of the experimental measurements performed on day 9, as
cell growth was lower than historical data which were used to predict
enzymatic fluxes. However, as the enzymatic rates were normalized by
the total protein quantity, it was assumed that the experimental quanti-
fication on day 9 could be taken into consideration.

As 60% of the experimental and predicted activities are proven sta-
tistically comparable for HP2, model’s predictions were considered as
reliable.

3.4. Assessment of cell metabolism during exponential phase based on
modeling predictions

The previous section has shown that modeled pathways are verified
with enzymatic activities for 2 HPs. The predictions were assessed as



Table 1
Results from MLR statistical test.

Fluxes p-value

Cell line HP1 and HP2 HP1 HP2

ATP Synthase 0.0502 0.0311 0.1534
Complex I 0.08 0.211 0.0411
Complex II 0.0032 0.008 0.1157
PDH 0.5713 0.261 0.0485
CS 0.0137 0.0005 0.6287
MDH 0.0136 0.0005 0.6311
GAPD 0.0242 0.0527 0.1094
GLUDH 0.0001 0.0004 0.0022
IDC 0.4679 0.0051 0.1081
G6PD 0.0001 0.0001 0.0001
% of reactions statistically similar 40 20 60

Fig. 5. Normalized experimental and predicted enzymatic activity. The detec-
tion was based on indirect detection of NADH and the activity was measured in
nmol/min/mg of proteins. The data are normalized to the highest activity
measured for these tests. Dashed lines highlight the potential higher error rate
for HP1 at day 9, as average viable cell density was lower than expected.
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reliable and were analyzed to highlight metabolic differences.

3.4.1. Predicted intracellular fluxes show comparable metabolic activities
First, a sensitivity analysis was performed on the predicted fluxes.

Within one cell line, at each day of the culture the level of dispersion of
the three predicted metabolic rates – that were independently computed
from three biological replicates - was calculated in the form of a coeffi-
cient of variation. The CVs calculated for each day were then average
between day 2 and 7, in order to obtain one single CV per metabolic rate
and cell line. Suppl. Fig. 4 displays the average CV from day 2–7 for each
reaction. Around 90% of the CVs are below 30% for each cell lines (89,
87, 92 and 92% of the reactions respectively for HP1, HP2, LP1 and LP2),
which indicates a very low level of dispersion around the mean and a
reproducible prediction (Reed et al., 2002). The average values of each
8

predicted flux, calculated for each cell line, were then analyzed with a
hierarchical clustering. Fig. 6 shows the average predicted value over the
six chosen days. According to the model, the central metabolism of HP1
and LP2 is the most comparable, particularly due to higher glycolysis
activity which can be explained by a high experimental glucose uptake
rate on the first days.

As pyruvate is synthesized at a higher rate, pyruvate dehydrogenase is
overall more active and the TCA cycle activity is also higher for those cell
lines. LP2 shows a TCA cycle which seems to be more active than in the
other cultures, predicted to be more intense on the upper part on average
(malate dehydrogenase, citrate synthase, aconitate hydratase, isocitrate
dehydrogenase). Predicted lipid metabolism is less intense for cell line
HP2 than the other on average. The rate of synthesis of palmitoyl, which
leads to sphingolipid synthesis, a major constituent of cell membranes, is
the lowest for HP2 and LP1. Biosynthesis rate of some lipids is reduced
for HP2, such as phosphatidic acid (Diacylglycerol kinase), tri-
acylglycerol (Glycerol-3-phosphate acyltransferase) and glycerol 3-phos-
phate mainly synthesized through glycolysis.

The activity of the electron transport chain is displayed on Fig. 6. B.
Apart from LP2, which displays a slightly higher uptake rate of oxygen
and activity of complex I and II, the four cell lines are predicted to have a
very comparable activity on average from day 2–7. These predictions do
not allow to infer a significant difference between high and low pro-
ducers at the level of energy metabolism. This could mean that the low
producers are either wasting energy, or a consequent part of this energy
is used in a process that is not considered in the model, or cells are not
producing as much ATP as predicted because of a bottleneck that is not
considered in the model. The bottlenecks that are not included in this
mathematical way of modeling cell metabolism could be at the level of
transcription and translation regulation (Davy et al., 2017), protein
processing (Reinhart et al., 2014), feedback regulation of enzymatic re-
actions, or missing constraints for the availability of other nutrients.

