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Abstract 

Background:  Preoperative diagnosis of pheochromocytoma (PHEO) accurately impacts preoperative preparation 
and surgical outcome in PHEO patients. Highly reliable model to diagnose PHEO is lacking. We aimed to develop a 
magnetic resonance imaging (MRI)-based radiomic-clinical model to distinguish PHEO from adrenal lesions.

Methods:  In total, 305 patients with 309 adrenal lesions were included and divided into different sets. The least 
absolute shrinkage and selection operator (LASSO) regression model was used for data dimension reduction, feature 
selection, and radiomics signature building. In addition, a nomogram incorporating the obtained radiomics signature 
and selected clinical predictors was developed by using multivariable logistic regression analysis. The performance of 
the radiomic-clinical model was assessed with respect to its discrimination, calibration, and clinical usefulness.

Results:  Seven radiomics features were selected among the 1301 features obtained as they could differentiate 
PHEOs from other adrenal lesions in the training (area under the curve [AUC], 0.887), internal validation (AUC, 0.880), 
and external validation cohorts (AUC, 0.807). Predictors contained in the individualized prediction nomogram 
included the radiomics signature and symptom number (symptoms include headache, palpitation, and diaphoresis). 
The training set yielded an AUC of 0.893 for the nomogram, which was confirmed in the internal and external valida-
tion sets with AUCs of 0.906 and 0.844, respectively. Decision curve analyses indicated the nomogram was clinically 
useful. In addition, 25 patients with 25 lesions were recruited for prospective validation, which yielded an AUC of 0.917 
for the nomogram.

Conclusion:  We propose a radiomic-based nomogram incorporating clinically useful signatures as an easy-to-use, 
predictive and individualized tool for PHEO diagnosis.
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Introduction
Pheochromocytoma (PHEO) is a rare neuroendocrine 
catecholamine-secreting tumor originating from the 
chromaffin cells, with an annual incidence of approxi-
mately 1–2/100,000 person-years [1, 2]. Predicting PHEO 
prior to surgery can alleviate perioperative mobility and 
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mortality as they can produce excessive catecholamine 
if perioperatively improperly handled; leading to con-
sequential life-threatening hypertension, arrhythmia, 
and stroke [3]. Therefore, preoperatively discriminating 
PHEOs from other adrenal tumors is crucial for appro-
priate treatment planning.

Abdominal/pelvic multiphasic computed tomography 
(CT) or magnetic resonance imaging (MRI) is commonly 
used in cancer diagnosis [4] and has been recommended 
as the most common non-invasive modality to diagnose 
PHEO [5]. MRI is a morphologic imaging procedure that 
can differentiate PHEOs from other adrenal tumors such 
as adenomas and metastases [6, 7] since PHEOs are gen-
erally hyperintense on T2-weighted images [8]. However, 
due to atypical signs on T2-weighted MR images, about 
35% of PHEOs can be misclassified [9, 10]. In addition, 
lesions of PHEOs with hemorrhage and necrosis can be 
heterogeneous [8]. PHEOs may also mimic other adre-
nal masses on the traditional radiological analysis due to 
the overlap in imaging features and non-specific clinical 
findings [11–13]; encapsulating the notion of “imaging 
chameleon” [14]. Therefore, diagnosing PHEO accurately 
and timely remains a challenge [14–16]. As a result, 
developing a more accurate preoperative imaging tool to 
diagnose PHEO is in urgent need.

Computational medical imaging, also called radiomics, 
involves the analysis and translation of medical images 
into quantitative data [17, 18]. Based on high-through-
put imaging features, the minable data from radiomics 
can improve the diagnostic, prognostic, and predictive 
accuracy, bridging the gap between clinical imaging and 
personalized medicine [19, 20]. Furthermore, radiomics 
features have the advantages to evaluate a tumor and its 
microenvironment, characterization of spatial hetero-
geneity, and longitudinal evaluation of cancer evolution. 
There have been many applications of radiomics in can-
cer diagnosis and prediction such as rectal cancer, breast 
cancer, and bladder cancer [21–24]. In addition, Yi et al. 
developed a CT-based radiomics signature to differenti-
ate subclinical pheochromocytoma from lipid-poor ade-
noma. Nevertheless, as a single-center study, the patient 
population in the study was relatively small and homo-
geneous. And the study only used a region of interest 
(ROI) of the adrenal lesions for radiomics analysis, mak-
ing it unable to effectively reveal the heterogeneity of the 
entire lesion. Further studies are warranted due to limita-
tions. However, to the best of our knowledge, there is no 
publication evaluating whether an MRI-based radiomics 
signature would facilitate the preoperative diagnosis of 
PHEO.

