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Abstract
Objective: Bone inflammation (osteitis) in early RA (ERA) manifests as bone marrow oedema (BME) and precedes the development of bone 
erosion. In this prospective, single-centre study, we developed an automated post-processing pipeline for quantifying the severity of wrist BME 
on T2-weighted fat-suppressed MRI.
Methods: A total of 80 ERA patients [mean age 54 years (S.D. 12), 62 females] were enrolled at baseline and 49 (40 females) after 1 year of treat
ment. For automated bone segmentation, a framework based on a convolutional neural network (nnU-Net) was trained and validated (5-fold 
cross-validation) for 15 wrist bone areas at baseline in 60 ERA patients. For BME quantification, BME was identified by Gaussian mixture model 
clustering and thresholding. BME proportion (%) and relative BME intensity within each bone area were compared with visual semi-quantitative 
assessment of the RA MRI score (RAMRIS).
Results: For automated wrist bone area segmentation, overall bone Sørensen–Dice similarity coefficient was 0.91 (S.D. 0.02) compared with 
ground truth manual segmentation. High correlation (Pearson correlation coefficient r¼0.928, P<0.001) between visual RAMRIS BME and au
tomated BME proportion assessment was found. The automated BME proportion decreased after treatment, correlating highly (r¼ 0.852, 
P< 0.001) with reduction in the RAMRIS BME score.
Conclusion: The automated model developed had an excellent segmentation performance and reliable quantification of both the proportion 
and relative intensity of wrist BME in ERA patients, providing a more objective and efficient alternative to RAMRIS BME scoring.

Lay Summary
What does this mean for patients?
Increased fluid in the bone marrow, known as bone marrow oedema, is a measure of bone inflammation in people with rheumatoid arthritis 
(RA). This bone marrow oedema can be clearly seen on magnetic resonance imaging examinations of the joints. The wrist joint is one of the 
more commonly affected joints in RA. Bone marrow oedema is a measure of disease activity and is reversible. It is a precursor of non-reversible 
bone erosion or deformity. One of the treatment aims of RA is to reduce bone oedema. In this study, we present an automated method of mea
suring bone marrow oedema that is much faster, more reliable and more responsive than traditional visual methods. This will be helpful to accu
rately gauge the amount of bone inflammation in RA patients at initial presentation and following treatment.
Keywords: rheumatoid arthritis, bone marrow oedema, wrist, quantification, segmentation. 

Introduction
RA is a chronic systemic inflammatory arthropathy with a 
worldwide prevalence of �1%. The wrist is the most affected 
joint. Inflammation in the wrist is a marker of systemic dis
ease activity [1, 2]. The main manifestations of RA are in
flammation in either the joint synovium (‘synovitis’), 
tenosynovium (‘tenosynovitis’) or bone (‘osteitis’) [3]. Bone 

inflammation, which manifests as bone marrow oedema 
(BME) on MRI, is a recognized precursor of bone erosion 
and structural deterioration [4].

While BME is not a feature of healthy wrists [5], it is seen 
in at least 40% of patients with early RA and is a more spe
cific marker of inflammatory arthritis than bone erosion [6]. 
In RA, BME reflects bone marrow inflammation (osteitis) 

Key messages 
� A method of automatically measuring BME proportion and relative intensity is presented. 
� Strong correlation between the automated BME proportion and RAMRIS BME score was found. 
� Decreased BME proportion and intensity with treatment correlated strongly with the RAMRIS BME score. 

Received: 27 February 2024. Accepted: 22 May 2024 
# The Author(s) 2024. Published by Oxford University Press on behalf of the British Society for Rheumatology.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/ 
by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial 
re-use, please contact journals.permissions@oup.com 

Rheumatology Advances in Practice, 2024, 8(3), rkae073 
https://doi.org/10.1093/rap/rkae073 
Advance access publication 20 June 2024 
Original Article 

Rheumatology
Advances in Practice

https://orcid.org/0000-0001-5206-9382
https://orcid.org/0009-0007-9734-4721
https://orcid.org/0000-0002-1021-1069
https://orcid.org/0000-0001-6410-8852


with infiltration by macrophages, plasma cells, T cells and B 
cells [7]. It is a marker of an aggressive RA phenotype associ
ated with increased bone erosion and worse functional out
come [8]. Unlike erosions, osteitis is reversible, with a 
reduction in BME indicating good therapeutic response.

