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Abstract

Silent gestures consist of complex multi-articulatory movements but are now primarily studied
through categorical coding of the referential gesture content. The relation of categorical linguistic con-
tent with continuous kinematics is therefore poorly understood. Here, we reanalyzed the video data
from a gestural evolution experiment (Motamedi, Schouwstra, Smith, Culbertson, & Kirby, 2019),
which showed increases in the systematicity of gesture content over time. We applied computer vision
techniques to quantify the kinematics of the original data. Our kinematic analyses demonstrated that
gestures become more efficient and less complex in their kinematics over generations of learners. We
further detect the systematicity of gesture form on the level of thegesture kinematic interrelations,
which directly scales with the systematicity obtained on semantic coding of the gestures. Thus, from
continuous kinematics alone, we can tap into linguistic aspects that were previously only approachable
through categorical coding of meaning. Finally, going beyond issues of systematicity, we show how
unique gesture kinematic dialects emerged over generations as isolated chains of participants gradually
diverged over iterations from other chains. We, thereby, conclude that gestures can come to embody
the linguistic system at the level of interrelationships between communicative tokens, which should
calibrate our theories about form and linguistic content.
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1. Introduction

All known natural languages combine discrete categorical elements with continuous and
dynamic properties (Bolinger, 1968). For a long time, the study of human communicative
behavior has focused on aspects that best yield to analysis in terms of discrete categories such
as lexical items, phonological building blocks, semantic categories, and their combinatorial
properties. At the same time, language use is widely acknowledged to also feature more gradi-
ent and continuous streams of behavior that do not always easily yield to an analysis in terms
of discrete symbol systems (Enfield, 2009; Kendon, 2004). Here, we investigate whether kine-
matic measures directly derived from continuous manual movements can capture the meaning
space they are designed to communicate. Using communicative silent gestures as a test case,
we show how continuous movements can be studied and are patterned as evolving dynamic
systems.

Manual gestures are seldomly semiotically studied based on the measurable part of a sig-
nal’s form, namely, manual and whole-body postures in movement (i.e., the kinematic level;
for exceptions see, e.g., Borstell & Lepic, 2020; Trujillo et al., 2019). Instead, gestures are
mostly studied as already categorizable expressions by researchers inferring meaning from
their form (McNeill, 2005). As such, the kinematics are, in one sense, reduced (from contin-
uous to discrete tokens), and in another sense, enriched (from movement to message) with
meanings that are projected onto them by human arbitrators. Here, we study more abstract
aspects of gestural systems through kinematic analysis. Our aim is to show that we do not
need to leave the domain of form to observe the emergence of systematic properties. We sug-
gest that a signal’s form, when studied in relation to other forms, can provide information
about its linguistic properties that can complement or supplement cues that take into account
conventional denotation and contextual information. Such systematicity in form—where low-
level properties can serve as cues to higher-level regularities—is known from work on lexical
classes in signed and spoken languages (Dingemanse, Blasi, Lupyan, Christiansen, & Mon-
aghan, 2015; Padden et al., 2013). To observe it in existing linguistic systems, we can rely on
conventional meanings and existing syntactic and semantic categories. Here, we aim to cap-
ture its emergence in rich kinematic signals as they evolve over time. In doing so, we want to
contribute to an understanding of how communicative signs come to function as interrelated
parts of complex dynamic systems: relatively stable ways of signaling that form higher-order
structural wholes (Dale & Kello, 2018; Raczaszek-Leonardi & Kelso, 2008).

The sense-making process of individual forms becoming parts of structural wholes is essen-
tially simulated in iterated learning experiments (Kirby, Griffiths, & Smith, 2014; Motamedi,
Schouwstra, Smith, Culbertson, & Kirby, 2019). In such experiments, agents are tasked to
learn a novel set of signals. These signals are iteratively transmitted to later generations and/or
used in communication by later generations (iterated learning 4+ communication), where, over
many cycles of learning and use, they are affected by various transmission biases (e.g., Chris-
tiansen & Chater, 2016; Enfield, 2014). Processes of iterated learning and communication
can simulate how structural properties such as systematicity, learnability, and compositional-
ity evolve from simpler communication systems. In such simulations, communicative tokens
undergo cultural evolution constrained by population dynamic properties such as historicity
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(the system is constrained by past contingencies) and adaptivity (the system adapts in ser-
vice of its informative goals). Such population dynamics must have played out over long
temporal and vast population scales, but through these iterated learning paradigms, such pro-
cesses are to some degree brought under experimental control. These evolving or emerg-
ing communicative systems can be constituted by a variety of different signal media, from
simple discrete symbol sequences to more challenging continuous acoustic signals (Cornish,
Dale, Kirby, & Christiansen, 2017; Ravignani, Delgado, & Kirby, 2016; Verhoef, Kirby, &
de Boer, 2016).

2. Current case study

Traditionally, iterated learning studies have simulated the cultural evolution of sign systems
using easily discretized word-like written forms (Scott-Phillips & Kirby, 2010). While this
has made it easy to operationalize measures like compressibility, systematicity, and expres-
sivity, it has done so at the expense of ecological validity. After all, the embodied semiotic
resources that all known natural languages rely on are not carved into a predefined discrete
symbol system like the Latin alphabet; instead, users and analysts of language alike must
derive everything they know about linguistic systems from biological signals that are funda-
mentally dynamic and continuous (Pattee & Raczaszek-Leonardi, 2012).

Iterated learning work has only recently moved into the area of continuous signals. The first
adaptations focused on the emergence of phonological organization in continuous acoustic
signals (Verhoef, Kirby, & de Boer, 2014, 2016). Such signals do not afford a lot of semantic
expressivity (but do see Cwiek et al., 2021), so recent work has further focused on the more
daunting area of continuous multi-articulator signals in the form of manual depictions or silent
gestures (Motamedi et al., 2019). This experimental work studied the transmission of silent
gestures created to communicate 24 concepts along two broad semantic dimensions: theme
(e.g., food, religion) and function (e.g., person, location; see Fig. 1).

The two semantic dimensions provide possible axes for compression and systematization
of the communicative tokens. At one extreme, one might invent 24 unique gestural utter-
ances that are not clearly related to each other, such as in the following videos for “to sing”
(https://osf.io/d8srx/) and “‘singer” (https://osf.io/974ke/). A more efficient encoding would
be to start differentiating by functional category such that “microphone” is preceded by a
general object marking gesture (https://osf.io/r3gcp/) and “singer” is preceded by a general
person marking gesture (https://osf.io/ex4tv/), both followed by the same thematic marking
gesture conveying “music.” Such general functional markers aid the disambiguation of related
meanings, and they allow for a systematic reemployment of the same signal, thereby reduc-
ing the signaling space. In theory, once you invent four functional marker gestures and six
thematic marker gestures, you can systematically recombine these to convey all 24 mean-
ings. The communicative system then has compressed its information density from 24 to 10
information units.