Thence, the purpose of this study was to investigate 
whether an MRI-based radiomics analytics was capable 
of preoperative differentiation of PHEOs and non-PHEOs 

(e.g. benign adrenocortical adenomas, adrenocortical 
carcinomas, other pathologies). In addition, a radiomic-
clinical model was developed and then validated in an 
internal validation set, an external validation set, and a 
prospective validation set.

Methods and materials
Patients
This study was approved by the institutional review board 
at the Sun Yat-sen Memorial Hospital of Sun Yat-sen 
University and the Third Affiliated Hospital of Sun Yat-
sen University (Guangzhou, China). Written informed 
consent was obtained from each patient. The retrospec-
tive cohort of this study comprised of an evaluation of 
the institutional database for medical records from Sep-
tember 2010 to May 2019 to identify patients with adre-
nal mass who underwent surgical resection with curative 
intent. Patients for the prospective validation were 
treated at our institute between June 2019 and June 2020 
(ClinicalTrials.gov identifier: ChiCTR1900028520).

A total of 305 patients were included in this cohort 
study based on the following criteria. The inclusion cri-
teria for patient selection were: (i) underwent adrenal-
ectomy; (ii) pathologically confirmed as adrenal tumor; 
(iii) had preoperative MRI examination. The exclusion 
criteria were: (i) poor imaging quality or imaging arti-
facts; (ii) pathologically confirmed diagnosis of adrenal 
hyperplasia, adrenal cyst, or adrenal angiolipoma. The 
non-PHEO was defined as adrenal tumors other than 
pheochromocytoma, adrenal hyperplasia, adrenal cyst, 
and adrenal angiolipoma. Then, 239 patients treated in 
the Sun Yat-sen Memorial Hospital were divided into a 
training cohort (N = 166 patients with n = 170 lesions 
diagnosed between September 2010 and October 2013) 
and an internal validation cohort (N = 73 patients with 
n = 73 lesions diagnosed between November 2013 and 
May 2019) in a ratio of 7:3. Patients treated in the Third 
Affiliated Hospital of Sun Yat-sen University were used 
as the external validation set (N = 66 patients with n = 66 
lesions diagnosed between August 2010 and May 2019). 
Finally, 25 patients with 25 adrenal lesions were recruited 
to prospectively validate the model.

The clinical and pathological data retrieved from 
the medical records included sex, age, tumor location, 
smoking history, presence of hypertension, and symp-
tom number (symptoms include headache, palpitation, 
and diaphoresis). Pathological examination of adrenal 
lesions was reviewed by two pathologists with more than 
10  years of experience. Any disagreement was resolved 
by consensus. Since some patients had bilateral lesions, 
each lesion was considered as a subject to be measured 
in this study. The entire study flowchart is presented in 
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Fig. 1A and the recruitment pathway is shown in Addi-
tional file 1: Fig. S1.

MRI image acquisition, segmentation, and feature 
extraction
Figure  1B presents the radiomics procedure. Axial 
T2-weighted images were used for radiomics analyses, 
performed using a 3D Slicer (version 4.9.0, https://​www.​
slicer.​org), an open-source software program widely used 
for image visualization and segmentation [25]. The Addi-
tional file 1: Supplementary Methods describes in detail 
the MRI image acquisition, segmentation, and the algo-
rithms for radiomics feature extraction along with their 
reproducibility.

Radiomics signature construction and performance 
assessment
The least absolute shrinkage and selection operator 
(LASSO) logistic regression algorithm, which is suitable 
for the regression of high-dimensional data [26], was used 
to select the most impactful predictive features in the 

training set. Then, a radiomics signature was constructed 
and the radiomics score was calculated for each patient 
via a linear combination of the selected features that were 
weighted by their respective LASSO coefficients.

