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Abstract

Despite the diversity and ecological importance of cestodes, there is a paucity of studies on their

life stages (i.e., complete lists of intermediate, paratenic, and definitive hosts) and genetic variation.

For example, in the Gulf of Mexico (GoM) 98 species of cestodes have been reported to date;

however, data on their intraspecific genetic variation and population genetic studies are lacking.

The trypanorhynch cestode, Oncomegas wageneri, is found (among other places) off the American

Western Atlantic Coast, including the GoM, and has been reported as an adult from stingrays and

from several teleost species in its larval form (as plerocerci). This study represents the first report

of 2 previously unregistered definitive hosts for O. wageneri, namely the Atlantic sharpnose shark

Rhizoprionodon terraenovae and the southern stingray Hypanus americanus. In this work, partial

sequences of the 28S (region D1–D2) ribosomal DNA were analyzed to include O. wageneri within

an eutetrarhynchoid phylogenetic framework. All O. wageneri individuals (which included

plerocerci and adults) were recovered as monophyletic and Oncomegas celatus was identified

as the sister species of O. wageneri. Furthermore, population genetic analyses of O. wageneri from

the southern GoM were carried out using DNA sequences of the mitochondrial cytochrome c oxi-

dase subunit 1 (COI) gene, which reflected high genetic variation and a lack of genetic structure

among the 9 oceanographic sampling sites. Based on these results, O. wageneri is panmictic in

the southern GoM. More extensive sampling along the species entire distribution is necessary to

make more accurate inferences of population genetics of O. wageneri.
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Studies of helminth parasite life-cycles and intraspecific genetic

variation are surprisingly scarce (Criscione et al. 2005; Criscione

2016; Blasco-Costa and Poulin 2017). More specifically, of the

approximately 6,000 known cestode species, of which ca. 17% (i.e.,

61,000 spp.) parasitize elasmobranchs (sharks, rays, and skates)

worldwide, the complete life cycles have been established for fewer

than 5 species (Caira and Reyda 2005; Caira and Littlewood 2013;

Caira and Jensen 2014). Considering this paucity of studies, in

regions such as the Gulf of Mexico (GoM) efforts in recent years

have been geared toward increasing the knowledge of marine

cestode life-cycles by using molecular data (i.e., DNA sequences)

to match larval and adult stages. For example, of the 98 species of

cestodes reported from the GoM (Jensen 2009), 25 species of adult

cestodes (Tetraphyllidea and Rhinebothriidea) reported particularly

from the northern GoM in the USA (n-GoM) from elasmobranchs

were linked with larval stages from teleosts, bivalves, gastropods,

and shrimps, based on morphological and molecular phylogenetic

approaches (Jensen and Bullard 2010). These efforts (i.e., Jensen

and Bullard 2010) plus ongoing studies (e.g., Vidal-Martı́nez VM

and Aguirre-Macedo ML, personal communication) contribute to

increasing the knowledge of cestode biodiversity in ecosystems

where multiple helminth species have been previously identified,

based on adult forms only, and where large-scale genetic matching

of unidentified helminth juveniles with known adults is the

most promising way to resolve multiple life cycles simultaneously

(Blasco-Costa and Poulin 2017).

