
METHODOLOGY Open Access
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Abstract

Background: Disease maps of crude rates from routinely collected health data indexed at a small geographical
resolution pose specific statistical problems due to the sparse nature of the data. Spatial smoothers allow areas to
borrow strength from neighboring regions to produce a more stable estimate of the areal value. Geostatistical
smoothers are able to quantify the uncertainty in smoothed rate estimates without a high computational burden.
In this paper, we introduce a uniform model extension of Bayesian Maximum Entropy (UMBME) and compare its
performance to that of Poisson kriging in measures of smoothing strength and estimation accuracy as applied to
simulated data and the real data example of HIV infection in North Carolina. The aim is to produce more reliable
maps of disease rates in small areas to improve identification of spatial trends at the local level.

Results: In all data environments, Poisson kriging exhibited greater smoothing strength than UMBME. With the
simulated data where the true latent rate of infection was known, Poisson kriging resulted in greater estimation
accuracy with data that displayed low spatial autocorrelation, while UMBME provided more accurate estimators
with data that displayed higher spatial autocorrelation. With the HIV data, UMBME performed slightly better than
Poisson kriging in cross-validatory predictive checks, with both models performing better than the observed data
model with no smoothing.

Conclusions: Smoothing methods have different advantages depending upon both internal model assumptions
that affect smoothing strength and external data environments, such as spatial correlation of the observed data.
Further model comparisons in different data environments are required to provide public health practitioners with
guidelines needed in choosing the most appropriate smoothing method for their particular health dataset.
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Background
Disease maps that summarize the spatial and spatio-
temporal variation in rates of disease have a wide range
of applications, from hypothesis generation to public
health surveillance. Identification of areas with unusually
high or low rates may indicate clusters or ‘hot spots’ of
disease that can aid decisions regarding intervention or
prevention programs, allocation of health care resources,
or provide context for further epidemiological studies
[1-4]. At the same time, the utility of disease mapping
often depends on how accurately the value being
mapped estimates the spatial process of interest. Esti-
mating disease risk requires a defined, closed population

and cannot be measured directly with surveillance data;
accordingly, incidence rates are often used to approxi-
mate disease risk [5]. However, calculating crude rates
from routinely collected health data indexed at a small
geographical resolution poses specific statistical pro-
blems due to the sparse nature of the data, especially for
rare diseases [1-6]. In particular, crude rate maps of
small areas will be dominated by sampling variability.
Due to variation in population size among areas, a map
displaying crude rates will tend to be dominated by
areas with small populations since small changes to the
observed number of cases will result in large changes to
the rate [5-7]. Meanwhile, observed high rates based on
small populations are likely to be artificially elevated
due to the high variability in the estimates. In other
words, error due to sampling variability introduces
observational noise into the map that may obscure the
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underlying spatial process of interest, and, if not
adjusted for, lead to incorrect inference about the spatial
pattern of interest.
One general method to improve the stability of

observed rates is to increase population sizes by upscal-
ing from finer to coarser resolution levels, such as from
census tracts or ZIP codes to counties. Increasing the
aggregation area, however, causes a loss in the resolu-
tion of the data, thereby masking spatial details needed
to identify, analyze, and monitor health problems at the
community level [5,7,8]. At the same time, analyzing
health data at too fine a resolution, such as with case
event or point maps, can compromise patient confiden-
tiality and may be misleading in some circumstances
because the underlying population density is not consid-
ered [8]. This paper focuses on the issue of sampling
variability in disease maps at a geographical resolution
corresponding to an aggregation of counts over fixed
small geographical regions - in this case, postal codes of
residence (US postal service ‘ZIP codes’).
Both deterministic and model-based approaches have

been proposed to address the issue of sampling variabil-
ity, also referred to as the ‘small number problem,’ when
mapping health data at fine resolutions [1,5,9]. These
approaches reduce the noise in rates of small areas
through ‘spatial smoothing,’ which allows areas to bor-
row strength from neighboring regions to produce a
more stable estimate of the value associated with each
region [2-4,6,7,10,11]. Among the different methods,
however, a tradeoff exists between the computational
complexity of each method and the ability to account
for spatial correlation and uncertainty in the smoothed
results [12]. For example, methods such as disk smooth-
ing, population-weighted averages, and empirical Bayes
estimates have low computing requirements but do not
account for spatial autocorrelation or quantify the
amount of uncertainty in the smoothed rates [12,13]. In
contrast, full Bayesian hierarchical models are able to
incorporate multiple covariates in the model parameters
to yield the full posterior distribution of the estimated
rate, yet are computationally cumbersome due to time-
consuming iterative procedures and challenging for
non-statisticians to implement and interpret due to their
complexity [2,12,13].
Geostatistical methods modified to account for the

heteroscedasticity of health data, namely that the var-
iance at each location varies as a function of the popula-
tion size, offer a compromise between computational
burden and quantification of the uncertainty in the
smoothed rate estimate. Methods such as Poisson kri-
ging are able to account for spatial correlation and yield
a full posterior distribution while being computationally
faster than fully Bayesian hierarchical models [12-14].
Furthermore, simulation studies of cancer mortality

showed that Poisson kriging outperformed simple popu-
lation-weighted averages, empirical Bayes smoothers,
and the Besag-York-Mollié Bayesian hierarchical model
in measures of estimation accuracy and degree of
smoothing, particularly when background rate values
were spatially correlated [12,13]. While spatial smooth-
ing is needed to improve the stability of observed rates
based on small populations, too much smoothing
reduces the ability to identify areas of high or low rates
that may indicate clusters or outbreaks of disease.
In this paper, we examine extensions of two geostatis-