The potential use of the radiomics signature to diag-
nose PHEO was first assessed in the training set and 
validated in the internal and external validation sets by 
using a Mann–Whitney U test. Then, stratified analyses 
were performed (Additional file  1: Data Supplement). 
Furthermore, discrimination of the radiomics signature 
was assessed using the receiver operating characteristic 
(ROC) curve and the area under the ROC curve (AUC). 
An optimism-corrected AUC was also calculated by 
bootstrapping method (2000 bootstrap resamples) to 
obtain stable optimism-corrected estimates [27].

Development of a radiomic‑clinical nomogram 
and performance assessment
Multivariable logistic regression analysis began with the 
radiomics signature and the clinical candidate predictors 
in the training set. The backward stepwise selection was 

Fig. 1  The radiomics workflow and study flowchart. VOI, volume of interest

https://www.slicer.org
https://www.slicer.org
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applied using the Akaike’s Information Criterion (AIC) 
as the stopping rule [28]. Based on the result of the mul-
tivariable logistic analyses, a radiomic-clinical nomo-
gram was built. Meanwhile, variance inflation factors 
(VIFs) were calculated for evaluating the multicollinear-
ity among variables in the regression model. The logistic 
regression formula for calculating the risk score was also 
presented.

The discrimination and calibration of the radiomic-
clinical nomogram were evaluated in the training set. 
AUC and optimism-corrected AUC were employed to 
evaluate the discrimination of the radiomic-clinical nom-
ogram, and calibration curve was used to assess the cali-
bration, accompanied by the Hosmer–Lemeshow test.

Internal and external validation of the radiomic‑clinical 
nomogram
The logistic regression formula formed in the training 
set was applied to all patients of the internal and exter-
nal validation sets. Meanwhile, the performances of the 
nomogram were evaluated in the internal or external 
validation set using the AUC calculation and calibration 
analysis.

Models comparison and clinical usefulness evaluation
To further evaluate the radiomic-clinical nomogram 
applicability, we compared the radiomic-clinical model 
to a clinical model incorporating clinical independent 
predictors alone, which was identified by a multivariate 
logistic regression analysis. The ROC curves were plotted 
and AUCs were calculated to quantify the discriminative 
ability of each model.

Decision curve analysis (DCA) was conducted to 
determine the clinical usefulness of the radiomic-clinical 
nomogram by quantifying the net benefits at different 
threshold probabilities [29], and the clinical model was 
also compared.

Prospective validation of the radiomics model
Following the construction of the radiomic-clinical 
model, 25 patients with adrenal tumors were enrolled 
and used as prospective validation. In the prospective 
validation set, ROC analyses were used to evaluate the 
performance. In addition, the associated classification 
measures, including sensitivity, specificity, positive pre-
dictive value, and negative predictive value were also cal-
culated for the radiomic-clinical nomogram.

Statistical analyses
All statistical analyses were performed using the R soft-
ware, version 3.5.3 (https://​www.r-​proje​ct.​org/). The 
LASSO logistic regression was performed using the “glm-
net” package. The nomogram and calibration curve were 

plotted using the “rms” package. Hosmer–Lemeshow test 
was performed using the “vcdExtra” package, and VIF 
was calculated using the “car” package. DCA was per-
formed using the “dca.r” function. Statistical significance 
was two-sided, with significance level at P < 0.05.

Results
Patients characteristics
The detailed clinicopathological characteristics of the 
patients in the training (N = 166), internal validation 
(N = 73) and external validation (N = 66) sets are summa-
rized in Table  1. Of the total 305 retrospective patients 
included in the study, 133 (43.6%) were men, and the 
median (interquartile range, IQR) age was 49.0 (39.0–
57.0) years. Among them, 23.9% (74/309) of the lesions 
were diagnosed as PHEOs. The clinical data of the pro-
spective validation set (N = 25) is provided in Additional 
file 1: Table S1.

Radiomics signature construction and performance 
assessment
In total, 1301 radiomics features were extracted from 
each lesion. Among them, 7 features were selected as 
potential predictors using the LASSO logistic regression 
algorithm in the training set (Fig. 2A and B). The selected 
features and their corresponding coefficients are shown 
in the Supplementary Methods.