Motamedi et al. (2019) indeed observed such signs of compression of the meaning
space as the system developed. In early iterations of learning, fairly fine-grained iconic


https://osf.io/d8srx/
https://osf.io/974ke/
https://osf.io/r3gcp/
https://osf.io/ex4tv/

4 of 29 W. Pouw et al./Cognitive Science 45 (2021)
Functional
Dimension
person location object action
food chef restaurant | frying pan to cook (a)
u g religion vicar church bible to preach
%3
£ 5 photography |photographer| darkroom camera topﬁ'oktza
2E
: -
- [a) music singer concert hall| microphone to sing
hair styling | hairdresser | hair salon | scissors tﬂ:::_\éita
lawenforcement |.ice officer|  prison handcuffs | ;i::tan

Fig. 1. Concepts to be conveyed in gesture in Motamedi et al. (2019) and (motion tracking) examples

(a) The concepts and categories that were used in the original experiment are shown. (b) Two example of silent
gestures depicting the concept “prison.” In the first generation, a drawn out multicomponent silent gesture is
produced (multiple arm movements and head movement), while in the final generation 5, a simpler gesture is
produced with only two components. For the current study, we use motion tracking of the silent gestures, indicated
here with a pose-skeleton overlaying the original video data.

enactments were the most common way of gesturally depicting the referents. But over gen-
erations, functional markers were found to become more prevalent and meaning components
were increasingly reused across gestures. On our supplemental page, we have provided video
examples (https://osf.io/5zqnb/) of all the gestures produced in generation 1 versus generation
5 for a particular chain (chain 1), where we highlight in red how in generation 5 there are clear
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recurring functional markers for the person category (using a pointing-to-self gesture), which
is absent in generation 1.

With meticulous hand coding of the different referential components of each silent gesture,
Motamedi et al. (2019) quantitatively tested whether there was indeed systematicity emerging.
The gesture coding included information about the form of a particular gesture segment, such
as the number of manual articulators used (1 or 2 hands), as well as the referential target of the
gesture (e.g., hat; pan; turn page). Based on the full sequences of the referential components
that were uniquely expressed in each gesture, entropy was computed, which expresses com-
pressibility of the gesture content, i.e., the amount of information that is needed to compress
the signal set.

When a lot of referential components in a gesture utterance recur between other gestures,
such as in our theoretical case mentioned above, the system has a simpler structure and will
show reuse of gestural components (e.g., Gibson et al., 2019). Dovetailing with the qualitative
observations and other studies in this field (e.g., Verhoef et al., 2016), it was indeed found that
gesture-component entropy decreased over the generations. Furthermore, the gestures were
explicitly coded for the amount of marking for the functional category, and results showed
that such gestures indeed occurred more often at later generations. Finally, average gesture
duration—as a measure of communicative efficiency—did not reliably change over the genera-
tions, which ran counter to previous research showing a reduction in complexity over repeated
gesture use (Gerwing & Bavelas, 2004; Holler & Wilkin, 2011), as well as predictions that
more mature communication systems tend toward maximal efficiency (Gibson et al., 2019).

These results obtained in the lab resonate with findings from homesign (e.g., Haviland,
2013) and emerging sign languages (Senghas, Kita, & Ozyiirek, 2004). For example, it has
been shown that in the expression of motion events, first-generation signers of Nicaraguan
sign language performed more holistic presentations of path and manner, while in following
generations, manner and path were segmented. Such segmentations afford novel combinato-
riality and therefore increases the generativity of a language. It expresses the meaning space
with fewer individual components, similar to how the participants studied by Motamedi et al.
(2019) started to compress the meaning space by developing ways to mark functional status
across referents (e.g., “agent,” “action”).

As we see here, qualitative empirical grounding is crucial for ensuring a rich understanding
of evolving multimodal signaling systems. In addition, gesture coding by human annotators
makes it possible to track and quantify gestural elements encoding referents and functional
dimensions, and yields measures that can be used in quantifications of entropy and the emer-
gence of structure over time. However, it does so at the cost of reducing rich multidimensional
kinematic signals to discretized sequences of coded values from a limited set. Because of this,
some aspects of the evolving systems remain outside of our reach. Can we approach these
developing systems in a way that is more sensitive to their continuous and dynamic proper-
ties? Do the kinematic changes that occur over generations reflect convergence on motoric
“norms” or the development of unique gestural systems? In other words, do transmission
chains develop their own gestural “dialects” over time? These are the questions we aim to
address using kinematic methods, from a theoretical perspective influenced by dynamical
systems and biosemiotics.
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3. Current study

Here, we build on data from this recent iterated learning paradigm with silent gestures
(Motamedi et al., 2019). With computer vision (Cao, Simon, Wei, & Sheikh, 2017) we
obtained motion traces of manual and head gestures (see e.g., Lepic, Borstell, Belsitzman,
& Sandler, 2016; Ripperda, Drijvers, & Holler, 2020). We then investigated kinematic inter-
relationships between gestures (e.g., Beecks et al., 2015, 2016; Sato, Schouwstra, Flaherty,
& Kirby, 2020), where we leverage bivariate time-series analysis (dynamic time warping
(DTW)) with network topology analysis and visualization (Pouw & Dixon, 2019; Pouw et al.,
2021). Through this analysis, we show that the study of gesture’s form can reveal the linguistic
constraints on the kinematic system as a whole.

We hypothesized that over iterations:

1. gesture kinematics become simpler;
gesture kinematic relationships become more systematic, and this scales with system-
aticity computed over gesture content coding from the original study;

3. the simplification of kinematics at the level of individual gestures is related to the
systematicity of kinematic relationships across gestures;

4. idiosyncratic gesture cultures emerge as evidenced by chains drifting away from each
other over time.

Importantly, the prediction that gestures simplify is based on previous research reporting
simplification as judged by human annotators (e.g., Gerwing & Bavelas, 2004) and previ-
ous kinematic findings (Namboodiripad, Lenzen, Lepic, & Verhoef, 2016). We extend this
research, as well as the original study (Motamedi et al., 2019), with a detailed kinematic
analysis of the simplification of evolving gestures, assessing how not only salience (Nam-
boodiripad et al., 2016) but also segmentation and temporality of gestures may change and
simplify as they become part of a system of expression.