BME is generally scored in everyday practice as mild, mod
erate or severe, while in research studies it is scored semi- 
quantitatively using the RA MRI score (RAMRIS). For 
RAMRIS, each wrist bone is scored as 1–3 according to the 
percentage (0–100% in 33% increments) of bone showing 
high signal intensity on T2-weighted fat-suppressed MRI. 
Although the reliability of RAMRIS scoring is high [intraclass 
correlation coefficient 0.84 (90% CI 0.73, 0.94)], this scoring 
method is semi-quantitative, requires reader training and is 
time-consuming [9].

There are two features of BME severity that can be mea
sured, namely the extent of bone affected by BME and the in
tensity of this BME. A quantitative measure of BME severity 
would help to objectively gauge the degree of bone inflamma
tion and assess treatment response, as well as being helpful 
when investigating the aetiology and effect of BME.

The aim of this study was to develop an automated method 
of quantifying the extent and intensity of BME in wrist bone 

areas using T2-weighted fat-suppressed MRI. Such a system 
would allow BME on MRI to be evaluated with a quick, reli
able method that would help to move BME quantification 
from the research to the everyday clinical arena.

Materials and methods
Data acquisition
The study flow chart is shown in Fig. 1. MRI data from a pro
spective longitudinal study of treatment-naïve ERA patients 
recruited between October 2012 and January 2016 was utilized. 
This study complied with all relevant ethical standards. Written 
informed consent was obtained from all patients and this study 
received ethical approval from the Chinese University of Hong 
Kong—New Territories East Cluster Clinical Research Ethics 
Committee (Joint CUHK-NTEC CREC; CREC ref. no.: 
2021.398). Eighty ERA patients, defined as having a symptom 
duration of <24 months, were studied pre- and post-treatment. 
From this cohort of 80 patients, 60 were suitable for automated 
segmentation, with 20 MRI datasets deemed unsuitable due to 
movement artefact or incomplete fat suppression. A total of 
49 (82%) of the 60 patients underwent an identical follow-up 
MRI and assessment after 1 year of treatment. Patient details 

Figure 1. Study flow chart. SI: signal intensity 
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are summarized in Supplementary Table S1, available at 
Rheumatology Advances in Practice online.

MRI
MRI of the most symptomatic wrist was performed in a prone 
position on a 3.0 T system (Achieva TX, Philips Healthcare, 
Andover, MA, USA) with a dedicated wrist coil. Segmentation 
(manual and automated) was performed on T2-weighted fat- 
suppressed coronal images with an echo time (TE) of 70 ms, 
repetition time (TR) of 3121 ms, flip angle 90�, field of view 
80 mm × 80 mm and a 448 × 448 reconstruction matrix 
yielding a pixel size of 0.178 mm × 0.178 mm with 1.65 mm 
slice thickness. Each MR examination comprised 20 consecutive 
coronal images.

Segmentation
Manual segmentation of 15 wrist bone areas in 60 wrists was 
undertaken by trained research assistants using the open-source 

software ITK-SNAP [10] supervised by a musculoskeletal 
radiologist with 29 years of experience in MR wrist imag
ing (Fig. 2).