The radiomics scores between the PHEO and non-
PHEO patients demonstrated significant difference 
among the training set (median [interquartile range], 
− 0.608 [− 1.073 to − 0.102] vs. − 1.977 [− 2.394 to 
− 1.274], respectively, P < 0.001, Fig.  2C), the internal 
validation set (median [interquartile range], − 0.829 
[− 1.099 to − 0.572] vs. − 2.103 [− 2.440 to − 1.283], 
respectively, P < 0.001, Fig.  2C) and the external valida-
tion set (median [interquartile range], − 0.439 [− 1.097 
to − 0.058] vs. − 1.616 [− 2.249 to − 0.854], respectively, 
P < 0.001, Fig. 2C). Furthermore, significant association of 
the radiomics score between the PHEO and non-PHEO 
patients was also found in the stratified analysis (Addi-
tional file  1: Table  S2). Further, the radiomics signature 
yielded an AUC of 0.887 (95% CI 0.834–0.940) and an 
optimism-corrected AUC of 0.886 in the training set, 
which was validated in the internal and external valida-
tion sets with AUCs of 0.880 (95% CI 0.805–0.995) and 
0.807 (95% CI 0.695–0.918), respectively (Fig. 2D).

Radiomic‑clinical nomogram construction 
and performance assessment
The radiomics signature and symptom number were 
identified as independent predictors to distinguish PHEO 
from other adrenal lesions. For the collinearity diagnosis, 
all VIFs were less than 4 (ranging from 1.072 to 1.451), 

https://www.r-project.org/
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which indicated that there was no collinearity. To ensure 
easy use of the predictive model, we presented it as a 
nomogram (Fig. 3A). The logistic regression formula for 
calculating the risk score was as follows: (2.035 × radiom-
ics score) + (0.602 × symptom number) + 0.781.

The radiomic-clinical nomogram achieved good dis-
crimination with an AUC of 0.893 (95% CI 0.840–0.946) 
in the training set (Fig.  3B). The optimism-corrected 
AUC of the nomogram was 0.892. In addition, an opti-
mal risk score cutoff value of − 0.985 was defined accord-
ing to the maximum Youden index. The calibration curve 
demonstrated good agreement between predicted and 
observed probabilities in the training set (Fig.  3C). The 
Hosmer–Lemeshow test yielded a nonsignificant statistic 
(P = 0.602), indicating that there was no departure from a 
perfect fit.

Internal and external validation of the radiomic‑clinical 
nomogram
The radiomic-clinical nomogram yielded a favorable 
AUC of 0.906 (95% CI 0.841–0.971, Fig. 3B) in the inter-
nal validations set and yielded an AUC of 0.844 (95% CI 
0.740–0.949, Fig. 3B) in the external validation set. Good 

calibration was also observed both in the internal and 
external validation sets along with nonsignificant statis-
tics (P = 0.893 and P = 0.267, respectively) in the Hos-
mer–Lemeshow tests (Fig. 3C).

The waterfall plot showed the distribution of risk 
scores and pathologic diagnosis for all lesions (Fig. 3D). 
The specificity, sensitivity, and accuracy of the radiomic-
clinical model detection of PHEO were 0.750, 0.857, and 
0.840 in the internal validations set.

Model comparison and clinical usefulness evaluation
In the training set, we further analyzed the eight clinical 
candidate variables using multivariate logistic regression 
to construct the clinical model. As a result, the clinical 
model incorporates two predictors, i.e., symptom num-
ber and MRI-determined tumor size (Table  2). In the 
combined training, internal and external validation sets, 
the radiomic-clinical nomogram achieved significantly 
higher AUC than the clinical model (AUC [95% CI], 
0.881 [0.842 to 0.919] vs. 0.765 [0.708 to 0.823], respec-
tively, P < 0.001, Fig.  4A). The DCA showed that using 
the radiomic-clinical nomogram to predict PHEO added 
more net benefit than the clinical model (Fig. 4B). Similar 

Table 1  Baseline characteristics of the patients

MRI: magnetic resonance imaging

*Symptoms include headache, palpitation, and diaphoresis

**Each individual lesion was regarded as a subject to be measured in these variables (There were n = 170 lesions in the training set, n = 73 lesions in the internal 
validation set and n = 66 lesions in the external validation set)

Training set
(N = 166)

Internal validation set
(N = 73)

External validation set
(N = 66)

Sex

 Male 67 (40.4%) 32 (43.8%) 34 (51.5%)

 Female 99 (59.6%) 41 (56.2%) 32 (48.5%)