Not all kinematic changes observed will be evidence of linguistic constraints, however.
Simplification over time, as in (1), could result simply from effort minimization. But when
we observe increased systematicity in the system as a whole in (2) as related to kinematic
simplification (3), we have a direct indication of a systematically structuring communica-
tion system. Therefore, we assess whether a Shannon-based entropy measure computed on
kinematic relationships shows that the systems become more structured (i.e., compressible).
Using measures that are similar to the original study, we can then also compare whether the
entropy of kinematics is related to the entropy of the human-coded semantic content of the
gesture. If so, we have good evidence that linguistic constraints can be objectively studied
from systematic changes in gesture form. Note, again, that this is not just a methodological
exercise to replicate original findings with automated methods. If we can show some equiva-
lence between form and content analysis, then they are not on a qualitatively different analytic
plane. If we can show that systematicity emerges over iterations without leaving the domain
of kinematics, it means that a gesture’s form is more transparent to linguistic functioning than
is currently assumed.
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Finally, with (4), we show how we can study chain-specific cultural evolutionary trajecto-
ries, by assessing the extent to which the communicative chains drift away from each other.
The path-dependence of cultural evolution means that chains can diverge from one another
over time, resulting in kinematic dialects. To assess this, we use cluster performance mea-
sures to quantify whether gestures within a chain tend to become more kinematically similar
to each other and more dissimilar to gestures of other chains. This analysis is an example of
the unique affordances of quantitative kinematic measures and will enable us to study, for the
first time, the emergence of kinematic dialects.

4. Method

We will follow a bottom-up approach to the study of kinematics as communicative systems.
In the first stage of our analysis, we demonstrate the specific changes that occur in the kine-
matics of the gestures. In the second stage, we assess possible systematic interrelationships in
kinematic patterns of gestures through gesture network analysis (Pouw & Dixon, 2019). We
will discuss each step in this procedure in the following sections and finally discuss our main
gesture network entropy measure. In the supplemental information, we reserve extra space for
sanity checks of automated processing and graphical descriptive results of the key measures.

4.1. Participant, design, and procedure of the original study (Experiment 1)

Here, we discuss the setup of the experiment, which generated the data we reanalyzed (for
more detailed information, see Motamedi et al., 2019).

A seed gesture set was created with 48 pre-study participants who each depicted 1 out of
24 concepts. Thus, for each concept, there were two seed gestures performed by unique pre-
study participants. Given that pre-study participants only produced one gesture, they were
isolated from the other concepts that comprised the meaning space.

For the main experiment (Experiment 1), 50 right-handed English-speaking non-signing
participants were recruited. They were allocated pairwise to one of five iteration chains. Par-
ticipants were first shown a balanced subset of 24 unique seed gestures. These chain-specific
seed gesture sets will be referred to as generation 0, which were followed by generations 1
through 5. In the training phase, gestures were presented in random order, and participants
were asked to identify the meaning of the gesture from the 24-item meaning space, followed
by feedback about their performance. They were then asked to self-record their own copy
of the gesture. Participants trained with a subset of 18 items (out of 24) and completed two
rounds of training.

In the testing phase, participants took turns as director and matcher to gesturally communi-
cate (without using speech) and interpret items in the meaning space, with feedback following
each trial. This director-matcher routine was repeated until both participants communicated
all 24 meanings. Subsequent generations were initiated with new dyads whose training set
was the gestures from one randomly selected participant from the prior generation.
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The recorded videos of the seed gestures and the gesture utterances participants produced in
the testing phases are the data we use here. This means that we have 50 participants conveying
24 concepts = 1200 gesture videos belonging to generations 1-5, and 48 seed gesture videos
with each concept conveyed by two unique seed participants. This forms the primary data that
we reanalyze using kinematic methods.

4.2. Motion tracking

Motion tracking was performed on each video recording with a sampling rate of 30 Hz.
To extract movement traces, we used OpenPose (Cao et al., 2017), which is a pre-trained
deep neural network approach for estimating human poses from video data (for a tutorial,
see Pouw & Trujillo, 2019). We selected key points that were most likely to cover the gross
variability in gestural utterances: positional x (horizontal) and y (vertical) movement traces
belonging to left and right index fingers and wrists, as well as the nose. For all position traces

generations
1 2 3 4 5
YA Y YA YA A
random balanced
selection (n = 24)
motion tracking
Tg,i X, Yy traces

(

pa|eds pue paauad
A 10 x uonisod

Tan nose x,ye | A s oS
Ta2 leftindex x, ye f—— 7

T3 right index x, y
Tsa leftwristx, ye | \/\-\_J“W

T,s right wrist x, y . .
4 6 seconds

33Hz 1st order
butterworth low-pass filter

—> normalized —- centered

openpose

Fig. 2. Design experiment and OpenPose tracking. First steps of the general procedure (a) shows the original
experiment setup (Motamedi et al., 2019), where a seed set of 24 gestures was randomly selected for each chain
containing five generations. Seed gestures were used to train the first generation of each chain; after that, gestures
from the previous generation were used as training data. Participants then communicated gesturally about the same
concepts. (b) For our analysis, we first performed video-based motion tracking with OpenPose (Cao et al., 2017)
to extract relevant two-dimensional (2D) movement traces (7, ;) for each gesture g for body key points i (nose, the
wrists, and index fingers). After motion tracking, the next steps were dynamic time warping (DTW) and gesture
network analysis (Fig. 3).
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and their derivatives, we applied a first-order 30 Hz low-pass Butterworth filter to smooth out
high-frequency jitters having to do with sampling noise. We z-normalized and mean-centered
position traces for each video to ensure that differences between subjects (e.g., body size) and
within-subject differences in camera position at the start of the recording were inconsequential
for our measurements. See Figure 2 for a graphical overview.

4.3. Kinematic properties

We first selected five potential measures representative of the kinematic quality of the
movements in terms of segmentation, salience, and temporality, namely, submovements, inter-
mittency, gesture space, rhythm, and temporal variability (or rhythmicity). See Fig. 3 for two
example time series from which most measures can be computed. All measures were com-
puted for each key point’s time series separately and then averaged so as to get an overall
score for the multimodal utterance as a whole. Based on these exploratory measures, we even-
tually selected three measures tracking gesture salience (gesture space), gesture segmentation
(intermittency score), and gesture temporality (temporal variability). We discuss the motiva-
tions for selecting each measure below. Correlations between these variables and distributions
are shown in supplementary materials, Fig. S1.