Jensen and Bullard (2010) mentioned that cestode larvae are

notoriously difficult to identify based on morphological criteria used

for cestode taxonomy, since the determining characters are based on

adult morphology and for many cestode orders, the larval stages

do not resemble their adult counterparts. Given the difficulties of

identifying cestode larvae to species (or even higher taxon level),

determining life cycles is almost impossible in many cases. The ces-

tode order Trypanorhyncha is an exception to these difficulties,

since their fully armed rhyncheal apparatus allows for species-level

identifications of trypanorhynch larvae in intermediate hosts,

which include teleosts, molluscs, crustaceans, jellyfishes, and sea

cucumbers (Palm 2004; Caira and Jensen 2014). A noteworthy

characteristic of the life cycle of trypanorhynch cestodes is that in

addition to the larval stages living in one or more intermediate hosts,

and the adults living in definitive hosts, the phenomenon of parate-

nesis often takes place. A paratenic host is not essential for the para-

site to complete its life cycle, but within such a host, the larval stages

of the parasites survive without developing (Combes 2001; Caira

and Reyda 2005). Furthermore, while life cycle studies of cestodes

are scarce, studies on population genetics and genetic variation

are even fewer. For example, of the 315 Trypanorhyncha species

worldwide (Beveridge et al. 2017), only one (Tentacularia coryphae-

nae Bosc, 1797) has been studied in a context of intraspecific genetic

variation (Palm et al. 2007), albeit using a very small sample size

(n¼3 individual cestodes).

A Trypanorhyncha species, Oncomegas wageneri (Linton, 1890)

Dollfus, 1929 (Trypanorhyncha: Eutetrarhynchoidea) (taxonomic

classification following the review by Beveridge et al. 2017), has

been reported from the n-GoM in its adult stage from elasmo-

branchs and larval stages from teleosts (Jensen 2009). Oncomegas

wageneri has been reported as a plerocercus in the digestive tract of

12 species of marine fishes included in 7 families (for more details,

see Online Appendix 1), and as plerocerci in marine plankton

(Dollfus 1974; but also see Schaeffner 2018). Adults of this species

have been reported from the spiral valve of the elasmobranch

Bathytoshia centroura (Mitchill, 1815) (as Dasyatis centroura) from

the USA’s Atlantic Ocean (Toth et al. 1992; Palm 2004); however,

the life cycle of this parasite has not been formally described and

published. In a recent morphological study based on new records of

adult specimens of O. wageneri from Hypanus guttatus (Bloch and

Schneider, 1801) from the southwestern Atlantic Ocean off Maceió,

Brazil, Schaeffner (2018) outlined the complicated taxonomic his-

tory (e.g., problematics and advances) and the necessity to include

more representative species of the genera Hispidorhynchus

Schaeffner and Beveridge, 2012 and Oncomegas Dollfus, 1929 in a

previously inferred molecular phylogenetic framework (Palm et al.

2009; Olson et al. 2010) to support the division of these 2 genera

(also see Schaeffner and Beveridge 2012). Schaeffner (2018) also

suggests conspecificity and an antitropical distribution for O. wage-

neri specimens from the north- and southwestern Atlantic Ocean

based on the comparison on metric data between adult specimens of

O. wageneri and the distribution of their 2 dasyatid definitive

host species (i.e., B. centroura and H. guttatus). However, other

biological and ecological factors (e.g., vagility of the intermediate,

paratenic and definitive hosts) which could explain the dispersal of

O. wageneri have not been tested to date.

While the marine cestode fauna of the northern and western

GoM off the USA has been studied extensively and pioneering works

have matched larval and adult forms using genetic tools (Jensen

2009; Jensen and Bullard 2010), the parasite fauna (e.g., marine

cestodes) of the southern GoM off Mexico (s-GoM), is particularly

poorly studied with the exception of the infracommunities of the

flatfish species. The flatfish species from the s-GoM are in fact one

of the better studied groups with regards to marine parasites (e.g.,

Rodrı́guez-González and Vidal-Martı́nez 2008; Vidal-Martı́nez

et al. 2014, 2019; Centeno-Chalé et al. 2015), having been the focus

of several projects during the last 25 years (Vidal-Martı́nez et al.

2016). Particularly, Centeno-Chalé et al. (2015) in a recent study of

helminth communities of the flatfish, Cyclopsetta chittendeni Bean,

1895, from s-GoM reported plerocerci of O. wageneri as the most

prevalent larval cestode parasite species. Furthermore, Vidal-

Martı́nez et al. (2014) detected a high overall prevalence of plero-

cerci of O. wageneri in another flatfish species, Syacium gunteri

Ginsburg, 1933, suggesting that this marine fish could act as a para-

tenic host or as a potential third intermediate host.

