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Deep learning differentiates between healthy and diabetic
mouse ears from optical coherence tomography
angiography images
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We trained a deep learning algorithm to use skin optical coherence tomography (OCT) angiograms to differentiate
between healthy and type 2 diabetic mice. OCT angiograms were acquired with a custom-built OCT system based
on an akinetic swept laser at 1322 nm with a lateral resolution of ∼13 μm and using split-spectrum amplitude
decorrelation. Our data set consisted of 24 stitched angiograms of the full ear, with a size of approximately 8.2
× 8.2 mm, evenly distributed between healthy and diabetic mice. The deep learning classification algorithm uses
the ResNet v2 convolutional neural network architecture and was trained on small patches extracted from the full
ear angiograms. For individual patches, we obtained a cross-validated accuracy of 0.925 and an area under the
receiver operating characteristic curve (ROC AUC) of 0.974. Averaging over multiple patches extracted from each
ear resulted in the correct classification of all 24 ears.
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Introduction

Diabetes mellitus is a chronic metabolic disorder
characterized by elevated levels of blood glucose
over a prolonged period. It is linked to macro-
and microangiopathies that cause several vascular
diseases, such as diabetic retinopathy (DR), diabetic
nephropathy, diabetic neuropathy, and arterioscle-
rosis. More than 425 million people worldwide are
currently affected by diabetes, with its prevalence
continuing to rise.1 Diabetes may affect many parts
of the body, but changes to the vasculature are best
observed in the retina, where they can be examined

using noninvasive optical methods, such as fundus
photography or optical coherence tomography
(OCT).
OCT is a noninvasive imaging modality that

can capture three-dimensional images of tissue
samples with axial and lateral resolutions of a few
micrometers.2–4 Analogous to ultrasound, OCT
measures the magnitude and echo time delay of
back-reflected or back-scattered light to produce
structural images of the sample. Today, OCT is
widely used in ophthalmology, but it also has
promising applications in other medical fields, such
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as dermatology, where it can provide cross-sectional
images revealing skin morphology down to a depth
of a few millimeters. A number of functional exten-
sions to OCT provide access to secondary infor-
mation in addition to the morphological imaging
offered by standard OCT. In particular, optical
coherence tomography angiography (OCTA)
enables visualization of the vascular network of the
probed tissue without the need for a contrast agent.5
The advent of deep learning, spurred by the

recent availability of large data sets and suffi-
cient computing power, has triggered tremendous
advances in computer vision.6,7 Naturally, this new
technique has been enthusiastically adopted in the
field of medical imaging, with hundreds of papers
published already.8–10 Retinal fundus photographs
have been extensively used to train machine learn-
ing algorithms to diagnose diabetes-associated con-
ditions with excellent results; for example, Gulshan
et al.11 demonstrated a deep learning algorithm for
detecting DR in retinal fundus photographs that
had an area under the receiver operating charac-
teristic curve (ROC AUC) of 0.991 and 0.990 for
two different validation data sets. Visualization of
other pathologies, such as diabetic macular edema
(DME), is improved in retinal OCT images as com-
pared with fundus photographs, because OCT also
provides additional depth information. For exam-
ple, Kermany et al.12 trained a deep learning system
on OCT images to screen patients for retinal dis-
eases and obtained an ROCAUCof 0.9987 forDME
versus normal. Both fundus photography and OCT
imaging present features of the retinal vasculature—
the first in an en face manner, the latter as cross-
sectional data. Since OCT angiography has already
been shown to be superior to fundus photography
for detection of vascular abnormalities in DR when
assessed manually,13,14 it should also be well suited
for the detection of diabetic vascular changes by
machine learning. In a very recent paper, Sandhu
et al.15 used clinical biomarkers and quantitative
parameters derived from OCT and OCTA images
to train a random forest classifier to diagnose non-
proliferative DR with an ROC AUC of 0.981 for DR
versus no DR. If limited to only the OCTA-derived
parameters, they were still able to obtain an ROC
AUCof 0.937. Additionally,much research has been
performed to improve the performance of machine
learning algorithms on public retinal fundus photo-
graph databases. For example, Wang et al.16 aimed