3.4.2. Predicted activity in lipid metabolism confirmed with difficulties
encountered during harvest

In order to explain the predicted results obtained for lipid meta-
bolism, we compared the different approaches employed for the harvest
step of the industrial processes. Harvest can differ significantly from a cell
line to another, depending on the physical properties of the cell culture
fluid at the end of the process, and the techniques applied for enhancing
clarification performances are diverse. Some additional pre-treatments
are often required prior to the traditional continuous centrifugation,
depth filtration and sterile filtration steps that are performed in the end of
the culture. These additional treatments can facilitate separation of cells
and cell debris and are often the only strategy for industrial companies to
avoid early filter fouling. Among the techniques used, we can cite the
addition of flocculants (Han et al., 2003; Kang et al., 2013; Roush and Lu,
2008) such as polyamines (Peram et al., 2010), chitosan (Riske et al.,
2007), and polydiallyldimethylammonium chloride (McNerney et al.,
2015) that bind to negatively charged surfaces of cell debris. Acid pre-
cipitation is also another improved method for clarifying a cell culture
(Lydersen et al., 1994), which involves addition of concentrated phos-
phoric acid in order to decrease pH and thus solubility, leading to pre-
cipitation of cell debris but not the antibody.

During the harvest step of the process, the experimental difficulties
observed for these cell lines can be interpreted with the predicted fluxes.
HP2 is the only cell line that does not need any pre-treatment before
harvest step at the end of the cell culture process. The other cell lines
have shown early filter fouling due to increased amount of solids content,
that are highly suspected to be lipids. In-house experiments have shown
that after each pre-treatment, a significant reduction of total lipid
quantification is observed (data not shown). The fact that HP2 does not
require any pre-treatment may indicate that the cells total lipid content is
less important than the other cell lines which is in agreement with the
model’s predictions in terms of activity in lipid pathway.



Fig. 6. A. Visualization of the metabolic rates for
each cell lines (n¼ 3), clustered according to the
similarity between the average predicted value from
day 2 to day 7 of the 35 selected reactions; B. Cell line
clustering according to the average value from day 2
to day 7 of the predicted reactions rates (n¼ 3) in
electron transport chain. All the predicted flux rates
are normalized. Hierarchical clustering follows the
agglomerative strategy (Murtagh, 1983), where each
observation starts in its own cluster, and at each step
the Euclidian distance between each cluster is calcu-
lated to only merge the two clusters that are the
closest together.
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3.4.3. Predicted clustering of cell lines was confirmed with analysis of amino
acid consumption rate and antibody protein sequence

In order to investigate why the cell lines are clustered together, an
analysis was performed on the input data of the model, namely the
experimental flux rates that were used to constrain the model. The
experimental amino acid consumption rates (Suppl. Fig. 5) reflect clus-
tering results based on predicted fluxes (Fig. 6). On day 2, 4 and 5, HP1
and LP2 are clustered together, which shows an overall similarity in
amino acid requirements, and justify a high degree of comparability of
predicted reaction rates in different metabolic pathways.

To fully understand the clustering of the cell lines based on the pre-
dicted rates, the antibody amino acid sequence was analyzed for each cell
line (Suppl. Fig. 6). It becomes apparent that HP1 and LP2 have the most
similar amino acid composition of their antibody, and that HP2 is most
comparable to LP1. This result is consistent with the clustering obtained
for the predicted fluxes and the amino acid consumption for each cell line
(Fig. 6). This whole analysis reveals that the cell lines can be divided into
two groups based on their metabolism driven by a similar amino acid
requirement.