, Jsubmovements =5 5] submovements = 3
:g intermittency = 92 :E’: intermittency = 72
S temporal yar. = 1.37 K temporal var. = 1.77
n (]
1 11 1A
N o
Az Az
—_ —_
2 2
2 04 £ 07
2 2
— S
o ©
(<)) [
o (]
Q4] a -1+
n n

0 2000 4000 6000 0 1000 2000 3000 4000
time (ms) time (ms)

Fig. 3. Overview kinematic measures. Two time series showing right-hand wrist speed in two different trials. Our
measures of segmentation and temporal variability are computed from time series like this. SEGMENTATION cap-
tures the amount of submovements (observed peaks in red), so the first time series is more segmented than the
second. INTERMITTENCY captures similar information in a continuous fashion using rates of change in acceler-
ation, yielding a higher score for the first time series than for the second. TEMPORAL VARIABILITY captures the
rhythmicity of the signal and is operationalized in terms of the regularity of temporal intervals between submove-
ments. In the first plot, red dots occur at relatively equal temporal intervals (lower temporal variability), whereas
in the second, the temporal intervals are highly unequal (higher temporal variability). Finally, gesture space was
calculated from the size of x,y position traces not shown here.
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4.4. Gesture salience

As a measure for gesture salience or reduction, we computed a gesture space measure. This
was determined by extracting the maximum vertical amplitude of a key point multiplied by
the maximum horizontal amplitude, that is, the area in pixels that has been maximally covered
by the movement.

4.5. Gesture segmentation

We first computed a submovement measurement similarly implemented by Trujillo,
Vaitonyte, Simanova, and Ozyiirek (2019). Submovements are computed with a basic peak
finding function which identifies and counts maxima peaks in the movement speed time series.
We set the minimum inter-peak distance at eight frames, and minimum height = —1 (z-scaled;
1 std.), minimum rise = 0.1 (z-scaled).

One property of the submovement measure is that it discretizes continuous information
and uses arbitrary thresholds for what counts as a submovement, thereby risking information
loss about subtle intermittencies in the movement. To have a more continuous measure of
intermittency (the opposite of smoothness) of the movement, we computed a dimensionless
jerk measure (Hogan & Sternad, 2009). This measure is dimensionless in the sense that it is
scaled by the maximum observed movement speed and duration of the movement. Dimen-
sionless jerk is computed using the following formula:

! " 2 D3
f x"(@)ydt x ———— (1)
1

2 max (vz) ’

Here, x”” is a jerk (second derivative of the speed), which is squared and integrated over
time and multiplied by duration D that is cubed over the maximum squared velocity max(v?).
We show in the supplementary materials (Fig. S2) that this measure correlates very highly
with submovements; thus, we chose to only use intermittency for further analysis. Note that
a higher intermittency score indicates more intermittent (less smooth) movement. We log-
transformed our smoothness measures due to skewed distributions.

4.5.1. Gesture temporality

From the submovement measure, we computed the average interval between each sub-
movement (in Hz), which is a measure of rhythm tempo. This measure was, as expected,
highly correlated with intermittency score (see Fig. S2), as tempo goes up when more seg-
mented movements are performed in the same time window, » = .8, p < .001, which led
us to drop this measure for our analysis. Instead, we use another temporal measure that is
more orthogonal to intermittency and gesture space and which captures the stability of the
rhythm: the temporal variability of the movements. This measure is simply the standard devi-
ation of the temporal interval between submovements (given in Hz): a higher score indicates
more temporal variability and a lower score indicates more isochronous rhythm. Note that
this measure cannot be calculated when there are less than three submovements (i.e., when
there no intervals in which we can detect the temporal variability).



W. Pouw et al./ Cognitive Science 45 (2021) 11 of 29

4.6. Human coding and kinematic measures

For information about how these automated kinematic measures approximate hand-coded
data from Motamedi et al. (2019), see Fig. S2. The human-coded data consisted of the number
of unique information units of the gesture utterance, the number of repetitions in the utter-
ance, as well as the number of segments (information units 4 repetitions). We should predict
that our kinematic intermittency score should correlate with the number of segments, repeti-
tions, and information units as the kinematics will have to carry those information units by
contrasts in the trajectories. Fig. S2 shows the correlations for our kinematic measures and
the human-coded gesture information. It shows that the number of information units (unique,
repeated, or total) in the gesture as interpreted by a human coder reliably correlate with kine-
matic intermittency (more intermittent, more human-coded information units), gesture space
(larger space, more information units), and temporal variability (more stable rhythm, more
information units).

4.7. DTW

DTW is a common signal processing algorithm to quantify the similarity between tempo-
rally ordered signals (Giorgino, 2009; Mueen & Keogh, 2016; Muller, 2007). The algorithm
performs a matching procedure between two time series by maximally realigning (warping)
nearest values in time while preserving order and comparing their relative distances after this
non-linear alignment procedure. The degree of divergence between the two time series after
warping indicates how dissimilar they are. This dissimilarity is expressed with the DTW dis-
tance measure, with a higher distance score for more dissimilar time series and a lower score
for more similar time series.

The time series in the current instance are multivariate, as we have a horizontal (x)
and vertical (y) positional time-series data. However, DTW is easily generalizable to
multivariate data and can compute its distances in a multidimensional space, yielding a mul-
tivariate dependent variant of DTW. We opt for a dependent DTW procedure here as x and
y positional data are part of a single position coordinate in space. Additionally, we have
six of these two-dimensional time series for each body key point. To compute a single dis-
tance measure between gestures, we computed for each gesture comparison a multivariate
dependent DTW distance measure per key point, which was then summed for all key point
comparisons to obtain a single distance measure D (illustrated in Fig. 5). The D measure thus
reflects a general dissimilarity (higher D) or similarity (lower D) of the whole manual + head
movement utterance versus another utterance. Note that the DTW procedure is applied on the
entire gesture utterance, which could consist of multiple components (e.g., hand cuff gesture
+ pointing). This also means that gestures with a different ordering of identical components
lead to high DTW distances because they are treated as two holistic gestures in the current
procedure. We will come back to this in the discussion, but it should be noted that this is a
drawback of the current DTW approach as it is known that flexible ordering of components is
not uncommon in, for example, early developing sign languages (e.g., Ergin, Kiirsat, Hartzell,
Jackendoff, 2021; Ortega & Ozyijrek, 2020).
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Fig. 4. Density distributions of D for true pairs and random pairs. Density distributions of D are shown for the
random versus real pairs. With D based on head, wrist, and finger movements, there is good discriminability
between real versus falsely paired gestures, confirming that our approach is tracking gesture similarity well.