tomimic the zoom-in process of a clinician to exam-
ine retinal images in their Zoom-in-Net; DME-Net
by He et al.17 added a segmentation step before clas-
sifying for DME; and CANet by Li et al.18 used
disease-specific attentionmodules and exploited the
correlation between DR and DME to improve per-
formance.
In the present study, we employed OCT for non-

invasive angiography imaging in an in vivo model
in the pinna of healthy and type 2 diabetic mice.
The primary aim was to investigate whether a deep
learning algorithm can differentiate between the
vasculatures of nondiabetic and diabetic animals on
the basis of OCT angiograms. In an effort to evalu-
ate differences in the images that might lead to the
recognition by the deep learning algorithm, we per-
formed further analyses, including comparison of
the OCTA parameters vessel density, length, diame-
ter, and number of bifurcations as determined from
the angiographic images.

Materials and methods

Animals
Six female healthy (C57BL/6J) and six female type
2 diabetic mice (BKS.Cg-Dock7m+/+ Leprdb/J)
were included in this study. The animals were pur-
chased from the Charles River Laboratory and kept
under controlled, standardized conditions (artifi-
cial light/dark cycle of 12:12, room temperature at
22 ± 2 °C, humidity at 45 ± 10%) at the Center
for Biomedical Research of the Medical University
of Vienna. The animals had ad libitum access to
water and complete feed formice (sniffR/M-H, sniff
Spezialdiäten GmbH, Soest, Germany). All diabetic
mice had a blood sugar level greater than 300mg/dL
at the time of the study. OCT angiography images
were acquired from the mice at the age of 10 weeks
while they were under anesthesia from breathing
2% isoflurane. OCTA images were recorded at the
pinna, where, owing to its flat shape, most vessels
are located close to the skin surface and thus within
the accessible penetration depth and optimal focal
range of theOCT system.Mouse earswere depilated
before the measurements in order to avoid shad-
owing by body hair. The study was approved by
the local AnimalWelfare Committee of theMedical
University of Vienna and the Austrian Federal Min-
istry of Education, Science, and Research and was
fully compliant with Austrian legislation.
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Table 1. Cross-validation results per patch and per image

Accuracy per patch ROC per patch Accuracy per image ROC per image

Total 0.925 0.974 1.000 1.000
Fold 1 0.907 0.983 1.000 1.000
Fold 2 0.913 0.984 1.000 1.000
Fold 3 0.980 0.999 1.000 1.000
Fold 4 0.908 0.972 1.000 1.000
Fold 5 0.982 0.998 1.000 1.000
Fold 6 0.865 0.899 1.000 1.000

Note: Each fold consists of many small, overlapping patches extracted from two nondiabetic and two diabetic whole-ear OCTA
images. Results are given both for individual patches and whole images (i.e., using the averages over all patches of each image).

Image acquisition and data set
OCT images were acquired using a custom-built
OCT prototype. The system is based on an aki-
netic swept laser with a flat spectrum centered
at 1322 nm and a bandwidth of 62 nanometers.
A detailed description of this system has been
published previously.19 For the current angiogra-
phy measurements, a scan lens with a focal length
of 18 mm (Thorlabs LSM02, Thorlabs GmbH,
Bergkirchen, Germany), providing a lateral res-
olution of ∼13 μm with a depth of focus of
∼200 μm, was used. Image acquisition was per-
formed over a square skin patch of 4.86 × 4.86 mil-
limeters. Angiography images were generated using
split-spectrum amplitude decorrelation20 from four
B-scans recorded at each position. After applying
the thresholded intensity data as a mask to the
angiography data, a 3D Gaussian filter with a small
sigma was used to reduce speckle noise. En face
images were generated by applying maximum pro-
jection in axial direction and had a size of 768 ×
768 pixels. Four images were taken from slightly
overlapping regions of the mouse ear and stitched
together, resulting in large angiograms with a size
of approximately 8.2 × 8.2 mm, covering nearly the
entire pinna. The final data set consisted of a total of
24 full-ear angiograms evenly distributed between
healthy and diabetic mice.