Given the recent collecting efforts in the s-GoM (Vidal-Martı́nez

et al. 2016) geared at cestodes from different life stages, the aims

of this study were to (i) expand host records for O. wageneri, (ii) use

genetic (DNA sequence) data to determine sister-group relations

of O. wageneri within a phylogenetic framework of the

Eutetrarhynchoidea and to confirm conspecificity between adults

and plerocerci of O. wageneri, and (iii) explore the intraspecific gen-

etic variation of O. wageneri in the s-GoM. Therefore, in this study

different biological implications for O. wageneri are explored, that

can be inferred from the use of molecular data, be it for analyzing

variation in populations, life-stage matching, and/or systematic

inferences.

Materials and Methods

Collection of flatfish, shark, stingrays, and cestodes
Plerocerci of O. wageneri used for molecular analysis in this study

were collected from the digestive track of the flatfish C. chittendeni

from 8 oceanographic sampling sites (depth range 30–74 m), cover-

ing 18,575 km2, from the s-GoM. Samples were obtained from

August to October 2015. Oceanographic sampling procedures for
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the collection of flatfish have been described elsewhere (i.e.,

Centeno-Chalé et al. 2015; Vidal-Martı́nez et al. 2015). Adults of

O. wageneri were collected from the intestines of a male Atlantic

sharpnose shark, Rhizoprionodon terraenovae (Richardson, 1836)

(depth range 0–280 m), and 2 stingray females, Hypanus americanus

(Hildebrand and Schroeder, 1928) (depth range 0–53 m). The

Atlantic sharpnose shark and stingrays were caught by artisanal fish-

ers in Chachalacas, Veracruz, Mexico. This particular locality was

assigned as oceanographic sampling site No. 9 (for more details, see

Online Appendix 2). Host dissection follows Vidal-Martı́nez et al.

(2015) and Centeno-Chalé et al. (2015); cestode collection and pres-

ervation follows Vidal-Martı́nez et al. (2001, 2015) and Méndez

and Vidal-Martı́nez (2017); preparation of cestodes for morpho-

logical study follows Méndez and Vidal-Martı́nez (2017). The ces-

tode specimens used for molecular analysis were cleaned with 0.7%

saline solution and preserved in 100% ethanol. Specimens of an un-

identified species of the genus Rhinebothrium (Rhinebothriidea:

Rhinebothriidae) were also collected from the Atlantic sharpnose

shark examined, and specimens of Callitetrarhynchus gracilis

(Rudolphi, 1819) Pintner, 1931 and Dasyrhynchus giganteus

(Diesing, 1850) Pintner, 1928 (Lacistorhynchoidea:

Lacistorhynchidae) were collected from the intestines of a male Bull

shark, Carcharhinus leucas (Müller and Henle, 1839), also collected

by artisanal fishers from sampling site No. 9 and preserved for mo-

lecular analysis to be used as outgroups for subsequent phylogenetic

analysis, based on previous phylogenetic relationships (Palm et al.

2009; Olson et al. 2010; Beveridge et al. 2017; Haseli et al. 2017).

Cestode identification follows Palm (1995, 2004). Terminology

for the larval stages of cestodes follows Chervy (2002) and

Palm (2004). Several plerocerci and adult trypanorhynchs collected

for morphological analysis were deposited as voucher specimens

in the Colección Helmintológica del CINVESTAV (CHCM),

Departamento de Recursos del Mar, Centro de Investigación y de

Estudios Avanzados del Instituto Politécnico Nacional, Unidad

Mérida, Yucatan, Mexico (Online Appendix 2).