We used the R package “DTW” (Giorgino, 2009) to produce the multivariate distances per
key point. The DTW distance measure was normalized for both time series’ lengths, such that
average distances are expressed per unit time rather than summing distances over time which
would yield higher (and biased) distance estimates for longer time series (i.e., longer gesture
videos). For a further conceptual overview and methodological considerations of our DTW
procedure, see Pouw and Dixon (2019).

As a demonstration that our D measure reflects actual differences in kinematics, we com-
puted for each individual in each chain the difference between a gesture seed and the gesture
that the individual produced to copy it for generation 1. These “true pairs” must be maximally
similar (lower D) as the individual produced their copied gesture shortly after first exposure
in the training phase, which should lead to high faithfulness in reproduction. We contrast this
with a false or random comparison of the same gesture in generation 1 with a gesture seed
that was neither in the same functional nor thematic category. These false random pairs must
be more dissimilar and should produce higher DTW distances. Fig. 4 shows the distributions
of the distances observed. DTW distance distributions were reliably different, ¢ (469.77) =
15.82, p < .001, Cohen’s d = 1.44, for the true pair, M = 2.78 (SD = 0.78), as compared to
the random pair, M = 3.84 (SD = 0.69).

We find that adding head movement trajectory to our D calculation significantly increases
false-real pair discriminability in comparison when we compute our D measure on only man-
ual key points (left/right wrist and index fingers), change in Cohen’s d = 0.41, change D real
versus false = 0.33, p < .001. Therefore, we conclude that in the current experiment, the ges-
ture utterances are also crucially defined by head movements as well. This is a novel finding
in and of itself and demonstrates the multi-articulatory nature of silent gestures.
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Fig. 5. General method gesture network analysis. (a) For each body part in a gesture comparison, we used DTW
to compute a multivariate normalized distance gesture, which we summed into an overall distance measure D
for each gesture comparison within a gesture set. (b) All distance measures were saved into a distance matrix
D containing all gesture comparisons D; ; within the comparison set, resulting in a 24 x 24 distance matrix.
The distance matrix can be visualized as a weighted graph through dimensionality reduction techniques, such that
nodes indicate gesture utterances and the distance (or weight) between gesture nodes representing the ‘D’ measure,
indicating dissimilarity.

4.8. Gesture kinematic networks

Graphically shown in Fig. 5, we constructed for each participant (nested in generation
and chain), as well as each seed gesture set (seed set belonging to that chain), a distance
matrix D, containing the continuous D comparisons for each gesture D; ; produced by that
participant with each other gesture produced by that participant, yielding a 24 x 24 matrix.
The diagonal contains zeros for gesture comparisons that are identical (D; ; = 0|i = j).
These characteristics make D a weighted symmetric distance matrix.

For each distance matrix, we can construct a visual geometric representation of its topology
by projecting the distance of gesture tokens on a 2D plane using a dimensionality reduction
technique called “t-SNE,” a variant of stochastic neighbor embedding (Maaten & Hinton,
2008). These 2D representations show locations of gesture nodes, with distances between
gesture nodes approximating our D measure. Note though that these 2D approximations in
the case of t-SNE are exaggerated projections of the data and should be distinguished from
the actual high-dimensional structure of the data. The uncompressed distance matrices are
used to calculate entropy and other measures. We refer to these measurements as “network
properties,” as these measures are intuitively understood in the network or geometric terms.
For calculations of network entropy, we use the R package “igraph” (Csardi, 2019), and for
dimensionality reduction, we use R package “tsne” (Donaldson, 2016). On our supplemental
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page, we again show video examples of all the gestures produced in generation 1 versus
generation 5 for a particular chain (chain 1) but now with videos spatially located according
to their coordinates in kinematic space (https://osf.io/wbmf9/). Examples are highlighted in
red, where kinematic similarity increases from generation 1 to 5 due to functional markers
being used for the category “location.”

4.8.1. Kinematic entropy

Entropy is a measure that quantifies the compressibility of data structures and has been
used to gauge the combinatorial structure of communicative tokens in the field of language
evolution (e.g., Verhoef et al., 2016; for theoretical grounding, see Gibson et al., 2019). In the
original experiment, Motamedi et al. (2019) computed entropy from the gesture content cod-
ings, which captured recurrent information units between gestures. In our case, entropy quan-
tifies the degree to which there are similar or more diverse edge lengths (i.e., similar/diverse
levels of dissimilarity “D” between combinations of two gesture trajectories). If they are more
similar, lower entropy reflects that communicative tokens relate to each other in more struc-
tural ways. So our measure of network entropy gauges how compressible kinematic interrela-
tionships are, which is conceptually related to the systematic recurrence of information units
between the human judged gesture content.

The network entropy measure we used (see Eagle, Macy, & Claxton, 2010) is almost
identical to a classic Shannon entropy calculation used in the original study to quantify
the systematicity of the gesture’s content (Motamedi et al., 2019), where Entropy H(X) =
— Y p(X)logp(X). The only difference is that our measure is computed on the distances for
each node relative to the shortest path to the other nodes and then normalized by the num-
ber of gesture distances. So our measure quantifies the topological diversity of the gesture
relationships, where a lower score indicates more similar relationships and a higher score
indicates a more randomly distributed set of relationships. Specifically, for each gesture node,
we compute the diversity of kinematic distances to other gestures, using a scaled Shannon
entropy measure:

k
H(i) = =) pijlogpij/log (k). )
j=1
Here, k; is the number of gesture connections for gesture i, and p;; is the proportional
distance:

k
pij =Di; / Z D;;. 3)
j=1

Here, p;; is the distance between gesture i and gesture j divided by the total distance
involving gesture i. Fig. 6 shows a graphical example of different network structures and the

concomitant entropy measure.
Gesture kinematic culture. To assess whether there is a kinematic culture emerging such
that gestures in a specific chain are over the generations becoming more similar in kinematics
as compared to gestures from another chain, we leverage cluster performance measures. For
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Fig. 6. Example network entropy. Simulated data showing six clusters with low variance in distances (top panel),
higher variance (middle panel), or randomly distributed distances (lower panel). More variable and random dis-
tributions of node distances yield higher entropy scores. In contrast, entropy is lowest when interrelationships are
distributed in a more systematic way (top panel).

each generation, we assess whether gestures from a particular chain are also likely to cluster
in a super-ordinate kinematic space that includes all gestures performed across generations
(i.e., gestures produced in chains 1 through 5). Clustering can be quantified in several ways.
In our analysis, we report on two well-known cluster performance measures: Dunn index and
Silhouette width (Yadav, Tomar, & Agarwal, 2013). In general, cluster performance measures
relate within-cluster distances between nodes (minimal when clusters are stable) to between-
cluster distances (maximal when clusters are stable), though they vary in how they compute
the within and between distances. The Dunn index quantifies the compactness of the clusters
assigned (chains in our case) and relates the minimum distance between centroids of each
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cluster to maximal distance between points, where higher values indicate better clustering.
However, this Dunn index measure only yields five data points in our case, one for each
chain, which makes it hard to perform a statistical test. Therefore, we will also compute a
token level measure of Silhouette width, which, for each token, relates the mean distance to
other tokens within its cluster to the minimum distance between a member of a neighboring
cluster.