tical methods, ordinary kriging and Bayesian Maximum
Entropy (BME), which have been used extensively in the
analysis of fields exhibiting spatial variability and are
computationally efficient [15-22]. Traditional geostatis-
tics do not account for the heteroscedasticity of disease
rates and must be modified to address both the numera-
tor and denominator of rate data [12-14]. Poisson kri-
ging as an extension of ordinary kriging was first
introduced by Monestiez et al. [23] and applied to
health data by Goovaerts [12]. Here, we introduce a uni-
form model extension of BME (UMBME) that, like Pois-
son kriging, can account for changes in variance due to
population size and compare the performance of
UMBME to that of Poisson kriging in measures of esti-
mation accuracy and smoothing strength. We first
examine differences in underlying model assumptions by
applying each model to simulated datasets where the
true spatial variation in the data is known. We then
apply both models to the real data example of human
immunodeficiency virus (HIV) infection with a spatial
analysis of infection occurring in North Carolina HIV
testing data from 1994 to 2002. Attempts to describe or
monitor the distribution of HIV cases detected through
testing have been limited by the variability in sampling
that is inherent in the testing situation.

Methods
Model definitions
In traditional epidemiology, the incidence rate of disease
is defined as the number of new cases in the at-risk
population divided by the person-time, or summation of
each person’s observation time, over a specified period
[5,24]. With rare diseases at steady state, the loss of per-
son-time per diseased person is minimal, and the total
person-time at risk may be approximated by the total
size of the at-risk population over the period times the
length of the period (day, month, year) [5,24]. In other
words, the incidence rate corresponds to a proportion of
new cases in the at-risk population divided by the time
duration considered to enumerate the new cases.
Following this concept, we define in the spatial con-

text the latent incidence rate as the theoretically possi-
ble rate of infection built on a hypothetical infinite
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underlying population at risk. In this paper, we consider
observation datasets aggregated to a single time period
t, resulting in space only analyses and temporally inde-
pendent maps that can be used to examine the spatial
variability of the random fields. Therefore, without loss
of generality, the latent incidence rate of disease in a
given region i can be defined as:

Xi = lim
nt→∞

Yi

ni
, i = 1, ...I (1)

where Xi is the latent disease rate, Yi is the number of
new cases of disease, and ni is the size of the population
at risk in area i. In other words, as the size of the popu-
lation ni reaches infinity, then the observed disease rate
Yi/ni approaches the latent disease rate for that location.
In this hypothetical situation, sampling variability is
minimized because all regions being mapped are of
equally large populations and small changes in the num-
ber of cases do not result in large changes to the
observed rate.
In practice, however, only a finite population at risk ni

in area i may be measured, producing a finite number
of cases Yi and an observed rate Ri = Yi/ni. Note that
even when ni is an exhaustive count of the entire popu-
lation at risk in area i, maps of the observed rate Ri are
subject to noise due to variation in population size
among regions, and areas with rates based on small
populations will tend to dominate the map. The differ-
ence between the observed rate Ri and latent rate Xi is
directly related to the observation that Ri can only be
defined in increments of 1/ni, while the underlying
latent rate can take any value on the real number conti-
nuum. The difference between Ri and Xi is inherently a
measurement error εi that can be expressed as:

Ri = Xi + εi (2)

where we refer to εi as the error due to sampling
variability in area i. In this paper, we contrast two
approaches in modeling sampling variability, Poisson
kriging and the UMBME method, which use unbounded
and bounded distributions, respectively, for the error εi.

Poisson kriging
With Poisson kriging, the observed number of cases is
modeled as a random variable Yi that follows a Poisson
distribution with one parameter. This parameter is the
expected number of cases defined as the product of the
population size ni by the latent rate Xi, such that:

Yi | Xi ∼ Poisson (niXi) (3)

As detailed by Goovaerts [12], the Poisson kriging
latent rate in area i is estimated as a linear combination
of K neighboring observed rates, such that:

X̂PK
i =

K∑
j=1

λijRj (4)

where the weights lij are derived from a Poisson kriging
specific system of linear equations, in which the sampling
variability at i is accounted for by a normally distributed
error εi with variance equal to si2 = m*/ni, where m* is the
population-weighted mean of the observed rates [12]. We
implemented the Poisson kriging adaptation of ordinary
kriging in the MATLAB programming environment [25].
Detailed descriptions of Poisson kriging may be found in
Goovaerts (2005) and Goovaerts and Gebreab (2008).

Uniform model extension of Bayesian Maximum Entropy
(UMBME)
An underlying assumption of UMBME is that the
observed population ni is a representative sample of the
population at risk in area i and measured without error.
In this case, the observed number of cases Yi given the
latent rate Xi can be interpreted as the product of the
population size and latent rate rounded to the nearest
integer, such that:

Yi | Xi = round (niXi) (5)

The discrete nature of case counts requires Yi to be a
whole number value. Therefore, when given an observed
case count Yi and population ni, the latent rate Xi fol-
lows a uniform distribution bounded by the rounding
error, such that:

Xi | Ri = U
(

Ri − 0.5
ni

, Ri +
0.5
ni

)
(6)

where Ri is the observed rate Yi /ni. In other words, in
UMBME the measurement error εi is assumed to be uni-
formly distributed in an interval of size 1/ni, which
expresses the fact that Ri is interpreted as an observation
of the latent rate Xi in increments of 1/ni. To derive the
UMBME latent rate estimate from observed values, the
BME method treats the observed values as ‘soft data’ with
measures of uncertainty as defined by the uniform distri-
bution. As detailed by Christakos et al. [17], the BME
method processes information known about the rate field
in three main stages: (i) Structural (or prior) stage, (ii) Spe-
cificatory (or meta-prior) stage, and (iii) Integration stage.
Programs to perform each stage were derived from func-
tions found in the BMElib software package for the
MATLAB programming environment [25,26]. Detailed
descriptions of the BME method may be found in Christa-
kos and Li (1998) and Christakos et al. (2002), among
others. A general introduction to information processing
in BME is presented in Supplementary Materials, Appen-
dix A.
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In this study, the UMBME estimate X̂UMBME
i of the

latent rate in area i is the expected value of the poster-
ior probability density function (pdf) derived in the Inte-
gration stage. Other possible estimators include the
mode or median of the posterior pdf. Furthermore, the
variance of the posterior pdf, or BME variance, provides
a useful measure of the estimation uncertainty.

Neighborhood selection
Poisson kriging and UMBME offer at least two advan-
tages in neighborhood selection over their counterparts,
particularly simple smoothers that weight all neighbors
falling within an arbitrary fixed distance of areal cen-
troids. First, both methods have the ability to limit the
number of neighbors selected to a user-defined maxi-
mum, which can account for changes in the spatial den-
sity of centroids, and thus the size of geographical units,
across the study area [12,17]. For example, an urban
area may have dozens of neighbors falling within a fixed
distance while a rural area may only have a handful of
neighbors falling within the same distance. Without lim-
itations on the number of selected neighbors, the urban
area would have significantly more contributors to its
smoothed value than the rural area. Second, Poisson kri-
ging and UMBME are able to determine smoothing
weights based upon the data’s covariance model. If the
neighborhood distance selected is large enough such
that it includes all the neighborhood information, then
increasing the distance or number of points does not
add more information or change the model estimation.

Simulated data analysis
We applied both Poisson kriging and UMBME to simu-
lated data where the true spatial variation in the latent
rate field X(s) is known in order to examine the effect of
underlying assumptions on each model’s performance in
measures of estimation accuracy and smoothing
strength. Simulations allow us to both model the true
latent disease rate and to control variables in order to
explore how changes impact the smoothed result
[12,13]. For example, we considered a study area divided
into square regions with the spatial location s of each
region defined as the center of the corresponding square
(Figure 1), which minimized the effect of spatial support
and the modifiable areal unit problem on the smoothed
estimates since regions were of uniform size and shape
[12]. With real data, not knowing the true latent rate or
relative impact of error sources makes it difficult to
assess the accuracy and validity of different smoothing
methods.
Since sampling variability generates the greatest dis-

tortion in studies of rare diseases, a low latent rate field
X(s) was simulated where the latent rate of disease in

each region ranged in value from 0 to 7.5 per 1,000 per-
sons (Figure 1A). We modeled the latent rate field by
first identifying one region each of relative low, medium,
and high latent rates with an associated decay rate. We
then calculated the latent rates for surrounding areas
based upon the distance from each central location. The
resulting disease field where higher rates tend to be
grouped around a central location follows the core area
theory of sexually transmitted diseases such as syphilis
[19,27].
The sample population size n(s) was then determined

using a random number generator, resulting in values
ranging from 1 to 767 (Figure 1B). While general popu-
lation density tends to be spatially correlated, it is rare
for the populations sampled by public health investiga-
tions and surveillance systems to be perfectly represen-
tative of the general population. Instead, factors such as
outreach efforts and concentrations of special popula-
tions can cause the populations sampled in neighboring
areas to vary significantly. Furthermore, population den-
sity is dependent on geographic scale. Even in urban
study areas, the population density of, for example, cen-
sus block groups may represent a random patchwork
depending on the locations of commercial and residen-
tial areas.
A fundamental difference in the model assumptions of

Poisson kriging and UMBME is the probability distribu-
tion of the observed cases, Y(s), given the latent rate, X
(s). If the observed cases, Y(s), are drawn from a Poisson
distribution, then Poisson kriging should outperform
UMBME in estimating the latent rate. Conversely, if Y(s)
integer values are derived from the product of the latent
rate, X(s), and population size, n(s), then UMBME
should outperform Poisson kriging in estimation accu-
racy. We derived two realizations of the case count, Y
(s), to verify these characteristics and examine differ-
ences in spatial variability between assumptions. Given
the latent rate field, X(s), and sample population, n(s),
one realization of Y(s) was sampled from a Poisson dis-
tribution (Figure 2A), while the other resulted from the
product of X(s) and n(s) (Figure 2B). In both realiza-
tions, Y(s) ranged in value from 0 to 3 cases.
For a given realization, we have the simulated (true) X

(s) and the observed rate, R(s), from which we calculated

both the Poisson kriging estimate, X̂PK
i , and UMBME

estimate, X̂UMBME
i . We then calculated two statistics as

measures of estimation accuracy: the mean square error
(MSE) and Lin’s Concordance Correlation Coefficient

(LCCC) between the estimated value ( X̂PK
i or X̂UMBME

i )

and the simulated true value for X(s). Divergence
between the estimated and true latent rate values
decreases as the MSE approaches zero and LCCC
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approaches one [28]. Meanwhile, smoothing strength
was described as the degree to which each technique
modified high or low observed rates towards the global
mean. More smoothing indicates greater movement
towards the global mean and less spatial variability in
estimated values. While smoothing strength may be
qualitatively assessed by examining, for example,
whether regions of high observed rates are discernable
in the estimated map, we also calculated the mean abso-
lute difference (MAD) between estimated values and the
mean of observed rates. As the MAD approaches zero,
the average deviation of estimated values from the glo-
bal mean decreases, indicating greater smoothing of
observed values.