Deep learning algorithm
A convolutional neural network (CNN) was trained
to distinguish OCTA images of healthy and dia-
betic mice. The network uses a 50-layer ResNet v221
with a two-way fully connected layer as the final
layer. The network was initialized with weights

pretrained on ImageNet and all layers were fully
retrained. Training was performed for 30,000 iter-
ations using cross-entropy loss and stochastic gra-
dient descend with a learning rate of 0.0001, Nes-
terov momentum of 0.9, and a batch size of 128.
To limit overfitting, L2 regularization was applied.
Instead of using the full OCTA images as input,
patches of 330 × 330 pixels (2.09 × 2.09 mm) were
extracted and resized to the network input size of
224 × 224 pixels. This helped to generate a suffi-
ciently large training set from the available images.
Only patches that did not extend beyond the edge
of the pinna were used for training. To introduce
further variability into the training set, extensive
image augmentation was applied, including ran-
dom contrast and brightness adjustments, mirror-
ing, rotation, and random elastic distortion using
a 5 × 5 displacement grid.22 We employed six-fold
cross-validation, with each of the six folds consist-
ing of the angiograms of the ears of one healthy and
one diabetic mouse. To measure the performance
of the deep learning algorithm, we determined the
accuracy and the ROC AUC both for individual
patches and after averaging over each mouse ear.
The ROC curve plots the true positive rate against
the false positive rate for various thresholds. The
area under this curve (ROC AUC) is a perfor-
mance measure of a binary classifier, with an ROC
AUC value of 1.0 corresponding to perfect results
and 0.5 indicating equal to random performance
of the classifier. The CNN was implemented with
the help of the Keras library23 using the TensorFlow
backend.24 Training of one network took approxi-
mately 3.3 h using twoNvidia GeForceGTX 1080 Ti
GPUs.
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Saliency maps
While deep learning algorithms are frequently able
to produce astonishingly accurate predictions, their
inner workings often remain opaque. One com-
mon method of CNN analysis is attention map-
ping. Of the different saliency mapping techniques
that have been discussed in the literature, the most
straightforwardmethod is to calculate the derivative
(i.e., gradient) of the prediction S(x) with respect to
the input image x.25–27 The gradient ∂S(x)/∂x quan-
tifies how much a change in a pixel of the input
image would change the prediction. While gradi-
ent saliency maps have been proven to be rather
robust,28 they are very noisy. SmoothGrad29 seeks
to alleviate this by averaging over multiple saliency
maps of noisy copies of the input image. Here, we
use a slightly different technique: as our CNN input
is extracted from larger angiograms, we can slightly
shift the input region and thus average over multi-
ple saliency maps for the same pixel positions in the
larger angiography image. This produces large-scale
saliency maps for areas greater than the CNN input
size, with considerably reduced noise.

Vascular network analysis
In order to investigate the differences in the vascu-
lature of healthy and diabetic mice as revealed by
OCTA, four parameters of the vessel networks were
determined:30 First, the vessel density, that is, the
percentage of pixels in the image that show ves-
sels, was calculated. This was done by first applying
a Sato filter of curvilinear structures31 to the two-
dimensional OCTA images, followed by contrast
limited adaptive histogram equalization.32 Thresh-
olding using Otsu’s method33 produces a binary
image, of which the percentage of foreground pix-
els is the vessel density. Next, the vessel length nor-
malized to a fixed area of 1 mm2 and calculated
from the skeletonized34 binary image, and themean
vessel diameter, which is the ratio between the ves-
sel density and the normalized vessel length, was
determined. These parameters were calculated in an
effort to investigate if a possible difference in vessel
densitymay be caused by eithermore or thicker ves-
sels. Finally, the fourth parameter is the number of
bifurcations normalized to vessel length. The four
parameters were calculated using the scikit-image35
and skan36 libraries.
Independent two-sample t-tests were performed

to compare the vascular parameters of the dia-

Figure 1. Receiver operating characteristic for the detection
of diabetes. ROC patches give the ROC curve for individual
overlapping patches extracted from the acquired OCT images.
ROC images give the ROC curve after averaging over all usable
patches of each image.

betic and healthy mice. Statistical significance was
accepted at P < 0.05.