The flatfish were collected by professional fishermen using a

commercial fishing permit issued by the Secretarı́a de Ganaderı́a,

Desarrollo Rural, Pesca y Alimentación (number 01067, and avail-

able upon request) and by the Comisión Nacional de Acuacultura y

Pesca (PPF/DGOPA-070/16). The fishing activities did not involve

endangered or protected species according to Mexican regulations

(NOM-059-SEMARNAT-2001). The statement of ethics approval

for this study was provided by the Institutional Animal Care

and Use Committee (IACUC) from the Center of Research and

Advanced Studies (protocol number 0138-15, available upon

request).

Methods used for DNA extraction, PCR, and sequencing
DNA was extracted from 48 individual plerocercus and 7 adult cest-

odes (for details, see Online Appendix 2), using the DNeasy blood

and tissue extraction kit (Qiagen, Valencia, CA, USA) following the

manufacturer’s instructions. For the 4 cestode taxa for which se-

quence data were generated, the partial 28S ribosomal DNA

(¼lsrDNA region D1–D2, henceforth referred to as 28S) was ampli-

fied by polymerase chain reaction (PCR) (Saiki et al. 1988), using

LSU-5 forward (50-TAG GTC GAC CCG CTG AAY TTA AGC A-

30) and 1500R reverse (50-GCT ATC CTG AGG GAA ACT TCG-30)

(Olson et al. 2003). For 48 plerocerci and 4 adults of O. wageneri,

the first section of the mitochondrial cytochrome c oxidase subunit I

(COI) was amplified. This section, also known as the “barcode

region” (Hebert et al. 2003), was amplified by PCR using the

primers Dice1F forward (50-ATT AAC CCT CAC TAA ATT WCN

TTR GAT CAT AAG-30) and Dice14R reverse (50-TAA TAC GAC

TCA CTA TAC CHA CMR TAA ACA TAT GAT G-30) (Van

Steenkiste et al. 2015). The reactions were prepared using the Green

GoTaq Master Mix (Promega). This procedure was carried out

using an Axygen Maxygen thermocycler (Corning, USA). The PCR

cycling conditions were as follows: for 28S, an initial denaturing

step of 5 min at 95�C, followed by 40 cycles of 95�C for 30 s, 55�C

for 30 s, and 72�C for 2 min, and a final extension step at 72�C for

10 min (Caira et al. 2014); for COI, an initial denaturing step of

5 min at 94�C, followed by 35 cycles of 92�C for 30 s, 47�C for 45 s,

and 72�C for 1 min, and a final extension step at 72�C for 10 min.

The PCR products were analyzed by electrophoresis in 1% agarose

gel using TAE 1� buffer and observed under UV light using the

QIAxcelV
R

Advanced System (Hilden, Germany). The purification

and sequencing of the PCR products were carried out by Genewiz,

South Plainfield, NJ, USA (https://www.genewiz.com/, last accessed

20 September 2019). The 28S and COI sequences were deposited in

GenBank (accession numbers MN488527-MN488586; see Online

Appendix 2 for more details).

Molecular data and phylogenetic reconstruction
To obtain the consensus sequences of O. wageneri, C. gracilis,

D. giganteus, and Rhinebothrium sp., chromatograms of forward

and reverse sequences were assembled and edited using the

Geneious Pro v. 5.1.7 platform (Drummond et al. 2010). To deter-

mine sister-group relations of O. wageneri within a Trypanobatoida

phylogenetic framework, the 28S sequence data generated herein

were aligned with 28S sequence data for other members of the

Trypanobatoida (i.e., members of the Eutetrarhynchoidea and

Tentacularioidea sensu Beveridge et al. 2017) downloaded from

GenBank (see GenBank accession numbers in Figure 1), using an

interface available with MAFFT v. 7.263 (Katoh and Standley

2016), an “auto” strategy and a gap-opening penalty of 1.53 with

Geneious Pro, and a final edition by eye in the same platform.