Mapping HIV in North Carolina
To examine model performance in real world situations,
we mapped HIV disease rates in North Carolina using
both Poisson kriging and UMBME. Previous studies of
sexually transmitted infections (STIs) demonstrate that
cases tend to be concentrated in residential core areas
with high rates of infection in small, definable geo-
graphic areas [19,21,27,29-31]. In North Carolina,
approximately 1,700 new diagnoses of HIV disease are
reported to the North Carolina public health surveil-
lance system each year, with about 25 per cent of North
Carolina’s HIV disease reports consistently coming from
rural, or non-metropolitan, areas since the early 1990s
[32]. Regional differences in the spread of HIV highlight

B)A)

Figure 1 Maps of the simulated A) latent rate field X(s) and B) sample population size n(s). The values of X(s) and n(s) ranged from 0 to
7.5 per 1,000 persons and from 1 to 767 persons, respectively.

B)A)

Figure 2 Maps of the simulated case count Y(s) under the A) Poisson assumption and B) uniform assumption. Under the Poisson
assumption, the observed cases are drawn from a Poisson distribution. Under the uniform assumption, the observed cases are derived from the
product of the latent rate and population size. In both realizations, the values of Y(s) ranged from 0 to 3 cases.
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the necessity for accurate information on the spatial dis-
tribution of the disease in order to effectively target pre-
vention activities and identify possible community-level
risk factors contributing to the epidemic.
In this analysis, we calculated rates of new HIV dis-

ease reports in North Carolina’s testing population from
1994 to 2002. Specifically, clients at risk of HIV infec-
tion presenting to publicly-funded Voluntary Counseling
and Testing (VCT) sites distributed across the state of
North Carolina were tested for long-term HIV infection.
ZIP code of residence was recorded in a research data-
base for each de-identified test result. Records for clients
reporting previous positive HIV tests were excluded
from analysis. The remaining records were geocoded to
the residential-weighted centroid of the reported ZIP
code of residence [33]. There were 938,889 total tests
and 5,677 new HIV cases reported between 1994 and
2002, of which 96% to 97% matched to a location. Rea-
sons for failing to geocode included having a missing,
invalid, or out-of-state ZIP code. We modeled the
observed HIV infection rate using Poisson kriging and
UMBME and evaluated model performance.
In real world situations, the true latent rate of disease

is unknown. Therefore, in order to assess model fit, we
used cross-validatory predictive checks, which have been
shown to be useful in determining whether divergent
rates are due to poor model fit or to actual ‘hot-spots’
of disease that warrant further investigation [34,35]. The
basic concept of cross-validation is to remove each
observed rate in turn, in this case observed rates
assigned to a ZIP code population centroid, then reana-
lyze the original data without that observation, and
assess the model’s ability to predict the removed area’s
data value. Estimation accuracy was then measured as
the MSE and LCCC between the model-predicted value
and the observed rate. Smoothing strength was assessed
both qualitatively and as the MAD between model-pre-
dicted values and the mean of observed rates.

Results and discussion
Simulated data analysis
In applying smoothing models to the simulated rate field
R(s), we considered first the spatial moments of the
latent rate spatial random field X(s). In the absence of
prior information regarding the general behavior of X(s),
we assigned no mean trend to the model and used the
information provided by the rate field R(s) directly in
our calculations rather than as a residual with the mean
trend removed. This enabled us to model the spatial
variability of X(s) using the covariance of R(s). A useful
feature of the covariance model is that it does not
require prior distributional assumptions of the data and
can be applied to both the Poisson and uniform simula-
tions. Other estimators, such as Monestiez et al.’s

population-weighted semivariogram and Yu et al.’s Pois-
son regression model in BME, have measurable advan-
tages but are dependent on the Poisson assumption
[23,36]. Furthermore, covariance plots provide a quanti-
tative assessment of the correlation between pairs of
points and are useful in assessing the strength and scale
of the disease pattern [19]. For example, the covariance
range, or distance where the curve becomes asymptotic
to the x-axis, may be used to identify the neighborhood
of influence around an observation point. Observations
within the covariance range may influence values at the
current location, whereas observations outside this
range may not be influential. In addition, local disease
patterns may be described by the behavior of the covar-
iance model near the origin. Steep curves indicate rapid
change over a short distance, while long-tailed curves
indicate slower change and less variability over the same
distance.

Poisson assumption
The experimental covariance calculated from the corre-
sponding observed rates shows the change in the corre-
lation between pairs of points as the distance between
points increase in space. For the Poisson assumption,
the experimental covariance indicated high local varia-
bility with a neighborhood of influence extending less
than 2 spatial units from each point (Figure 3). The cor-
responding R(s)-covariance model (Figure 3A) was
obtained by fitting a nugget-exponential-Gaussian
nested model to the experimental R(s)-covariance values,
such that

cR (ρ) = c1δρ + c2 exp
(−3ρ

aρ1

)
+ c3 exp

(−3ρ2

aρ2
2

)
(7)

where r is the spatial lag, c1, c2, and c3 are constants
whose sum equals the variance of R(s), δr is the Kro-
necker delta function, and ar1 and ar2 represent the
spatial ranges of the exponential and Gaussian compo-
nents, respectively. The nugget component of this covar-
iance model corresponds to the initial drop of the
covariance, while the exponential and Gaussian compo-
nents correspond to the tail of the covariance curve.
This covariance model is adequate if we are interested
in mapping the observed rate field R(s) over the geogra-
phical region of interest using observed rate data. On
the other hand, if we are interested in mapping the true
latent rate field X(s), we then need to model its covar-
iance function. We obtain the X(s)-covariance model by
simply recognizing that the nugget component (initial
drop of covariance) of the R(s)-covariance is due to the
sampling variability error term ε defined in 2. Therefore,
we obtained the X(s)-covariance model (Figure 3B) by
removing the nugget component of the R(s)-covariance