Automated segmentation employed a convolutional neural 
network (nnU-Net) framework [11], implemented and 
trained using the Pytorch API [12] on a Tesla A100 40 GB 
graphics processing unit (NVIDIA, Santa Clara, CA, USA). 
T2-weighted coronal fat-saturated images were uploaded to 
the framework for training. The segmentation method used 
was a modification of recognized approaches to image seg
mentation [11]. To address limitations of a relatively small 
training dataset, a 5-fold cross-validation cycle approach was 
adopted. The 60-image dataset was divided into five sets of 
12 image datasets, each dataset comprising all the T2- 
weighted fat-supressed images for that patient. Four sets were 
utilized for training and the fifth for validation. This process 
was repeated five times, rotating through different sets 
for training and validation. The average of the five results 
yielded the final validation result. A total of 1000 epochs 

Figure 2. Segmentation results of a (A) mild (RAMRIS BME¼ 3), (B) moderate (RAMRIS BME¼11) and (C) severe (RAMRIS BME¼ 25) BME case. The 
left column (a1–c1) shows the original T2-weighted fat-saturated coronal image. The middle column (a2–c2) shows the manually segmented model 
(ground truth). The right column (a3–c3) shows the predicted model following automated wrist bone segmentation. The same bone areas in the ground 
truth and predictive columns are colour coded 
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were used to train the model. After the model was fully 
trained, T2-weighted fat-suppressed coronal image datasets 
were uploaded for automated quantification of BME propor
tion (%) and intensity.

Quantification
Visual scoring
Visual scoring of BME extent was undertaken by a musculo
skeletal radiologist using the RAMRIS BME subscore. Fifteen 
wrist bone areas were scored on a 0–3 scale according to the 
estimated proportion of bone area affected by BME, with 0 
being no BME, 1 being <33% bone area affected, 2 being 
34–66% affected and 3 being >66% affected. Summing 
scores for all 15 bone areas yielded an overall BME score 
(maximum score of 45).

Automated scoring of BME
The bone area proportion affected by BME and the BME in
tensity were evaluated. After wrist bone area segmentation, a 
non-Gaussian intensity histogram of the overall bone was au
tomatically obtained (Fig. 3). The mean and S.D. of BME in
tensity were calculated and the BME proportion of 
oedematous wrist bone was automatically calculated. 
Initially a Gaussian mixture model (GMM) clustered the his
togram into two groups: normal bone and non-normal bone 
(BME and cystic spaces). Signal intensity of the normal bone 
cluster served as the internal reference. BME intensity was 
then determined using a two-way thresholding approach us
ing the automatically defined threshold for normal bone to 
distinguish it from BME: 

normal threshold ¼ μþ 1:96σ; (1) 

where μ is the mean and σ the S.D. of the normal bone cluster 
intensity; 1.96 yielded a 95% confidence level. BME was de
fined as any pixel with a signal intensity above the nor
mal threshold.

A higher threshold was manually set to distinguish BME 
from bone marrow cystic areas, i.e. to exclude cystic areas 
within bone. This threshold was manually adjusted until the 
cystic areas were virtually removed from the segmented im
age. If no cystic areas were present, there was no need to ad
just the upper threshold. After obtaining the histogram along 
with the lower and upper thresholds, BME proportion was 
calculated for both the overall wrist bone areas and individ
ual bone areas using the following equation: 

BME proportion %ð Þ ¼
BME volume
Bone volume

× 100%: (2) 

To compare BME intensity, normalization was performed 
by referencing oedematous bone to non-oedematous bone, as 
MR signal intensities are relative, preventing direct abso
lute comparison: 

I0 ¼
I � μ

σ
; (3) 

where I0 is the normalized intensity, I is the non-normalized 
intensity and μ and σ are the mean and S.D., respectively, of 
the normal bone cluster. After normalization, mean BME 

intensity could be regarded as the average ‘distance’ of the 
BME intensity to the normal bone intensity.

Quantification of BME at baseline and 
following 1 year
Visual and automated quantification of BME proportion and 
intensity were compared for 49 patients at baseline and after 
1 year of standard RA treatment.