Age, years

 Median (Interquartile range) 49.0 (39.0–57.0) 47.0 (37.0–55.0) 49.0 (36.0–57.0)

Symptom number*

 0 117 (70.5%) 46 (63.0%) 47 (71.2%)

 1 32 (19.3%) 17 (23.3%) 14 (21.2%)

 2 10 (6.0%) 7 (9.6%) 3 (4.5%)

 3 7 (4.2%) 3 (4.1%) 2 (3.1%)

Hypertension

 Yes 80 (48.2%) 30 (41.1%) 44 (66.7%)

 No 86 (51.8%) 43 (58.9%) 22 (23.3%)

Smoker

 Yes 22 (13.3%) 12 (16.4%) 10 (15.2%)

 No 144 (86.7%) 61 (83.6%) 56 (84.8%)

Tumor location

 Left 89 (52.4%) 35 (47.9%) 34 (51.5%)

 Right 81 (47.6%) 38 (52.1%) 32 (48.5%)

MRI-determined tumor size, cm**

 Median (Interquartile range) 3.3 (2.0–4.6) 3.2 (2.2–5.0) 2.4 (1.7–4.6)
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findings were found in both the training and the valida-
tion sets (Additional file 1: Fig. S2).

Prospective validation of the radiomics model
Conspicuously, the radiomics signature predicted 
PHEO in the prospective validation set yielded an AUC 
of 0.881 (95% CI 0.726 to 1.000, Additional file  1: Fig. 
S3A), and the radiomics scores showed a significant dif-
ference between the PHEO and non-PHEO patients 
(median [interquartile range], − 0.246 [− 1.061 to 1.006] 
vs. − 2.466 [− 3.061 to − 1.433], respectively, P = 0.020, 

Additional file  1: Fig. S3B). In addition, the radiomic-
clinical model performed well in the prospective valida-
tion for prediction of the PHEO, with an AUC of 0.917 
(95% CI 0.801 to 1.000, Additional file 1: Fig. S3A). These 
findings suggest the ability of the model to identify the 
PHEO.

Discussion
In this study, we used high-throughput extraction of 
data-characterization algorithms to extract radiomics 
features and constructed a nomogram with combined 

Fig. 2  Development of the radiomics signature and performance assessment. A Selection of the tuning parameter (λ). The tuning parameter 
lambda (λ) was selected by the LASSO method based on tenfold cross-validation via minimum criteria. The binomial deviance was plotted versus 
the log-transformed λ. Based on the minimum criteria, the calculated optimal values were plotted as the dotted vertical line. The optimal λ value 
of 0.059 with log (λ) of − 2.833 was selected. B LASSO coefficient profiles of the 1301 radiomics features. Seven stable features with nonzero 
coefficients were selected, according to the vertical line plotted at the optimal λ value. C Boxplots of the radiomics score in the training, internal and 
external validation sets. D ROC curves of the radiomics signature in the training, internal and external validation sets
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Fig. 3  The radiomic-clinical nomogram and its performance. A The radiomic-clinical nomogram was developed to distinguish PHEOs from other 
adrenal lesions. B ROC curves of the radiomic-clinical nomogram in the training, internal and external validation sets. C Calibration curves of the 
nomogram in the training, internal and external validation sets. The calibration curve presents how well the predicted probabilities agree with the 
observed probabilities. The diagonal dotted line indicates the ideal prediction by the ideal model. The solid lines present the prediction value of the 
nomogram. A closer fit of the solid line to the diagonal dotted line demonstrates a better prediction. D The calculated risk scores for each patient 
within the combined training, internal and external validation datasets
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radiomics features and clinical risk factors to distin-
guish PHEOs from other adrenal lesions [30, 31]. The 
nomogram was validated using different validation sets 
and demonstrated promising reproducibility and reli-
ability of the prediction model for potential clinical 
usage in the pre-operative diagnosis of PHEOs.