The genetic (uncorrected P) distance, with the bootstrap method

(500 replicates) and with a uniform nucleotide substitution (transi-

tions þ transversions) rate, was calculated in MEGA v. 7.0 (Kumar

et al. 2016). The software jModelTest v. 2.1.3 (Darriba et al. 2012)

was used to select a model of evolution through the Bayesian

Information Criterion (BIC) (Schwarz 1978). The nucleotide substi-

tution model with the lowest BIC score was GTRþIþG (Tavaré

1986). The Gblocks Web Server (Castresana 2000; Talavera and

Castresana 2007) was used to remove ambiguously aligned regions

of 28S.

The 28S dataset was analyzed with Bayesian inference (BI)

through the CIPRES Science Gateway v. 3.3 (Miller et al. 2010).

The BI was carried out with MrBayes v. 3.2.1 (Ronquist et al.

2012). The Bayesian phylogenetic tree was reconstructed using 2

parallel analyses of Metropolis-Coupled Markov Chain Monte

Carlo (MCMCMC) for 20 � 106 generations each. Topologies were

sampled every 1,000 generations and the average standard deviation

of split frequencies was observed until it reached <0.01, as sug-

gested by Ronquist et al. (2012). A consensus tree with branch

lengths was obtained for the 2 runs after discarding the first 5,000

sampled trees as burn-in. The robustness of the clades was assessed

using Bayesian Posterior Probability (PP), where PP > 0.95 was con-

sidered strongly supported.
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Population genetic parameter estimation
Haplotypes for the COI fragment were obtained for 48 plerocerci of

O. wageneri, collected from 8 oceanographic sampling sites (sam-

pling sites 1–8), and 4 adults of O. wageneri collected from

Chachalacas (sampling site 9; for more details of sampling site num-

bers, see Online Appendix 2). To assess the completeness of sam-

pling, a haplotype accumulative curve was obtained (Brown et al.

2012; Coeur d’acier et al. 2014). The genetic variation of the O.
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Figure 1. Strict consensus tree resulting from Bayesian inference phylogenetic analysis of D1–D2 28S rDNA sequence data showing phylogenetic placement of

adult and larval specimens of Oncomegas wageneri (Linton, 1890) Dollfus, 1929 from the southern Gulf of Mexico (in bold) relative to other members of the

Trypanobatoida. GenBank accession numbers follow each taxon label. Solid black circles indicate clades with a PP�0.95. Branch length scale bar at lower right

indicates nucleotide substitutions per site.
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wageneri samples studied here was calculated based on the number

of haplotypes (h), haplotype diversity (H), and nucleotide diversity

(p) (Nei 1987), using DnaSP v. 6.12.01 (Rozas et al. 2017). To infer

their population structure, the individuals from each locality were

treated as separate populations and an analysis of molecular vari-

ance (AMOVA) (Excoffier et al. 1992) was carried out in the pro-

gram Arlequin v. 3.5 (Excoffier and Lischer 2010) with 10,000

randomizations, to compare the genetic variation within and be-

tween the populations. A haplotype network was also constructed

using the program popART (Leigh and Bryant 2015). An unrooted

network was constructed under the null hypothesis of no genetic dif-

ferentiation among populations and the spatial population distribu-

tion for haplotypes was represented on a map, by running a TCS

(Templeton et al. 1992) haplotype network analysis.

Results

Phylogenetic analyses
In total, 16 bi-directional 28S sequences were obtained from 3 plero-

cerci and 2 adults of O. wageneri, as well as C. gracilis (1 adult spe-

cimen), D. giganteus (1 adult specimen), and Rhinebothrium sp.