Hampton et al. International Journal of Health Geographics 2011, 10:54
http://www.ij-healthgeographics.com/content/10/1/54

Page 6 of 17



model and keeping only the exponential and Gaussian
components, such that

cX (ρ) = c2 exp
(−3ρ

aρ1

)
+ c3 exp

(−3ρ2

aρ2
2

)
(8)

where r is the spatial lag, c2, and c3 are constants, and
ar1 and ar2 represent the spatial ranges of the exponen-
tial and Gaussian components, respectively.
The observed rates Ri, calculated from the cases simu-

lated under the Poisson kriging assumption, ranged in
value from 0 to 29.1 per 1,000 persons (Figure 4A).
Using these observed rates and the corresponding covar-
iance models (Figure 3), we obtained the Poisson kriging

estimate X̂PK
i (Figure 4B) and the UMBME estimate

X̂UMBME
i (Figure 4C). Spatially, X̂PK

i and X̂UMBME
i exhib-

ited nearly identical spatial distributions of non-zero
values. This result is due in part to the similar identifi-
cation of neighbors and integration of spatial correlation
between the models. However, when compared with the
observed rate map, Poisson kriging exhibited greater
smoothing strength than UMBME, particularly in areas
of high observed rates, such as region (6,6) of the study
domain. Similarly, the Poisson kriging MAD was lower
than that of UMBME (Table 1), indicating greater
smoothing towards the observed mean with Poisson kri-
ging than UMBME. With regards to estimation accu-
racy, scatterplots of the observed rates Ri, the Poisson

kriging estimates X̂PK
i , and the UMBME estimates

X̂UMBME
i versus the true latent rates Xi (Figures 4D, E,

and 4F, respectively) show that the closer a point is to
the 45 degree best fit line, the more accurately the

observed or estimated value approximates the true X(s)-
value. Artificially elevated rates fall above the best fit
line, with the observed rate plot (Figure 4D) showing
the greatest deviation from the true X(s)-value. Quanti-
tatively, Poisson kriging exhibited the highest estimation
accuracy in measures of both MSE and LCCC when
compared with the true X(s)-value (Table 1).

Uniform assumption
Under the uniform assumption, the observed cases, Y(s),
were derived from the product of the latent rate field, X
(s), and sample population, n(s) (Figure 2B). We then
obtained experimental and model covariance values for
the corresponding observed rate field R(s) (Figure 5A)
and latent rate field X(s) (Figure 5B). Similar to those of
the Poisson assumption, the experimental covariance
indicated a neighborhood of influence extending less
than 2 spatial units from each point. However, the
experimental covariance under the uniform assumption
had a smaller nugget effect, indicating lower local varia-
bility [5]. In other words, observations that were close in
space had more similar values under the uniform
assumption than the Poisson assumption.
The observed rates Ri, calculated from the cases simu-

lated under the uniform assumption, ranged in value
from 0 to 7.5 per 1,000 persons (Figure 6A). Using these
observed rates and the corresponding covariance models
(Figure 5), we obtained the Poisson kriging estimates

X̂PK
i (Figure 6B) and the UMBME estimates X̂UMBME

i

(Figure 6C). Once again, the Poisson kriging and
UMBME maps displayed nearly identical spatial distri-
butions of non-zero values, while Poisson kriging exhib-
ited greater smoothing strength than UMBME with

•   experimental
 model

•   experimental
 model

B)A)

Figure 3 Plots of the experimental rate covariance with covariance models under the Poisson assumption. The nugget component of
the A) observed rate field R(s)-covariance model is due to sampling variability error and removed to obtain the B) X(s)-covariance model.
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D)A)

E)B)

F)C)

Figure 4 Maps and scatterplots of the observed, Poisson kriging estimated, and UMBME estimated rates under the Poisson
assumption. Compared with the A) observed rate map, the B) Poisson kriging map displayed greater smoothing than the C) UMBME map,
particularly in areas of high observed rates (cases per 1,000 persons). Meanwhile, scatterplots of the D) observed, E) Poisson kriging estimated,
and F) UMBME estimated rates versus the true latent rate, X(s), combined with MSE and LCCC calculations (Table 1), demonstrated that Poisson
kriging produced the highest estimation accuracy under the Poisson assumption.
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both less discernible high rate areas, such as region
(6,5), and a lower MAD value (Table 1). In this case,
however, the additional smoothing provided by Poisson
kriging resulted in greater disparity with the true X(s)-
value than UMBME, with a greater proportion of
UMBME estimated points falling along the 45 degree
best fit scatterplot line than those of Poisson kriging
(Figures 6D, E, and 6F). Quantitatively, UMBME

exhibited the highest estimation accuracy in measures of
both MSE and LCCC (Table 1).