As the intracellular predicted fluxes could not differentiate between
high and low producers, a more detailed examination of the experimental
amino acid uptake rates was performed to reveal any general feature of
high or low producers. We observe that HP1 has a different behavior for
aspartate and glutamate (Suppl. Fig. 7), which are produced until day 2
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and a switch occurs at day 3 where HP1 starts to consume these amino
acids. We could hypothesize that HPs have an overproduction of oxalo-
acetate and α-ketoglutarate in the first days in the TCA cycle, resulting in
a net aspartate and glutamate secretion. As day 3 corresponds to gluta-
mine depletion, the switch between production to secretion can be the
time point where glutamine can no longer provide its anaplerotic role.
For the other cell lines, their metabolism does not seem as efficient as
HP1 when considering secretion of TCA cycle intermediates. According
to the predicted fluxes, HP1 and LP2 have the highest activity in TCA
cycle, however for LP2 on average none of these intermediates are
secreted, thus the feed regime and composition are probably not over-
estimated in terms of nutrient concentration and rate of addition.

4. Discussion

For predicted ATP synthase activity, we evaluated the proportion of
ATP that could potentially be involved in amino acid transporters, as 537
amino acid transporters were deleted to simplify the model. We consid-
ered if this action could have a significant impact on predicted ATP
turnover. Actually, although cell lines do not probably express the same
set of amino acid transporters to support their growth (Hyde et al., 2003),
human cancer cells have been shown to express 4 amino acid transporters
in high levels (Bhutia et al., 2015). None of these transporters are active
transporters, they are either symporters or exchangers coupled with
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amino acid or sodium substrate. Thus, the ATP consumption linked to
amino acid influx could be negligible. Consequently, we can assume that
the simplification in the model regarding the amino acid transportation
system, with the removal of active ATP-dependent transporters, does not
lead to a significative underestimation of the ATP consumption.

Regarding PDH activity, we found it interesting to note that it is
higher for HP1 than for HP2 on day 3, whereas the same day the activity
of citrate synthase is similar for both cell lines. As PDH produces acetyl-
CoA that is the substrate of citrate synthase, we would have expected a
higher citrate synthase activity in HP1. Some hypotheses could explain
this result. One hypothesis is connected to the fate of amino acids linked
to pyruvate and acetyl-CoA metabolism, and Suppl. Fig. 2 shows the
experimental variation of their fluxes during the process. The amino acid
precursors of pyruvate production in CHO cells are cysteine (Hecklau
et al., 2016), alanine which can be converted in a reversible reaction to
pyruvate by alanine transaminase (Duarte et al., 2014; Li et al., 2012),
and serine (Vacanti et al., 2014). As such, glycine and threonine can be
also used for pyruvate production as threonine can be catalyzed into
glycine by threonine aldolase, and glycine to serine by glycine hydrox-
ymethyltransferase. On day 3, HP1 consumes more cysteine and serine
than HP2, but HP1 releases more glycine and does not consume alanine
on the opposite of HP2. Amino acid consumption and production rates
that could explain fluctuations in pyruvate availability are balanced, and
thus are not sufficient to explain the difference observed with PDH ac-
tivity on day 3.

Another hypothesis formulated here is that a significant part of acetyl-
CoA produced by PDH for HP1 can be converted to Malonyl-CoA and
then redirected to fatty acid and steroid synthesis. This assumption is
enforced with the experimental isoleucine uptake rate, that can be
degraded to acetyl-CoA, which is similar for both cell line on day 3
(Suppl. Fig. 2). Either HP1 increases an internal lipid pool by deriving
fluxes towards malonyl CoA production, or HP2 catabolizes lipids from
an intracellular pool to fuel its TCA cycle. Assuming that an increased
intracellular lipid pool would lead to a higher cell volume and thus a
higher cell diameter (Pan et al., 2017), HP2 accumulates more fatty acids
than HP1 from day 6–9, but seems to consumes this lipid pool from day
10 until the end of the process as the final diameter is on average smaller
than HP1 on day 14 (Suppl. Fig. 8). As HP2 activates glycolytic pathway
at high rate around day 6 of the process, the more likely hypothesis
would be that glucose is converted to build up a fatty acid storage, which
is catabolized later on to fuel TCA cycle with pyruvate. Based on the fact
that CS is a bottleneck, this cell line defines a metabolic strategy with
accumulation of energy in the form of lipid droplets while the substrates
are available in high quantities, because anyway pyruvate cannot be
processed more efficiently in the TCA cycle.