Statistical analysis
SPSS version 10 [13] (IBM, Armonk, NY, USA) was utilized 
for statistical analysis. The Pearson correlation coefficient (r) 
was used to evaluate the correlation between visual RAMRIS 
of BME and BME proportion. Similarly, manual (ground 
truth) and automated segmentation (‘output’) was evaluated 
using the Sørensen–Dice similarity coefficient (DICE) [14] 
and Jaccard similarity coefficient (JAC) [15]. Error was eval
uated by volumetric distance (VD) [16] and global consis
tency error (GCE) [17]. All four metrics were calculated for 
the ground truth and the output by case, which are defined as 
follows for a particular bone label: 

DICE ¼
2TP

2TPþ FPþFN
(4) 

JAC ¼
DICE

2 − DICE
(5) 

VD ¼
jFN − FPj

2TPþFPþFN
(6) 

GCE ¼
1
n

min½

FPðFPþ2TNÞ
TNþFP

FNðFNþ2TPÞ
TPþFN

FPðFPþ2TPÞ
TPþ FP

FNðFNþ2TNÞ
TNþFN

�: (7) 

TP, FP, TN and FN represent true-positive, false-positive, 
true-negative and false-negative statistics, respectively, and n 
is the number of voxels (448 × 448 × 20). Quantitative seg
mentation results were evaluated for overall wrist bone rather 
than individual bone areas, as the clinical relevance of BME 
relates to the whole wrist. Wilcoxon signed-rank tests for 
overall bone RAMRIS BME score, BME proportion and 
mean BME intensity pre-treatment and post-treatment were 
evaluated. The Pearson correlation coefficient between 
ΔRAMRIS BME (change in the RAMRIS BME pre- and 
post-treatment), ΔBME proportion [change in the BME 
proportion pre- and post-treatment] and Δmean BME 
relative intensity (change in BME relative intensity pre- and 
post-treatment) was calculated. P-values <0.05 were consid
ered statistically significant.

Reliability and minimal detectable difference
The intraclass correlation coefficient (ICC) [18] for ΔBME 
proportion and Δmean BME relative intensity for 15 ran
domly selected patients between two observers were calcu
lated. Baseline and 1-year examinations were assessed for 
each patient. Each T2-weighted fat-saturated coronal dataset 
was uploaded to the model and the upper threshold manually 
adjusted. We used the ICC [1, 2] (two-way random, single 
measures, absolute agreement) to assess reliability. The small
est detectable difference (SDD) [19, 20] was computed using 
the following formula: 
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SDD ¼ 2 × SD obsb
post � obsb

pre

h i

� obsa
post � obsa

pre

h i� �

;

(8) 

where SD is the standard deviation, obsa is the score at the 
first observer reading and obsb is the score at second ob
server reading.

Results
Segmentation (manual and automated)
Examples of manual and automated segmentation are pre
sented in Fig. 2, depicting three cases with mild, moderate 
and severe BME. The automated model consistently identi
fied individual wrist bone areas, even when these bone areas 
were oedematous, and was not impeded by low T2 signal in
tensity tendons, high T2 signal joint fluid or synovitis.

Segmentation accuracy (DICE) for the overall wrist bone 
was 0.91 (S.D. 0.02), while that for the individual wrist bone 
areas is shown in Supplementary Fig. S1 and Supplementary 
Table S2, available at Rheumatology Advances in Practice 
online. The pisiform, trapezoid and fifth metacarpal base had 
lower segmentation reliabilities than other bone areas. 
The correlation between RAMRIS BME and overall wrist 
bone DICE (r¼−0.644, P< 0.001, n¼ 60) (Supplementary 
Fig. S1, available at Rheumatology Advances in Practice 
online) illustrates how more severe degrees of BME tend to 
slightly compromise segmentation accuracy.

Quantification (visual and automated)
Fig. 3A shows an intensity histogram of overall wrist bone 
areas and the GMM clustering results for a single case with 
moderate BME and a RAMRIS BME score of 11 (same case 
as Fig. 2B). BME proportion for this case was 20.2% 

Figure 3. Histogram of BME with thresholds. (A) Intensity histogram of overall bone and the GMM clustering result of a single representative case. α, μ 
and σ are the proportion, mean and S.D. of the cluster, respectively. The lower BME intensity threshold is obtained from the normal bone cluster using the 
formula μþ σ � 1.96. The upper BME intensity threshold was 1114. (B) T2-weighted fat-suppressed coronal MRI. (C) Same binary MRI with predicted 
labels after thresholding with upper and lower BME intensity thresholds 
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representing the percentage of voxels in the segmented bone 
areas occupied by BME. The normalized intensity of this 
BME was calculated as 4.40 (S.D. 2.29) (Table 1). Fig. 3B 
shows the corresponding MRI and Fig. 3C shows the binary 
MRI with predicted labels after thresholding. The RAMRIS 
BME scores for each bone area and overall bone area are 
compared with automated quantitative BME scores for bone 
marrow proportion and BME relative intensity in Table 1.