As we have known, PHEO was notoriously difficult 
to diagnose as a rare neuroendocrine tumor causing a 
myriad of clinical symptoms. PHEOs are heterogeneous 
at imaging, including cystic change, hemorrhage, calci-
fication, intracellular lipid, and malignancy [32]. Most 
show high morbidity and mortality due to excessive 

Table 2  Multivariate logistic regression analysis of the radiomics score and clinical candidate predictors in the training set

CI: confidence interval; MRI: magnetic resonance imaging; OR: odds ratio

*P < 0.05

Variables and 
intercept

Univariate model Radiomic-clinical multivariate 
model

Clinical multivariate model

β OR (95% CI) P β OR (95% CI) P β OR (95% CI) P

The radiomics score
(per 0.1 increase)

0.207 1.230 (1.152 to 1.336) < 0.001* 0.204 1.226 (1.146 to 1.332) < 0.001* – – –

Sex (male vs. female) 0.423 1.526 (0.314 to 7.982) 0.283 – – – –

Age, years (continuous) 0.004 1.004 (0.978 to 1.032) 0.759 – – – – – –

Symptom number 0.824 2.279 (1.487 to 3.594) < 0.001* 0.602 1.826 (1.013 to 3.280) 0.042* 0.852 2.344 (1.511 to 3.731) < 0.001*

Hypertension (no vs. 
yes)

0.201 1.222 (0.585 to 2.574) 0.593 – – – – – –

Smoker (no vs. yes) − 0.597 0.550 (0.124 to 1.742) 0.359 – – – – – –

Tumor location (left vs. 
right)

0.692 1.998 (0.951 to 4.317) 0.071 – – – – – –

MRI-determined tumor 
size, cm (continuous)

0.173 1.189 (1.056 to 1.346) 0.005* – – – 0.182 1.200 (1.060 to 1.365) 0.004*

Hyperintense on a T2 
weighted MRI (no vs. 
yes)

2.014 7.495 (2.139 to 47.541) 0.007* – – – – – –

Intercept – – – 0.781 − 2.586 – –

Fig. 4  Receiver operating characteristic analysis (A) and decision curve analysis (B) of the radiomics-clinical model and clinical model in the 
combined training, internal and external validation sets
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catecholamine production, leading to hypertension, 
arrhythmia, and stroke [33]. It would be lethal in uncon-
trolled and unrecognized cases. The ESE/ENSAT guide-
line has suggested that determination of metanephrines 
might be eliminated in case of adrenal mass with an 
unenhanced CT attenuation value ≤ 10 HU [34]. How-
ever, this recommendation was based on a small sam-
ple size of patients with an unenhanced attenuation 
value > 10 HU [35, 36]. The specificity of the biochemical 
tests for PHEOs depends quite mainly on preanalytical 
criteria which maintains the use of some affected drugs 
(e.g. dopamine D2 receptor antagonists) and the need of 
a correctly collected 24 h urine and blood sampling [37, 
38]. And Edward’s study showed that the probability of 
pheochromocytoma in adrenal incidental tumors with 
unenhanced CT attenuation ≤ 10HU was low, which did 
not support the widespread clinical practice to determine 
metanephrines in every patient with adrenal lesions [39]. 
Furthermore, the determination of metanephrines is 
rather expensive. The rate of false-positive results might 
be increased because the optimal preanalytical condi-
tions were difficult to create, which makes it do more 
diagnostic tests to rule out PHEO at higher costs [40].

Although previous studies have been reported that the 
overall diagnostic performance was good for diagnos-
ing PHEOs, it should be noted that the sensitivity was 
relatively low (51.7–58.0%) with traditional imaging tech-
nology [39, 41, 42]. With Gallium-Dotatate PET CT phe-
ochromocytomas and paragangliomas can be visualized 
with high sensitivity and in case of malignant pheochro-
mocytomas metastases can be demonstrated [43]. None-
theless, its application is limited due to the expensive 
inspection and the difficulty of popularization in primary 
hospitals. Apart from adrenal incidentoma, it is possible 
that the method might be useful in applications where 
MRI is specifically indicated for imaging of PHEO. This 
includes clinical contexts in which radiation exposure 
should be minimized (e.g., children, young women of 
child bearing age). Use of MRI might also be considered 
to minimize radiation exposure during periodic repeated 
imaging studies in patients with mutations of tumor-sus-
ceptibility genes.