Enzymatic measurements of G6PD and GLUD reactions showed
different trends than predictions. In order to understand the discrepancy,
we compared our results to 13C labeling experiments and metabolic flux
analysis performed with CHO cells in fed-batch culture.

Our experimental measurements were confirmed for the reaction
catalyzed by G6PD by (Ahn and Antoniewicz, 2012; Sengupta et al.,
2011; Templeton et al., 2013). Indeed, the trend of G6PD flux is exactly
the same as the experimental one in this study. Minimal activity is
observed during early exponential phase, and increased flux is measured
at the late exponential and stationary phase. This raises the question
about the source of NADPH required for growth in vivo in early process
stage, as shown by a high predicted G6PD flux in the beginning of the
process. During cell growth, NADPH is not only required to maintain
reduced glutathione pools, but also to support reductive biosynthesis
such as lipid synthesis (Xie and Wang, 2000). Another pathway that
could be mainly responsible for generating NADPH for growth is the
conversion of serine to glycine, which has been shown by isotopic la-
beling to contribute to NADPH production through the reaction catalyzed
by methylene tetrahydrofolate dehydrogenase (MTHFD2 and MTHFD2L)
in the mitochondria (Lewis et al., 2014).

As far as GLUD reaction is concerned, the trends reported in the
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literature with isotope labeling experiments confirm the predictions, not
the experimental measurements (Nolan and Lee, 2011; Templeton et al.,
2013). Although the measurement was performed with biological du-
plicates, we assumed that there was a loss of sample for the first time
point measurement and thus that the first time point was very likely to be
inaccurate.

5. Conclusion

This study demonstrates a generally reliable prediction of the intra-
cellular fluxes based on a genome-scale model, which was only con-
strained with amino acids and by-products rates. As at least 70% of the
predicted fluxes are in correlation with the enzymatic activities
measured, the enzyme assays support the model flux predictions and
validate the analysis performed on the predicted intracellular fluxes.

A total of 59 intracellular reactions were examined from day 2–7 in
different key pathways, namely glycolysis, the pentose phosphate
pathway, TCA cycle, lipid metabolism, and oxidative phosphorylation.
The predicted fluxes were relatively robust within the replicates, and
indicated that the metabolism of HP1 and LP2 were themost comparable,
essentially characterized by an intense TCA cycle activity. The clustering
of the predicted fluxes was in correlation with the clustering performed
on experimental nutrient consumption rates and with the clustering of
the relative composition of amino acids in the antibody produced. The in
silico analysis indicates that the cells clustered together have a similar
amino acid requirement despite a different efficiency in antibody pro-
duction. One assumption made from the analysis of experimental amino
acid metabolism, is that HPs have a higher activity in TCA cycle in the
first days resulting in a net production of aspartate and glutamate.

HP2 was clustered separately than HP1 and LP2 based on an overall
lower lipid activity from day 2–7. To summarize the experimental in-
sights collected with enzymatic activities, industrial process adaptations
and evolution of cell diameter during the process, the overall assumption
for HP2 is divided into three phases: (i) at the beginning of the process,
HP2 accumulates less lipid than the other cell lines, (ii) HP2 starts
intracellular lipid storage around day 6, and (iii) from day 10 the intra-
cellular pool starts to be consumed, as its final cell diameter is lower than
HP1, and also because HP2 is less difficult to harvest than HP1 at the end
of the process.

Analysis of enzymatic activities could explain the difference of Qp
observed in the beginning of the process, which is higher for HP1 than
HP2. HP1 has a more efficient transition of fluxes from glycolysis to TCA
cycle, and also has a more active PPP activity in this time frame. As a
suggestion for industrial clone selection, we recommend to use PDH and
G6P as markers for HPs. These enzymes could also be valuable metabolic
targets, and overexpressed for improving cell’s performances. Addition-
ally, experimental measurements of MDH activity suggest that this
enzyme is a bottleneck, and Qp could be potentially improved when
overexpressing this enzyme.
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