(1 adult specimen) (outgroups). The final lengths (in number of

base-pairs) of the 28S sequences were as follows. For the 2 O. wage-

neri adults, 942 base-pairs (bp) and 1,150 bp; for the O. wageneri

plerocerci, 1 of 1,226 and 1 of 1,193 bp; 1,127 bp for C. gracilis,

1,224 bp for D. giganteus, and 1,183 bp for Rhinebothrium sp. The

total alignment length following the Gblocks exclusion was

1,275 bp. The 28S sequences of the 3 plerocerci from C. chittendeni

were identical, while the sequences of the plerocerci and 2 adults of

O. wageneri showed a genetic distance of 0.054%. Nucleotide

sequence variation in the 28S alignment of the trypanobatoida

taxa (excluding the outgroup taxa; i.e., C. gracilis, D. giganteus, and

Rhinebothrium sp.) included 621 conserved and 654 variable sites,

of which 493 sites were parsimony-informative, and 161 sites

represented singletons.

Phylogenetic relationships were inferred using the alignment of

28S, which included 58 sequences from 52 taxa. Figure 1 shows the

consensus topology reconstructed from the post-burnin trees of the

2 Bayesian runs in MrBayes. Based on the analysis of the partial 28S

alignment, the 3 plerocerci of O. wageneri from C. chittendeni and

the 2 adults of O. wageneri from R. terraenovae included in the ana-

lysis form a well-supported (PP � 0.95) monophyletic group. This

clade, representing O. wageneri, is sister to the single individual of

Oncomegas celatus (Beveridge and Campbell, 2005) Schaeffner and

Beveridge, 2012, with high nodal support (PP � 0.95).

Population genetic analyses
In total, 104 bi-directional COI “barcode” sequences were obtained

from 48 plerocerci and 4 adults from O. wageneri. The length of all

sequence fragments from the plerocerci was 585 bp, except for one

sequence that had 511 bp (from sampling site number 1; see Online

Appendix 2). Nucleotide sequence variation in the COI alignment

was 530 conserved and 55 variable sites, of which 21 sites were

parsimony-informative, and 34 sites represented singletons. In total,

44 haplotypes among 52 sequences from O. wageneri from the

southern GoM were found, and the haplotype accumulation curve

has not yet reached the asymptote (Figure 2). The haplotype diver-

sity (H) was 0.9864 and the nucleotide diversity (p) was 0.0086.

The AMOVA-based fixation index was �0.02471 (P¼0.823) and

the among- and within population variances are shown in Table 1.

Based on the haplotype distribution across space, there are only 3

haplotypes shared between different oceanographic sample sites,

namely haplotype 7 (shared between sites 2, 4, 5, 7, and 8), haplo-

type 15 (shared between sites 4 and 5), and haplotype 16 (shared be-

tween sites 3 and 8) (Figures 3 and 4). The mitochondrial haplotype

network displays a star-shaped pattern.

Discussion

In this study, new definitive host records are presented for adults of

O. wageneri, namely R. terraenovae and H. americanus. These new

records increase the number of previously registered hosts from 2

elasmobranchs (B. centroura and H. guttatus, both rays belonging

to the family Dasyatidae) to 4. Comparing these host records to the

other 3 species of the genus Oncomegas (i.e., O. celatus, O. javensis

Palm, 2004, and O. trimegacanthus Schaeffner and Beveridge,

2012), the pattern of host specificity for adult Oncomegas with

dasyatid hosts is consistent, as previously noted (Palm 2004; Palm

and Caira 2008; Schaeffner and Beveridge 2014). The present find-

ing of adult O. wageneri from the Carcharhinidae R. terraenovae

from s-GoM represents the first record of the genus Oncomegas for

sharks. Because Trypanobatoida occurs primarily in rays (e.g.,

Olson et al. 2010; Beveridge et al. 2017), the present record from

R. terraenovae could be considered unusual; however, species of

Dollfusiella Campbell and Beveridge, 1994 and Prochristianella

Dollfus, 1946 have been found occurring in sharks (Olson et al.