Mapping HIV infection in North Carolina
We applied Poisson kriging and UMBME to North Car-
olina HIV disease data to examine their performance in
a real-world situation. We derived experimental and
model covariance values for the observed rate field (Fig-
ure 7A) and corresponding X(s) field (Figure 7B). The
experimental covariance indicated a spatial neighbor-
hood of influence extending less than 20 km from each
location. While a nugget effect was present, without a
point of comparison, it was difficult to ascertain whether
the amount of spatial correlation was large or small for
the given disease and geographical region. We then
obtained maps of the HIV observed rate, the Poisson

kriging estimates X̂PK
i , and the UMBME estimates

X̂UMBME
i (Figures 8A, B, and 8C, respectively). Similar to

the simulated data analyses, Poisson kriging exhibited
greater smoothing strength than UMBME with both less
distinction between areas of high and low rates, such as
in the northeast corner of the state, and a lower MAD
value (Table 1). In cross-validation, UMBME performed
only slightly better than Poisson kriging in MSE and
LCCC values, with both models performing better than
the observed data model with no smoothing (Table 1).

Model comparison
Under both the Poisson and uniform assumptions of the
simulated data, Poisson kriging exhibited greater
smoothing strength than UMBME. The two methods
utilize the same values for a number of parameters that

Table 1 Measures of model estimation accuracy,
smoothing strength, and variance quality for the
simulated Poisson assumption data, simulated uniform
assumption data, and real HIV data.

Method MSE LCCC MAD G

Poisson Simulation

Observed 1.00E-05 0.214

Poisson kriging 1.47E-06 0.550 0.938 0.669

UMBME 4.83E-06 0.396 1.33 0.798

Uniform Simulation

Observed 1.52E-06 0.618

Poisson kriging 1.15E-06 0.555 0.510 0.670

UMBME 6.43E-07 0.794 0.701 0.781

HIV Data

Observed 1.87E-04 0.013

Poisson kriging 1.80E-04 0.039 0.00297

UMBME 1.79E-04 0.040 0.00369

The MSE and LCCC for the simulated data describe divergence between the
model estimated and true latent rate values. For the HIV data, the MSE and
LCCC values describe divergence between the model cross-validation results
and observed rate values. Bolded values represent the model with the
greatest estimation accuracy (MSE, LCCC), greatest smoothing strength (MAD),
or best fit variance (G) in each dataset.

•   experimental
 model

•   experimental
 model

B)A)

Figure 5 Plots of the experimental rate covariance with covariance models under the uniform assumption. The nugget component of
the A) observed rate field R(s)-covariance model was removed to obtain the B) X(s)-covariance model.
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D)A)

E)B)

F)C)

Figure 6 Maps and scatterplots of the observed, Poisson kriging estimated, and UMBME estimated rates under the uniform
assumption. Compared with the A) observed rate map, the B) Poisson kriging map displayed greater smoothing than the C) UMBME map
(cases per 1,000 persons). However, scatterplots of the D) observed, E) Poisson kriging estimated, and F) UMBME estimated rates versus the true
latent rate, X(s), combined with MSE and LCCC calculations (Table 1), demonstrated that UMBME produced the highest estimation accuracy
under the uniform assumption.
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affect smoothing strength, such as the maximum num-
ber of neighbors used in the estimation, the population
size, and the covariance model [13]. The two methods
differ, however, in their measurement error variances of
the observed values and in their distributions of the pos-
terior pdf. The error variance term is m*/ni for Poisson
kriging, where m* is the population-weighted mean of
the observed rates and ni is the population in area i,
while the UMBME error term is distributed in an inter-
val of size 1/ni. Furthermore, Poisson kriging yields a
Gaussian posterior pdf characterized by the kriging esti-
mate and variance, thereby allowing extreme values due
to the tail of the Gaussian distribution [13]. UMBME,
on the other hand, yields a non-Gaussian posterior pdf
that is truncated by the interval soft data. Possible
UMBME estimated values are therefore limited by the
bounds of the truncated posterior pdf.
The distributional form of the posterior pdf may also

contribute to differences in the estimated variance of
each method. Under both the Poisson and uniform
assumptions of the simulated data, the Poisson kriging
and UMBME estimated variances were generally inver-
sely proportional to the areal population size, while the
magnitude of the Poisson kriging variance was consis-
tently higher than that of UMBME. However, of greater
interest is how well the estimated variance captures the
true latent rate. Assuming normality of the prediction
errors, we calculated each method’s statistical coverage,
or probability that the true latent rate in each area falls
within the p-probability interval characterized by the
estimated mean and variance. For example, for a p value
of 0.95, the ideal model coverage probability would also

equal 0.95. We then calculated Deutsch’s “goodness”
statistic [12,37] to examine divergence between the
model-estimated and theoretical probability intervals,
such that

G = 1 − 1
L

L∑
l=1

w(pl) | ς(pl) − pl | with 0 ≤ G ≤ 1 (9)

where L is the discretization level of the computation
(i.e. L = 95 when pl = 0.95), ς(pl) is the model-estimated
coverage for probability interval pl, and w(pl )= 1 if ς(pl)
>pl, and 2 otherwise. Double weight is given to devia-
tions where the model-estimated coverage is less than
expected [12]. The goodness of fit of the estimated var-
iance increases as the value of G approaches one. With
L = 100, UMBME outperformed Poisson kriging in G
values for both the Poisson and uniform simulations
(Table 1).
While a drawback of Poisson kriging’s greater smooth-

ing strength is that it becomes harder to distinguish
areas of high or low estimated rates, in measures of esti-
mation accuracy Poisson kriging performed better than
UMBME under the Poisson assumption, UMBME per-
formed better than Poisson kriging under the uniform
assumption, and both models performed better than the
observed rate with no smoothing. The Poisson assump-
tion experimental covariance had a greater nugget effect
than that of the uniform assumption, indicating less spa-
tial correlation among the Poisson-derived observed
rates than the uniform-derived rates, as shown in Fig-
ures 3 and 5. These results support those of previous
simulation studies, which show that methods with