5. Main results

We first report changes in kinematic features over generations. Then we consider the
change in relations between communicative tokens over generations as indexed by kinematic
network entropy. We also relate kinematic changes to network-level changes. Finally, we
consider how chains diverge over time, allowing a peek into the emergence of unique gesture
cultures.

5.1. Kinematic features

A key aim of our analysis is to capture the fine-grained kinematic features that drive
changes in the gestural systems over generations, which are hard to capture with a manual
coding system focusing on the semiotic relation between gesture and meaning. All three of
our kinematic measures show the hallmarks of increased communicative efficiency through
reduced kinematic complexity over generations (Fig. 7).

We performed mixed effects regression analysis for assessing potential kinematic changes
as a function of generation, with random intercept for participants nested within chains (ran-
dom slopes did not converge). Generation reliably predicted intermittency of the movements
relative to a base model (chi-squared change (1) = 76.66, p < .001, model R’ = 0.06). In this
model, generation predicted lower intermittency score (b estimate = —0.2263, ¢ (1135.00) =
-8.90, p < .001, Cohen’s d = —0.53). We also observe lower temporal variability as a function
of generation (chi-squared change (1) = 24.12, p < .001, model R? = 0.05), indicating more
stable rhythmic movements at later generations (b estimate = —0.0693, ¢ (332.00) = —4.97,
p < .001, Cohen’s d = -0.55)).

Finally, over generations gesture space decreased (chi-squared change (1) = 24.45, p <
.001). Model estimated gesture space was less for later generations (b estimate = —2.2100,
1 (1174.00) = -4.97, p < .001, Cohen’s d = —0.29).

Subtle changes in kinematic features are hard to capture using human coding, and indeed
the rough proxies for this used by Motamedi et al. (2019; length and number of repetitions
of coded information units) did not demonstrate increased communicative efficiency. Here,
we are able to capture increased efficiency by quantifying fine-grained kinematic features at
the level of gesture tokens. Using independently motivated measures, we found that gestures
were on average smaller, less temporally variable, and less intermittent as the communicative
system matured.
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Fig. 7. Change in kinematic properties over generations. Generation trends per chain for intermittency, temporal
variability, and gesture space. Over the generations, movements become more smooth (lower intermittency score),
show more stable rhythms (lower temporal variability), and more minimized movements (smaller gesture space).
There are fewer data points for temporal variability because this can only be computed for comparisons of gestures
that have more than two submovements. So temporal variability indicates that when there was a multi-segmented
movement, then such movements were more rhythmic.

5.2. Network changes over generations

While changes in kinematic complexity suggest an increase in efficiency, they do not by
themselves provide evidence of systematicity, another hallmark feature of communicative
systems. Here, we assess whether the gesture network as a system shows reduced entropy
over generations, which would mean that the interrelationships between gestures become less
randomly distributed. Fig. 8a shows that the entropy of gesture networks indeed decreased
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Fig. 8. Changes in networks measures over generations within chains. Panel a shows for each chain the changes
over generations in entropy, with generation O indicating the seed gesture set. For each generation > 0, there are
two data points as there are two participants in each generation. Entropy tends to decline over the generations,
indicating that relationships between tokens became less diverse, possibly indicating systematicity in the way
nodes are connected. Panel b shows that the network entropy computed on the kinematic distances was scaled
reliably scaling with the discrete entropy computed on human annotated data, which suggests that our kinematic
derived measure captures a comparable phenomenon in the evolution of gesture. In panel ¢, we provide the 2D
network representations for each generation in chain 2, color coded and ellipses drawn for theme and function
categories for separate rows. We arbitrarily picked one participant for each chain iteration. Note, it is difficult to
directly see changes in structure in these representations, which can be directly related to reduction in entropy, but
in general, the distances are less diverse over the generations.
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as a function of generation in four out of five chains, indicating lower complexity of ges-
ture interrelations as the systems matured. This reduction in entropy, it turns out, scales very
reliably with the discrete entropy derived from the manual coding (Fig. 8b).

We tested the trend indicated in Fig. 8a in a mixed-effects regression model similar to the
original study (Motamedi et al., 2019), with chain as random intercept (random slopes did
not converge for these models) and generation as an independent predictor (0-5 generations,
with generation 0 being the seed gesture network). Generation was indeed a reliable predictor
for network entropy as compared to a base model predicting the overall mean (chi-squared
change (1) = 4.75, p = .03, model R? = 0.08). Model estimates showed that entropy decreased
over generations (b estimate = -0.00006, 7 (48.00) = -2.19, p = .03, Cohen’s d = —0.63).

In sum, we find that kinematic network entropy decreases over generations, suggesting a
steady increase in systematicity in terms of the distance between gestures in gesture networks.
Furthermore, there is a clear scaling relation between the gesture-content entropy computed
on human categorical codings and our measure of kinematic entropy, suggesting we are cap-
turing a similar systematic property of these evolving manual languages.

5.3. Relations between kinematic and network properties

So far, we have shown an overall increase in communicative efficiency (as measured by
the change in kinematic features over generations) and an increase in systematicity (as mea-
sured in decreasing entropy over generations). Reduction in kinematic features may or may
not be related to the systematicity found in each gesture chain. Fig. 9 shows how each kine-
matic property (averaged by the participant) relates to gesture network entropy. We see that
network entropy reduces as the average gesture space decreases and movements become less
intermittent.