Application of radiomics analysis has been recog-
nized as an important technology [18, 44, 45]. The high-
dimensional imaging features can acquire more detailed 
information about the tumor which cannot be detected 
easily by the naked eye. And different pathological types 
of tumors exhibit different values of radiomics features, 
which might be an underlying mechanism of applying 
radiomics in tumor classification [46]. Our study ana-
lyzed the images with 3D-VOI method, extracted a total 
of 1301 radiomic features and built a radiomic signature 
using seven selected radiomics features after reduction of 

redundant features. Some selected features describe the 
distribution of voxel intensity of the VOI region, such as 
‘Mean’ and ‘Skewness’, while some selected texture fea-
tures like ‘Entropy’ hold information about the spatial 
heterogeneity of the lesion. However, the interpretation 
of features remains a challenge in radiomic research, and 
further studies are warranted to explore the potential 
biological significance underlying the selected radiom-
ics features. In our study, we did establish an MRI-based 
radiomics signature which demonstrated strong potential 
as promising indicators for the diagnosis of PHEOs to aid 
physicians to more accurately diagnose the PHEOs.

Furthermore, by incorporating clinical predictors, 
we developed and validated a radiomics nomogram in 
our study, which has the ability to diagnose the PHEOs. 
Odds ratio of symptom number is 1.826 in the multi-
variable logistic regression analysis, suggesting that the 
greater the symptom number is, the greater the probabil-
ity of PHEO diagnosis (Table 2). Indeed, symptoms like 
palpitations, headache, and diaphoresis are significant 
when considering a possibility of PHEO diagnosis [34]. 
The model demonstrated high discriminatory power, 
with AUCs greater than 84.4%. As such, it could stratify 
patients with PHEOs and non-PHEOs. Patients with 
PHEO could receive preoperative medication for fur-
ther surgical treatment or even targeted therapy includ-
ing germline mutations in SDHB or fusions involving 
MAML3 [33]. That is, it could be helpful for clinicians 
to determine personalized treatment strategies preop-
eratively. Thus, the radiomic-clinical model may further 
increase the accuracy of the PHEOs diagnosis and mini-
mize the cases of misdiagnosis and missed diagnosis.

Intriguingly, when compared with the clinical model, 
the radiomic-clinical model was superior in both the 
training and validation sets. This suggests that the MRI 
imaging radiomics features are more representative of the 
tumors and the radiomic-clinical model is not only a sim-
ple combination of radiomics features but also a synergy 
between intratumor heterogeneity and clinical variables. 
The underlying explanation for the good performance of 
our radiomic model may be that the internal structure of 
lesion heterogeneity reflected by radiomic characteristics 
is related to the biological behavior and microstructure of 
adrenal tumor [47], which were critical factors influenc-
ing the efficacy in predicting PHEOs preoperatively.

To our knowledge, this is the first study to show 
that MRI-based radiomics can be used to distinguish 
PHEOs from other adrenal lesions. The pros of the 
findings of this study include: first, we used an open-
sourced software for the radiomics procedure instead 
of custom-developed software, which makes it possible 
to further validate the model even conducted by other 
institutions [48]; second, the model developed using 
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the retrospective data was not only validated using an 
internal validation set but was also further validated 
in the prospective set; third, the predictors, radiomics 
signature and symptom number, in the nomogram were 
feasibly obtained from routine MRI scans and medical 
history taking, thereby enhancing their clinical avail-
ability and usability.

However, there were several limitations to be acknowl-
edged. First, it was mainly designed using two institu-
tional retrospective studies with a modest number of 
patients that may not be representative in other institu-
tions. Accordingly, multicenter prospective trials with 
larger patient samples are needed in order to improve 
clinical efficacy [49]. Second, semi-automatic tumor seg-
mentation contained complex operation and possibly 
man-made interference. A more stable and time-saving 
method such as automatic segmentation could be applied 
to the radiomics analysis [50]. Third, our study did not 
involve nuclear imaging, which limits our further clinical 
outreach and application. Fourth, the data of biochemi-
cal tests for PHEOs were not included in our presented 
model due to the lack of these data in our retrospec-
tive study. Further studies are warranted to investigate 
whether the biochemical tests can improve the per-
formance of the radiomics model. Future work should 
involve analyses of the dependencies between radiomics 
features and clinical variables or genetic changes, which 
may further improve the diagnostic model.

Conclusions
In conclusion, we developed a novel radiomics model 
combining the radiomics signature and symptom num-
ber for predicting the presence of PHEOs, against other 
adrenal lesions, before initial treatment. It can be used 
as a noninvasive, safe, simple-to-implement, and accu-
rate method in the daily setting, after wider prospective 
validation.
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