2010; Beveridge et al. 2017). At the moment, O. wageneri and

O. celatus are the species among their congeners with the highest

number of registered elasmobranch hosts (i.e., both 4, respectively)
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Figure 2. Haplotype accumulation curve for Oncomegas wageneri (Linton,

1890) Dollfus, 1929 in the southern Gulf of Mexico.

Table 1. Within- and among population variation for Oncomegas wageneri (Linton, 1890) Dollfus, 1929 from the 9 sites in the Southern Gulf

of Mexico sampled in this study, based on an analysis of molecular variance

Source of variation df Sum of squares Variance components Percentage of variation

Among populations 8 18.717 �0.0645 Va �2.47

Within populations 43 115.033 2.6752 Vb 102.47

Total 51 133.750 2.6107
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(Haseli et al. 2010; Schaeffner and Beveridge 2012, 2014; present

study). On the other hand, O. wageneri is the species among its con-

geners with the highest number of Actinopterygii intermediate hosts

(i.e., 5 orders, 7 families, and 12 spp.), followed by O. javensis (i.e.,

4 orders, 4 families, and 6 spp.) (Palm 2004; Schaeffner and

Beveridge 2012).

Schaeffner (2018) suggests an antitropical distribution for

O. wageneri from the north- and southwestern Atlantic Ocean

based on the distribution of the 2 dasyatid definitive host species

known at the time (i.e., B. centroura and H. guttatus). However,

considering the distributions of 3 of the definitive hosts (i.e.,

H. americanus, H. guttatus, and R. terraenovae) (Toth et al. 1992;

Present study) and 4 intermediate and/or paratenic hosts from

the GoM (i.e., C. chittendeni, L. campechanus, S. gunteri, and

S. papillosum) (Thatcher 1961; Vidal-Martı́nez et al. 2014, 2019;

Centeno-Chalé et al. 2015), it is possible to infer that O. wageneri

from the American continent’s Western Atlantic Coast could

be found along a continuous distributional range between the

latitudes 42� N and �26� S [see Froese and Pauly (2017) for

geographic distribution notes of each host species], leading to the

rejection of Schaeffner’s (2018) suggestion of an antitropical dis-

tribution for O. wageneri.

The DNA sequences generated here represent the first genetic

data for >3 specimens of the parasite O. wageneri and proved useful

in addressing 3 key points. First of all, through DNA sequences, for

the first time the plerocercus and adult stages of O. wageneri were

linked, reinforcing the role of flatfishes as potential paratenic or

intermediate hosts in the life-cycle of O. wageneri from the southern

GoM, as suggested by Vidal-Martı́nez et al. (2014).

The second issue that was addressed by O. wageneri DNA

sequence data deals with taxonomical–systematic uncertainties of

the genus Oncomegas. The fact that O. wageneri is resolved as a

sister-group of O. celatus in the eutetrarhynchoid phylogenetic

framework provides for the first time molecular-based support for

the monophyly of 2 members of the genus Oncomegas.

Thirdly, the mitochondrial DNA sequence data generated for

O. wageneri individuals from 9 different sampling sites in the south-

ern GoM revealed extremely high intraspecific genetic variation

(0.0086 nucleotide diversity). More specifically, the molecular

marker used to assess this diversity was the mitochondrial COI

“barcode” region, which has recently been used for species delimita-

tion of cestodes (Trevisan et al. 2017; Mello et al. 2018). For

trypanorhynch cestodes, the only other study which has made use of

the COI marker to assess intraspecific genetic variation found a

much lower value (0.01%) for the species T. coryphaenae (Palm

et al. 2007). However, the values obtained from Palm et al.’s (2007)

study and those obtained here are not directly comparable, not only

because there is no overlap in the region of the marker sequenced

Figure 3. Haplotype network of Oncomegas wageneri (Linton, 1890) Dollfus, 1929, from three species of hosts from the southern Gulf of Mexico using the barcod-

ing gene COI. Numbered circles represent individual haplotypes, with the size of the circles proportional to the number of individuals representing each haplo-

type. Mutations between haplotypes are shown as hatch marks on lines connecting each haplotype. The colors of the circles represent the different localities, as

shown in the key.
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between the 2 studies, but especially because Palm et al. (2007) only

used 3 sequences, which is an insufficient sample size for making

adequate inferences of intraspecific variation.