5.4. Chain-unique kinematic evolution over the generations

We have obtained evidence that over generations, kinematic changes go hand-in-hand with
a decrease in complexity, and kinematic interrelationships between gestures indicate increas-
ing systematicity. In our final analysis, we use our fine-grained token-level kinematic mea-
sures to assess whether unique trajectories in language evolution can be observed. The kine-
matic changes we have detected could suggest that motoric constraints lead iconic gesture
systems to become more similar to each other rather than becoming unique language-like
systems. To test whether this is the case, we analyze whether the kinematic interrelationships
within a chain diverge from other chains across the study. We predict that even though chains
converge in the degree of systematicity (as we found above), they may actually diverge from
each other over generations, as conventions are built that are unique to each chain. Fig. 10
shows the main results of this research question.

The network representations at each generation show that early on, gestures do not clus-
ter clearly by chain. However, over generations, especially in generation 3 to 5, we see that
gestures from particular chains start to cluster together more prominently, and clusters move
away from each other to some extent, indicating greater chain-internal similarity and grow-
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Fig. 9. Relation between kinematic properties and network measures. Correlations for each kinematic property
averaged over all tokens for that participant and the concomitant network entropy for that participant. Note that
the x-axis is reversed such that reductions in kinematic complexity are related to entropy. The smaller the gesture
spaces and the lower the intermittency, the lower the entropy. This indicates that especially reduction in intermit-
tency and gesture space is related with emergence of systematicity on the network level.

ing differences across chains (Fig. 10a). This is indicated by the increase in the Dunn index
(Fig. 10b), suggesting that the chain-specific gestures become more compact as a cluster and
more removed from other chains. To test this further statistically, we also found that over
the generations, Silhouette width increases reliably, r = .1, p < .001 (Fig. 10c), suggesting
that each chain-specific gesture became more similar to gestures in the same chain and more
dissimilar to gestures from the nearest chain in the kinematic space.

In sum, we find that each chain creatively shapes their own gesture system. While our
network analysis showed that gesture systems become internally more coherent for all chains,
this does not mean that chains become similar to each other. Instead, they forge their own

developmental trajectory over generations.
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Fig. 10. Evolution of kinematic interrelationships between and within chains over the generations. (a) Network
representations of kinematic interrelationships color-coded by chain and with ellipses showing cluster centroids in
similarity space. Each point in (a) (and (b)) represents a location in kinematic space or value for a single gesture
event produced by a participant that belonged to a certain chain. In generation 1, nodes are scattered and centroids
mostly overlap, suggesting gestures do not clearly pattern by chain yet. Over generations, gestures increasingly
cluster by chain, and chains drift apart, as seen in the decreasing centroid overlap in generations 3-5. Right panel:
For gestures grouped by chains, the Dunn index shows an increase in cluster compactness and distinctiveness over
generations (b). Silhouette width reveals at the level of single gestures how the mean distance to tokens from other
chains reliably grows relative to the mean distance to tokens from the same chain (c). This is for example apparent
when contrasting chain 5 at generation 2 versus that same chain at generation 4, showing higher silhouette scores
at generation 4 and more compact clustering in (a).
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6. Discussion

Based on signal processing alone, we have detected systematic changes reflective of a lin-
guistically maturing communication system, from continuous multi-articulatory kinematics
of silent gestures. We applied computer vision techniques to extract kinematics from video
data (e.g., Ostling, Borstell, & Courtaux, 2018; Ripperda et al., 2020; Trettenbrein & Zac-
carella, 2021). We then quantified kinematic relationships between gestural utterances (Pouw
& Dixon, 2019). Our analysis showed that a coding system focusing primarily on the hands
would miss important gestural content that can be observed from head movements. We found
that including head motion data as opposed to only motion data from the hands allowed us to
better distinguish randomly paired gestures from directly related. In line with earlier research
suggesting that communicative systems tend toward communicative efficiency (Gibson et al.,
2019; Namboodiripad et al., 2016), and going beyond the original study findings, we obtain
that gestures reduce their complexity over the generations, by reducing size, submovements,
and becoming more rhythmic. Communicative efficiency does not automatically entail sys-
tematicity. Therefore, we analyzed gesture networks and showed that communicative tokens
have higher systematicity, a finding that is in line with measures derived from manual cate-
gorical coding. These results suggest that form analysis can provide information about sys-
tematicity, making our method a valuable addition to the toolkit of gesture analysis (where it
complements human coding of gesture content) and the cultural evolution of signaling sys-
tems more generally, without resorting to categorical semantic coding.

The equivalence of form-based kinematic analysis and content-based manual coding is
as much a theoretical advancement as it is a methodological one. It means that aspects of
form can directly embody some of the systematic structure inherent in a system (Raczaszek-
Leonardi & Kelso, 2008). This is underlined by our final, novel analysis, in which we found
that while chains show an increase in systematicity, the gestures that are produced become
more distinct with respect to the other chains. Gestures within chains became clearly more
clustered over time, meaning their form became more alike within the chain at later genera-
tions and more dissimilar from other chains. This is clear evidence of a drift toward chain-
specific conventions, suggesting the emergence of gesture kinematic dialects.

In sum, the current analysis provides new insights into how gesture movements linguisti-
cally evolve. First, increased communicative efficiency was previously judged absent on the
basis of gestural unit length, but we show it is present in the kinematics on relevant dimensions
as salience, segmentation, and temporality. Second, kinematic properties change coherently
to simplify in structure, which it turns out, is relatable to the simplification of the semantic
content of gestures, a non-trivial equivalence given the fact that form and content are gener-
ally forcefully distinguished. Finally, we obtain that kinematic dialects emerge, which goes
beyond the goals of the original study altogether.

6.1. Shortcomings and advantages

There are two caveats to the analyses presented here. First, kinematic analysis alone can-
not say anything precise enough to determine the semiotic content of tokens (cf. Pouw et al.,
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2021). Therefore, understanding the semiotic content of human communication will always
require extensive human analysis (Sandler, 2018). Still, the kinematic analysis provides us
with a unique grasp of aspects of rich evolving communicative systems that may elude human
coders or would be too resource-demanding to manually code. The most productive way
forward, therefore, is to use methodological triangulation by combining kinematic measures
and semiotic analyses. For instance, kinematic measures would allow the detection of subtle
changes in gesture form or system-level structure over time. This analysis can then be sub-
jected to linguistic analysis or human coding to understand semiotic and structural aspects of
the evolving system. For example, we find that the inclusion of head movements meaningfully
improves our kinematic analysis. While the original experiment focused on the hands as the
most important articulators (Motamedi et al., 2019), our finding invites consideration of how
head movements may be recruited as part of a culturally evolving semiotic system, a find-
ing that has implications beyond purely methodological concerns. The general picture that
emerges is that kinematic measures allow a bottom-up, data-driven approach to be informed
and enriched by qualitative analysis solicited by first quantitatively identifying the “active
regions” of the data.