•   experimental
 model

•   experimental
 model

B)A)

Figure 7 Plots of the experimental rate covariance with covariance models for the North Carolina HIV data. The experimental covariance
indicated a spatial neighborhood of influence extending less than 20 kilometers from each location. The nugget component of the A) observed
rate field R(s)-covariance model was removed to obtain the B) X(s)-covariance model.
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0           5           10         15           20         25          30

A)

B)

C)

Figure 8 Maps of the North Carolina HIV A) observed, B) Poisson kriging estimated, and C) UMBME estimated rates. While the Poisson
kriging and UMBME maps displayed nearly identical spatial distributions of non-zero values, Poisson kriging exhibited greater smoothing
strength than UMBME, thereby providing less distinction between areas of high and low rates (cases per 1,000 tests).
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greater smoothing strength are more accurate estimators
when the spatial autocorrelation of the observed data is
low, while methods that smooth less have greater esti-
mation accuracy with data that is more spatially corre-
lated [12].
In a real-world situation where the true latent rate of

disease is unknown, the Poisson kriging and UMBME
estimated HIV rate maps compared with the observed
HIV rate map (Figure 8) show how the noise generated
by artificially high rates due to sampling variability may
be reduced through smoothing. Smoothing out sampling
variability is particularly important in the study of HIV
infection in North Carolina because it facilitates correc-
tion of the rates observed in rural areas with small test-
ing populations by borrowing strength from rates
observed in neighboring areas with larger testing popu-
lations. By exhibiting greater smoothing strength, the
Poisson kriging map (Figure 8B) also eliminated much
of the distinction between high and low rates needed to
identify outbreaks or clusters of disease. The UMBME
map (Figure 8C), on the other hand, provided a similar
spatial representation of HIV that smoothed out
extreme rates based on small populations while main-
taining areas of high observed rates that may be useful
in monitoring the HIV epidemic. For example, the num-
ber of areas with rates above 10 cases per 1,000 tests
was reduced by 59% with Poisson kriging, but only 12%
with UMBME as compared with the observed rates
(Table 2). Both Poisson kriging and UMBME, however,
produced nearly identical cross-validation MSE and
LCCC values. Without knowing the true latent rate of
infection, additional information, such as the distribu-
tional form of the dataset, is needed to assess model fit.
Similarly, we could not calculate Deutsch’s goodness sta-
tistic, G, for the real data to assess model uncertainty
because the true latent rate of infection was unknown.
However, as with the simulated data, the model-esti-
mated variances (Figure 9A for UMBME) were generally
inversely proportional to the underlying population size
(Figure 9B).

Conclusions
Geostatistics modified to account for the specific nature
of health data provides a rich class of methods able to

incorporate and output more information about the dis-
ease field than simple smoothers while being computa-
tionally faster and easier to implement than full
Bayesian hierarchical methods. This facilitates the inves-
tigation of both internal and external factors that affect
model performance. As shown in this paper, both Pois-
son kriging and UMBME smoothing models more accu-
rately predict the latent rate than the observed data with
no smoothing. Meanwhile, Poisson kriging yielded
smoother results than UMBME due to internal model
assumptions.
Choosing the most appropriate smoothing method

depends heavily on the characteristics of the disease
being studied and the geographical space. As shown
with the simulation data, accuracy of each estimation
model was associated with the observed spatial correla-
tion of the disease field. Methods that smoothed less
performed better as the spatial correlation of the disease
field increased. However, the observed spatial correla-
tion, in turn, depends on the assumptions and charac-
teristics of the latent and observed rate fields. For the
latent rate, spatial characteristics of the disease, such as
geographic risk factors and disease frequency, must be
considered. For example, STIs tend to be concentrated
in small, definable geographic areas where cases reside
[19,21,27,29-31]. Therefore, maps of the residential loca-
tions of STI cases would typically exhibit greater spatial
correlation than maps of the residential locations of a
non-transmissible disease, such as leukemia. As a result,
estimation methods with limited smoothing, such as
UMBME, would be expected to produce more accurate
predictions of the latent rate than methods that smooth
more. However, the robustness of the observed data
must also be considered. Factors that would increase or
decrease the observed spatial correlation include the
spatial support of the study area, such as the size and
shape of geographical units, and the temporal resolution
of the study. Observations measured over small time
durations, such as monthly for STIs in North Carolina,
tend to be spatially less correlated than observations
identified over longer time periods, such as quarterly or
annually.
Finally, in real world situations, the relative degree of

spatial correlation in the observed data is difficult to
ascertain when no point of reference exists. Further
research is needed to compare the advantages and dis-
advantages of different smoothing models, examine
model performance in different data environments, and
examine model performance using different estimators.
Additional research is also needed to examine whether
fitting real data by a distributional form improves model
performance and to identify other information about the
disease field that would aid investigators in choosing the
most appropriate smoothing model. Better disease map

Table 2 Number of ZIP codes with values above the 90th

percentile of observed rates.