In 60 validation cases, strong correlation (r¼0.928, 
P< 0.001) between the RAMRIS BME score and automated 
BME proportion was found, with moderate correlation 
(r¼ 0.677, P< 0.001) between RAMRIS BME score and au
tomated BME relative intensity (Fig. 4A, B). Strong correla
tion (r¼0.752, P<0.001) between BME proportion and 
BME relative intensity was found (Fig. 4C).

BME quantification at baseline and after 1 year 
of treatment
With treatment in 49 patients, the overall RAMRIS BME 
score decreased from 6.60 (S.D. 7.36) to 3.41 (S.D. 5.88) 
(P¼0.011), BME proportion decreased from 9.6 (S.D. 6.6) to 
6.2 (S.D. 5.88) (P<0.001) and BME relative intensity de
creased from 3.43 (S.D. 0.57) to 3.29 (S.D. 0.51) (P¼0.049) 
(Table 2). A total of 19 (39%) of the 49 patients showed no 
treatment change with RAMRIS BME score, while all 49 
patients showed some change in BME proportion and BME 
relative intensity (Table 2, Supplementary Fig. S2, available 
at Rheumatology Advances in Practice online). Strong 
(r¼ 0.852, P<0.001) correlation was found between pre- 
and post-treatment changes in visual RAMRIS BME score 
and automated BME proportion, with moderate correlation 
(r¼ 0.428, P¼0.002) between changes in visual RAMRIS 
BME scores and automated BME relative intensity. There 
was modest (r¼0.618, P<0.001) correlation between pre- 
and post-treatment changes in BME proportion and BME rel
ative intensity.

Reliability and minimal detectable difference
There was high reliability between both observers, for pre- 
and post-treatment changes in BME proportion (ICC 
0.980, P<0.001) and for pre- and post-treatment relative 
changes in BME mean intensity (ICC 0.735, P<0.001) 
(Supplementary Table S3, available at Rheumatology 
Advances in Practice online). The smallest detectable 
difference (SDD) of pre- and post-treatment changes in BME 
proportion and BME mean intensity was 2.04% and 0.82, 
respectively (Supplementary Table S3, available at 
Rheumatology Advances in Practice online).

Discussion
BME is increased fluid content within the bone marrow [21]. 
It is seen as high signal intensity on T2-weighted fat-sup
pressed sequences and, less conspicuously, as low signal in
tensity on T1-weighted images [22]. In RA, BME is usually 
the result of bone inflammation (osteitis), being histologically 
associated with a patchy lymphoplasmacytic marrow infil
trate similar to that seen in inflamed synovial tissue [23]. 
BME occurs in two-thirds of ERA patients and is nearly al
ways accompanied by synovitis or tenosynovitis [17, 18]. 
BME is the strongest predictor of bone erosion [24], associ
ated with a 6.5-fold site-specific higher erosion risk at 6 years 
[25]. The likelihood of developing bone erosion in non- 
oedematous bone is very low [26]. As BME is reversible and 
bone erosions are generally irreversible, one should aim to 
treat BME before irreversible structural damage ensues [27]. 
Although a reduction in BME is usually accompanied by re
duced synovial proliferation [28], BME reduction may be an 
earlier indicator of treatment response than synovitis reduc
tion [27].