A second caveat concerns a limitation to DTW. One finding from prior work on the evolu-
tion of compositionality is that holistic gestures may become segmented, freeing up individual
elements to be recombined, possible in different orders. Now, consider two gestures that con-
tain identical segments in different orders. While human coders would likely recognize the
commonality and judge these as highly similar, the DTW algorithm is sensitive to the ordering
and would judge them as very different. Indeed, in the animated gesture network on our sup-
plemental page (https://osf.io/wbmf9/), it can be seen that though “handcuffs” and “prison”
share a gesture component, they are deemed quite dissimilar according to our procedure due
to different ordering. So our DTW analysis may at times judge sequences of gestures highly
dissimilar when in fact they are merely ordered differently. There are ways to circumvent this
by only looking for trajectory overlaps rather than ordering through time (Pouw & Dixon,
2019), but such analyses go beyond the current approach. Importantly, this limitation stacks
the deck against finding increases in systematicity, so it speaks to the robustness of our mea-
sures (and perhaps indicates the limited occurrence of reordering elements) that some degree
of systematicity is nonetheless recovered.

Both of these caveats mean that our approach to kinematics, like all quantitative analyses of
human behavior, requires some degree of human oversight (for meaningful implementation)
and human insight (for judicious interpretation). When these requirements are met, we believe
that our fully reproducible and automatable methods can make important contributions to the
systematic study of continuous communicative signals.

6.2. Embodied language evolution

In our view, the current findings underline an understanding of language evolution as an
embodied process. Consider, for example, our finding that gesture tokens become simpler
in several dimensions: smaller size, fewer submovements, and less temporal variability. This
simplification seems to be a reduction in articulatory effort. Making a smoother, smaller, and
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more rhythmic movements reduces the states that a sensorimotor routine needs to visit (Kelso,
Tuller, Vatikiotis-Bateson, & Fowler, 1984). Thus, communicative efficiency increased over
the generations at the motoric level, an effect not captured by the content-level repetition
and gesture length measure used in the original study (Motamedi et al., 2019). Note that
kinematic efficiency could also potentially increase the learnability and comprehensibility of
the gestures. Speech perception in noisy conditions is more optimal when speech is more
rhythmic (Wang, Kong, Zhang, Wu, & Li, 2018). We submit that the optimization of senso-
rimotor routines of communication is an integral part of the increased efficiency of commu-
nication. This is fully in line with early insights on the psychobiology of language by Zipf
or MacNeilage (MacNeilage, 2010; Zipf, 1935), which have been overshadowed to some
extent by the focus on codes and information content in the wake of Shannon. Our mea-
sures show how it is possible to unite fine-grained measures of the biomechanics of evolving
continuous signals with information-theoretic notions like system-level entropy. Low-level
action-perception optimization and code-level systematic optimization should not be treated
as categorically distinct processes.

We find a similar reduction of complexity of pronunciation as in novice learners of Amer-
ican Sign Language (ASL). ASL learners spatially reduce their signs as they become more
fluent (Lupton & Zelaznik, 1990; Wilbur, 1990). Compound signs also become shorter as
multi-component signs merge into efficiently produced single signs, in a way that is mirrored
in the data we have analyzed here. As sign systems evolve, suboptimal organizations of sub-
movements give way to more efficient signs and temporally extended sequences become more
coordinated (Bernstein, 1967; Kelso, Tuller, & Harris, 1983). This makes the dynamics of the
evolving gesture systems we have studied here similar in some ways to those of full-blown
manual language systems, such as ASL.

Another sign of the maturity of the culturally evolved gestural systems we have studied here
is the fact that head movements can function as cues reliably distinguishing paired gestures.
This finding resonates with the known grammatic, phonetic, and prosodic functions that head
movements have in sign languages such as ASL (Tyrone & Mauk, 2016). Indeed, as Sandler
(2018) has argued for sign languages, the expressive power of the body lies in the combination
of different articulators, combined into a single synergetic utterance.

6.3. Future directions

While we have focused on silent gesture as a test case here, our analyses are applicable to
any continuous signaling system. Similar approaches are applied in animal signaling systems,
where high dimensional features of tokens are mapped onto lower-dimensional space to iden-
tify stably distinct patterns (Sainburg, Thielk, & Gentner, 2019). Staying within the domain of
human communication, the current analysis could be applied to speech acoustics, semantics,
and gesture kinematics in unison (Pouw & Dixon, 2019; Pouw et al., 2021). Indeed, in a study
by Perlman, Dale, and Lupyan (2015), it is shown how dynamic aspects of vocalization signal-
ing systems become more efficient, similar to our current reduction in kinematic complexity.
These findings, together with work showing the tight connection between speech and gesture
(Bosker & Peeters, 2020; Pouw, de Jonge-Hoekstra, Harrison, Paxton, & Dixon, 2020; Pouw,
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Harrison, Esteve-Gibert, & Dixon, 2020), make it a natural next step to look at multimodal
iterated learning experiments. Furthermore, our approach can inform work on communicative
alignment in conversations (Rasenberg, Ozyiirek, & Dingemanse, 2020) or the ways in which
people can repeat aspects of each other’s communicative behavior. In short, our analysis here
has not only yielded new findings in the cultural evolution of gestural communication systems
but opens the door toward a broader research program in which the action-perception aspects
of communication systems are studied alongside their structural and semiotic aspects.

7. Conclusion

Human communicative behavior tends to combine categorical elements and continuous
properties, but for technological as well as theoretical reasons, the categorical elements of
evolving linguistic systems have long received more attention than their continuous aspects.
Here, we have contributed to the study of multimodal language and cognition by consid-
ering the gesture kinematics of evolving gestural systems. We have used computer vision
techniques to analyze the kinematic properties of evolving gestural systems, showing that
over generations of learners, the dynamics of head and upper limb movements become sim-
pler, increase in systematicity, and give rise to kinematic dialects. Our kinematic measures
help characterize fine-grained levels of linguistic organization that remain out of reach of
content-based discretized coding approaches, providing novel insights that corroborate and
complement prior approaches. Our findings provide an unprecedented view of how gestures
become structured and increasingly language-like as they evolve, in ways that are directly
related to the coordination and simplification of bodily movements. While considerations of
communicative efficiency and systematicity have so far been mostly based on analyses of
discrete symbol systems like written words and text corpora, our work shows how hallmark
features of linguistic systems may be grounded directly in the biomechanical properties of
dynamically evolving systems of continuous signals.
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