Method No. ZIPs > 10 cases/1,000 tests %Δ from
Observed

Observed 74 –

UMBME 65 -12%

Poisson
kriging

30 -59%
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construction would improve the ability of public health
officials to monitor spatial and temporal trends in dis-
ease rates, creating new opportunities for the definition
of at-risk populations, identification of outbreaks, and
allocation of resources toward areas and populations
most affected by disease.

Supplementary Materials
APPENDIX A: The BME method
In the spatial application of BME, the distribution of a
disease rate field is represented in terms of a Spatial

Random Field (SRF), X(s), where s is the spatial location.
Each region i is defined in terms of a point spatial loca-
tion, such as the latitude and longitude of the areal cen-
troid, where si = (s1i , s2i) and i = 1,...I. The spatial
moments of X(s) can be used to describe the behavior
of the SRF. For example, the mean function

mx(s) = X(s) (A1)

(the overbar denotes stochastic expectation), charac-
terizes trends and systematic structures in space, while

x 10

A)

B)

Figure 9 Maps of the A) UMBME estimated variance and B) testing population for the North Carolina HIV dataset. The estimated
variance was generally inversely proportional to the underlying population size.

Hampton et al. International Journal of Health Geographics 2011, 10:54
http://www.ij-healthgeographics.com/content/10/1/54

Page 14 of 17



the covariance function

cx(ρ) = [X(s) − X(s)][X(s’) − X(s’)] (A2)

expresses relevant correlations and dependencies
between pairs of points in X(s), where ρ =| s’ − s |
denotes the spatial lag.
The BME approach categorizes all prior information

known about the rate field into two major knowledge
bases (KB): the general KB G and the specificatory (or
site-specific) KB S , where the total knowledge base
K = G ∪ S . As discussed in Choi et al. (2003), the
G − KB is considered ‘general’ in the sense that it char-
acterizes global characteristics of the rate field, such as
its mean trend, spatial moments, relevant epidemiologic
laws or theories, and other assumptions about the beha-
vior of the field that may apply. On the other hand, the
S − KB refers to information that is ‘specific’ to each
mapping situation, such as observed rate values mea-
sured at specific data points. In general, the vector of
random variables xmap representing the rate field X(s)
consists of the vector of hard data random variables
xhard representing the latent disease rate at all locations
where exact measurement values could be obtained, the
vector of soft data random variables xsoft representing
the latent rate at all locations with uncertain measured
values (expressed in terms of confidence intervals or
probabilistic functions), and the unknown latent rate
value xk to be estimated at some estimation point, such
that xmap = (xhard, xsoft, xk).
Processing the information known about the rate field

consists of three main stages (Gesink Law et al., 2006),
as follows (Christakos and Li, 1998; Choi et al., 2003):
(i) Structural (or prior) stage: The general G − KB of

the rate field is considered at all mapping points corre-
sponding to xmap. The structural probabilistic density
function (pdf) of the random variables xmap,fG(χmap) ,
where the vector of values cmap is a realization of the
random variables xmap, is derived by selecting the
fG(χmap) that maximizes entropy for the given general
knowledge base. Using the Shannon measure of infor-
mation we have

Info[xmap] = log(1/fX(xmap))
= − log fX(xmap)

, (A3)

and the entropy is defined in terms of the correspond-
ing expected information, i.e.

H(xmap) = E[Info[xmap]]

= −
∞∫

−∞
dχmapfG(χmap) log fG(χmap)

(A4)

where H(xmap) is the Entropy function, and E[.] is the
stochastic expectation operator. Information is pro-
cessed by selecting the fG(χmap) that maximizes H

(xmap) for the given G − KB .
(ii) Specificatory (or meta-prior) stage: The specifica-

tory S-KB is identified and expressed in terms of hard
and soft data, and the estimation point at which the
field is to be estimated is defined. Here, we consider the
specific framework in which all observed rates in the
map are soft data csoft with measures of uncertainty due
to sampling variability. In processing the data, 6 may be
rewritten as

χ soft : Pr
[
R(s) − 0.5

N(s)
≤ X(s) ≤ R(s) +

0.5
N(s)

]
= 1 (A5)

where Pr[.] is the probability operator, R(s) is the
observed rate, N(s) is the population size, and X(s) is the
latent rate, and s represents each region i where these
soft data are available. Furthermore, the aim is to pro-
vide a more accurate estimate of the latent rate field
only at points s where soft data is available. In other
words, a soft datum expressed by A5 is available for
each estimation point.
(iii) Integration stage: The integration (posterior) pdf,

fK , is derived by means of an operational Bayesian con-
ditionalization rule that considers the total KB,
K = G ∪ S , such that

fK (χk) = A−1

∞∫
−∞

dχ softfS
(
χkχ soft

)
fG

(
χmap

)
(A6)

where A =
∞∫

−∞
dχk

∞∫
−∞

dχ softfS
(
χkχ soft

)
fG

(
χmap

)
is the

normalization parameter, and fS
(
χkχ soft

)
is the multi-

variate uniform pdf defined by A5 jointly for the estima-
tion point and the soft data points in its neighborhood..
The integration pdf provides a full stochastic assessment
of the value xk of the latent rate field at any estimation
point, from which one may derive a variety of estimators.
In this work, the expected value of the integration pdf was
used as an appropriate estimatorX̂k of the latent rate, i.e.

X̂k = E [xk] =

∞∫
−∞

dχkfK (χk) , (A7)

which we refer to as the BME mean estimator. Other
estimators include the mode or the median of the inte-
gration pdf. Additionally, the variance of the integration
pdf, or BME variance, provides a useful measure of esti-
mation uncertainty.
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