Semi-quantitative RAMRIS BME scoring [22, 29] is a most 
commonly used method to quantify BME severity. However, 
RAMRIS assessment is limited in detecting subtle change, 
requires assessment by experienced observers, has modest 
interreader reliability, does not quantify BME intensity and is 
relatively time-consuming, with each assessment taking at 
least 5 min. Several studies have attempted to address these 
limitations. Roemer et al. estimated BME volume by drawing 
three orthogonal lines spanning the lesion’s margins [30]. Li 
et al. used a threshold-based method, relying on a region of 
interest in normal bone to calculate a threshold to generate 
BME voxels [31, 32]. Although this method had high repro
ducibility and correlated well with the RAMRIS BME score, 
it lacked automation and was relatively time-consuming.

The highly automated pipeline present in this study is time 
efficient, with the whole process completed in 1 s and the full 
quantification result displayed in real time. The only step oc
casionally requiring manual interaction is setting the upper 
threshold of BME intensity by placing a marker in one cystic 
area when cystic bone change is present. No other interven
tion is needed. As each bone area following segmentation is 
analysed on a pixel-by-pixel basis, areas of mild, moderate 
and severe BME can be handled satisfactorily by the pro
posed pipeline. Segmentation is the most critical and techni
cally difficult part of the pipeline. Accurate segmentation is 
necessary before BME quantification to avoid erroneously in
cluding joint fluid, inflamed synovium and soft tissue oedema 
as BME. Wrist bones are not easily segmented, as they are 
small, variably sized, with narrow intervening spaces and 
aligned curvilinearly in both transverse and sagittal planes. 

Table 1. Example of RAMRIS BME, automated BME proportion and 
intensity in a single patient

Bone area RAMRIS  
BME score

Quantitative score

BME proportion (%) BME intensitya,  
mean (S.D.)

Radius 0 7.2 5.02 (0.90)
Ulna 1 1.3 4.95 (0.90)
Scaphoid 1 23.9 6.05 (1.77)
Lunate 1 19.9 5.76 (1.60)
Triquetrum 1 16.2 5.77 (1.28)
Pisiform 0 14.3 5.05 (0.85)
Trapezium 1 13.6 5.72 (1.55)
Trapezoid 1 85.0 7.99 (2.54)
Capitate 1 25.2 6.16 (2.07)
Hamate 1 45.9 6.82 (2.58)
BOM1 0 0.5 4.89 (0.70)
BOM2 1 77.7 8.60 (3.05)
BOM3 1 37.7 6.52 (2.81)
BOM4 1 25.4 6.69 (2.43)
BOM5 0 0.3 4.48 (0.28)
Overall 11 20.2 4.40 (2.29)

For a single case of moderate-severity BME (RAMRIS BME¼ 11) (the same 
case as in Fig 2b). Comparison of visual RAMRIS BME with automatic 
quantification of BME proportion and relative intensity for individual wrist 
bone areas and overall wrist bone areas. 
BOM: base of metacarpal.

a Normalized by reference to normal bone cluster.
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Although the wrist bones are more easily demarcated on T1 
spin-echo rather than T2-weighted fat-suppressed images, it 
is preferrable to segment T2-weighted fat-suppressed images, 
as these better depict BME. Several previous studies have 

undertaken wrist bone segmentation on T1-weighted spin 
echo sequences using atlas-based [33, 34], seed-based [35, 
36] or machine learning–based [37] algorithms. To address 
issues related to less distinct boundary marking on 

Figure 4. BME quantification for overall wrist bone (i.e. all wrist bone areas considered together) in 60 validation cases. (A) Scatter plot showing strong 
correlation (r¼0.928, P< 0.001) for overall BME proportion and RAMRIS BME. In 12 (20%) of the 60 cases, RAMRIS BME was 0 but BME proportion 
provided a low value for BME. (B) Scatterplot showing moderate (r¼ 0.677, P¼ 0.033) correlation between mean BME intensity and RAMRIS BME. (C) 
Scatterplot showing high (r¼ 0.752, P< 0.001) correlation between mean BME intensity and BME proportion 
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T2-weighted fat-suppressed images, especially when the 
bones were oedematous, we applied a deep learning algo
rithm, including convolutional neural network–based seg
mentation algorithms. Building on our previous work [38], 
an nnU-Net framework [11] was implemented in this study 
to good effect.