Results

Deep learning results
Since the input size for the neural network is smaller
than the size of the acquired OCTA images, we
extracted 196 overlapping patches from each image
using an equally spaced 14 × 14 grid for evalua-
tion of the network performance. On average, adja-
cent patches overlapped by ∼77%. Only patches
that did not extend beyond the edge of the pinna
were included in the evaluation data set. In total,
we evaluated the six networks on 3026 patches and
achieved an accuracy of 0.925 and an ROC AUC
of 0.974. When averaging the results of all usable
patches per ear (i.e., those not extending beyond the
edge of each ear), prediction was correct for all 24
ears (accuracy of 1.0 and ROC AUC of 1.0). Table 1
gives the accuracy and ROC AUC for each of the
six networks trained for cross-validation. Figure 1
shows the ROCcurves for both kinds of evaluations.
Exemplary predictions of the CNN are given in Fig-
ures 2 and 3. Figure 4 shows the angiograms and
CNN predictions of the healthy and diabetic mouse
where the performance of the neural network was
worst, both of which still produced a correct pre-
diction after averaging over all usable patches. A
few angiograms revealed slight movement artifacts
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Figure 2. Example of OCTA images with a size of approximately 8.2× 8.2 mm (left) with corresponding predictions of the CNN
(right). As the network expects an input size of 2.09× 2.09mm (indicated by the red squares), inference was performed 196 times
per image on overlapping patches of this size. Patches extending beyond the useful angiography image areawere excluded from the
average (indicated by red crosses). Numbers close to 1.0 represent CNN prediction of diabetic vascular changes. (A) Nondiabetic
mouse. Average prediction 0.02; median prediction 0.00. (B) Diabetic mouse. Average prediction 0.97; median prediction 1.00.

owing to breathing of the mice (e.g., Figs. 2B and
3A).

Analysis of the deep learning algorithm
Gradient saliency maps for the central regions of a
healthy and diabeticmouse ear are given in Figure 5.
The gradient is small at the location of larger vessels
and large in those areas of the angiogram where no
distinct vessels are visually apparent.

To obtain a better understanding on the impor-
tance of high-resolution spatial features, we also
trained and evaluated CNNs on blurred copies of
the angiograms. The results of this analysis are
shown in Figure 6. As expected, larger Gauss ker-
nels have a higher impact on performance, but even
a Gaussian filter with only σ = 2 already affects
performance noticably, with the cross-validated
ROC AUC for individual image patches drop-
ping from 0.974 to 0.933. Still, for a Gauss kernel
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Figure 3. Example of OCTA images with a size of approximately 8.2× 8.2 mm (left) with corresponding predictions of the CNN
(right). As the network expects an input size of 2.09× 2.09mm (indicated by the red squares), inference was performed 196 times
per image on overlapping patches of this size. Patches extending beyond the useful angiography image areawere excluded from the
average (indicated by red crosses). Numbers close to 1.0 represent CNN prediction of diabetic vascular changes. (A) Nondiabetic
mouse. Average prediction 0.02; median prediction 0.00. (B) Diabetic mouse. Average prediction 0.90; median prediction 0.99.

with σ = 8 that suppresses all capillaries and leaves
only the midsized and larger vessels visible to the
observer (Fig. 6E), the network still performs better
than random, with an ROC AUC of 0.694.
Finally, we aimed to investigate whether the net-

work also relies on the intensity distribution in the
angiograms for the classification. To this end, we
performed training and evaluation on permuted
copies of the images that only retained the pixel
intensity values, but were stripped of any spatial

information (see Fig. 6G for an example). If there
were no correlation between intensity distribution
and diabetes status of the mice, an ROC AUC of 0.5
would be expected, but we obtained an ROC AUC
of 0.708, which supports our assumption.