In addition to the high genetic variation, the population genetic

analyses for O. wageneri from the s-GoM revealed a lack of struc-

ture among the sampled sites, as can be seen from the fact that there

is much higher within than among population variation, based on

the AMOVA. Furthermore, the non-significant P-value for the fix-

ation index means that in the region studied here, we failed to reject

panmixia with the sampling at hand. The high genetic variation and

inferred panmixia in the s-GoM could be explained by the parasite’s

life history (Detwiler and Criscione 2011; Gorton et al. 2012; Kasl

et al. 2015) as well as its wide range of hosts with different vagilities.

For example, using genetic data, Richards et al. (2019) recently

showed that H. americanus undergo coastal migration along the

southeastern of USA and Caribbean coasts and can disperse across

deep waters for short distances, despite their demersal lifestyle.

A host with such vagility may thus contribute to increased gene

flow of parasite populations. However, to make a more detailed

assessment of the evolutionary forces acting on O. wageneri from

the s-GoM, the population genetic studies would need to include

individuals from many more sites and a wider range of molecular

markers. Although there are no comparable studies of trypano-

rhynch cestode population genetics, studies of other aquatic para-

sites (both nematodes and platyhelminthes) have shown that host

vagilities play a crucial role in determining the parasite’s population

structure and gene flow (e.g., Criscione and Blouin 2004; Feis et al.

2015; Sprehn et al. 2015; Gagne et al. 2018).

Studies on cestode diversity in vertebrate hosts globally have

increased during the past 10 years due to international collaborative

efforts such as the Planetary Biodiversity Inventories (PBI) (Caira

and Jensen 2017). Even so, including the work presented here, there

have only been 2 studies inferring the population genetic diversity of

trypanorhynch cestode species, and their results are very contrasting.

Even in the “genomics era” (Bierne et al. 2016), little is known

about the genetic diversity of natural populations of wildlife in bio-

logically complex and resource-rich marine areas such as the GoM.

Similar to the PBI, the GoM is starting to be studied in a more sys-

tematic and thorough fashion through the collaborative efforts of

researchers in the Consorcio de Investigación del Golfo de Mexico

(CIGoM; www.cigom.org, last accessed 20 September 2019).

Therefore, the population genetic diversity found here for O. wage-

neri from the s-GoM sets a baseline against which future studies can

be compared, for cestode parasites of the order Trypanorhyncha, as

well as other taxa from the GoM.
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Gold-Bouchot G et al., 2014. The metazoan parasite communities of the

shoal flounder Syacium gunteri as bioindicators of chemical contamination

in the southern Gulf of Mexico. Parasites Vectors 7:541.

Vidal-Martı́nez VM, Torres-Irineo E, Romero D, Gold-Bouchot G, Martı́nez-

Meyer E et al., 2015. Environmental and anthropogenic factors affecting

the probability of occurrence of Oncomegas wageneri (Cestoda:

Trypanorhyncha) in the southern Gulf of Mexico. Parasites Vectors 8:609.

Vidal-Martı́nez VM, Torres-Irineo E, Aguirre-Macedo M, Janovy J, Esch GW,

2016. A century (1914–2014) of studies on marine fish parasites published

in the Journal of Parasitology. In: Janovy J, Esch GW, editors. A Century of

Parasitology: Discoveries, Ideas and Lessons Learned by Scientists Who

Published in the Journal of Parasitology, 1914–2014. Chichester: Wiley,

57–74.

Vidal-Martı́nez VM, Velázquez-Abunader I, Centeno-Chalé OA, May-Tec
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