Compared with manual segmentation, the proposed pipe
line was very accurate (DICE 0.91) at segmenting individual 
wrist bone areas on T2-weighted fat-suppressed MRI. The 
proposed algorithm enables the proportion of the overall 
wrist bone area affected by BME to be provided as a percent
age, as well as the average relative intensity of this BME. This 
is the first algorithm able to measure these features. 
Automated BME proportion had a strong (r¼0.928, 
P< 0.001) correlation with visual RAMRIS BME scoring. 
BME intensity had a strong (r¼ 0.752, P<0.001) correlation 
with BME proportion. As well as considering all the wrist 
bone areas as a single unit, the pipeline also enables quantifi
cation of the BME proportion and relative intensity of indi
vidual wrist bone areas, enabling areas of incomplete fat 
suppression to be excluded and, if necessary, the relationship 
between BME in specific bone areas and subsequent erosion 
to be readily evaluated. While RAMRIS takes at least 5 min 
to complete and is semi-quantitative and manual bone seg
mentation of wrist bone areas with quantification takes at 
least 1 h, automated BME quantification following upload of 
T2-weighted fat-suppressed images can be completed in 1 s.

Automated quantification of BME also seemed more sensi
tive at detecting treatment change than the RAMRIS BME. 
Treatment effect was analysed in 49 ERA patients who 
underwent follow-up MRI after 1 year of standard RA treat
ment. Following treatment, the proportion of bone affected 
by BME decreased by about one-third, from 9.6% (S.D. 6.6) 
to 6.2% (S.D. 5.4), while BME intensity decreased by a lesser 
degree. Using RAMRIS BME scoring, two-fifths of patients 
showed no treatment change, while all patients showed treat
ment change of both BME proportion and BME relative in
tensity, with about three-quarters of patients showing a 
reduction in these parameters.

There are some limitations to this study. First, only a limited 
image dataset of 60 patients was used for training. Due to mo
tion artefact and inadequate fat suppression, one-quarter of 
image datasets from the original cohort were unsuitable for ac
curate automated segmentation. In other words, high-quality 
MRI data are currently necessary to apply this method, which 
needs to be made more robust to deal with motion artefacts 
and inadequate fat suppression. Second, this was a feasibility 
study with no independent external testing of the proposed 
method being undertaken. This automated assessment method 

needs to be tested on datasets from different MRI systems to 
ensure its widespread applicability, including its applicability 
on lower-resolution MR acquisitions, alternative acquisition 
protocols and low-field MRI systems. While BME proportion 
was measured both manually and automatically, BME inten
sity was only measured automatically, as no accepted method 
of manually measuring relative BME intensity exists. While the 
automated system provided high reliability with a small mini
mal detectable change for BME proportion, reliability was 
only moderate for BME intensity, possibly related to non- 
uniformity of the internal reference standard.

In conclusion, we present a reliable method of automati
cally quantifying BME proportion and intensity in ERA 
patients based on T2-weighted fat-suppressed coronal MRI 
sequences. Automated BME quantification can be completed 
in 1 s, had a high correlation with RAMRIS BME scoring and 
was sensitive to treatment change.
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Table 2. Ranking of treatment response for RAMRIS BME, BME proportion and relative intensity

Quantification metric Descriptive statistics, mean (S.D.) Wilcoxon signed-rank test

Pre-treatment Post-treatment Negative ranksb Positive ranksc Tiesd Total P-value

RAMRIS BME 6.06 (7.36) 3.41 (5.88) 21 9 19 49 0.011
BME proportion 9.6 (6.6) 6.2 (5.4) 34 15 0 49 0.000
BME intensitya 3.43 (0.57) 3.29 (0.51) 32 17 0 49 0.049

Wilcoxon signed-rank test for RAMRIS BME, BME proportion and relative BME intensity of all wrist bone areas in 49 patients pre- and post-treatment.
a Normalized by reference normal bone cluster.
b Quantification metric post-treatment<pre-treatment.
c Quantification metric post-treatment> pre-treatment.
d Quantification metric post-treatment¼pre-treatment.
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