Vascular network analysis
Analysis of the vascular network was performed by
calculating four parameters from binarized angiog-
raphy images: vessel density in percent of pixels,
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Figure 4. Example of OCTA images with a size of approximately 8.2× 8.2 mm (left) with corresponding predictions of the CNN
(right). As the network expects an input size of 2.09 × 2.09 mm (indicated by the red squares), inference was performed 196
times per image on overlapping patches of this size. Patches extending beyond the useful angiography image area were excluded
from the average (indicated by red crosses). Numbers close to 1.0 represent CNN prediction of diabetic vascular changes. The two
angiograms shown in this figure are the ones that exhibited theworst performance of the deep learning algorithm. (A)Nondiabetic
mouse. Average prediction 0.24; median prediction 0.03. (B) Diabetic mouse. Average prediction 0.58; median prediction 0.88.

normalized vessel length in mm per mm2 image
area, mean vessel diameter in μm, and number of
bifurcations per mm vessel length. Results are given
in Table 2 and visualized via box plots given in
Figure 7. Both vessel density and normalized ves-
sel length are slightly larger for healthy mice than
for diabetic mice, though the difference is not sig-
nificant (P= 0.19 for both). Mean vessel diameter is

almost identical (P= 0.86) betweenhealthy anddia-
betic animals. Vasculature in healthy mice exhibits
more bifurcations per unit vessel length, but the dif-
ference is again not significant (P = 0.18).

In total, all four investigated parameters did not
show any significant differences that could serve as a
distinguishing feature between healthy and diabetic
samples.
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Figure 5. Example of OCTA images (top) and corresponding gradient saliency maps stitched frommany overlapping CNN pre-
dictions (bottom). Bright green areas represent regions that the network ismost influenced bywhen predicting diabetes-correlated
vascular changes. Red squares indicate CNN input size. (A) Healthy mouse. Central region of the ear in Figure 2A. (B) Diabetic
mouse. Central region of the ear in Figure 2B.

Discussion

We successfully trained a deep learning algorithm
to differentiate between vasculatures of healthy and
diabetic mice fromOCT angiograms obtained from
ears.
As input, small extracted patches rather than the

full angiograms were used to train the CNN. While
it would be possible to feed a CNNwith angiograms
of the full ear, using only these small patches has
two major advantages: first, deep learning gener-
ally needs vast amounts of training images to be
effective. By extracting small patches from the full
image, hundreds of different training samples can
be generated from each mouse. If image augmen-

tation is employed, the number of samples can be
even further increased. Second, training a CNN
on small images reduces the number of necessary
computations per convolution and thus speeds up
training. The main disadvantage of this approach
is the limited receptive area of the CNN, which
probably leads to a higher error rate than if the
CNN had access to the full image. We compensated
for this by applying the CNN on different patches
extracted from each full ear image and averaging
the predictions of the CNN. With this approach,
we obtained correct classification results for all
24 ears, that is, both a cross-validated accuracy and
an ROC AUC of 1.0.

Table 2. Analysis of the vascular network in the ears of healthy (BL6) and diabetic (db/db) mice

BL6 db/db P value

Vessel density (%) 35.33 (3.02) 33.59 (2.97) 0.19
Normalized vessel length (mm/mm2) 7.62 (0.64) 7.23 (0.70) 0.19
Mean vessel diameter (μm) 46.39 (1.43) 46.50 (1.59) 0.86
Bifurcations per vessel length (1/mm) 5.02 (0.33) 4.84 (0.26) 0.18

Note: Given are the mean values with the standard deviations in parentheses.
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A B C D
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Figure 6. Effects of removing image information on the prediction of diabetes. (A) Impaired prediction due to the removal of
high-frequency information with Gaussian blurring. (B) Sample CNN input image. (C–F) Same image with varying degrees of
Gaussian blur applied. (G) Same image with randomly shuffled pixel positions. For the permuted images, an ROC AUC of 0.708
was obtained.

In addition to the deep learning analysis, we
determined four quantitative vascular parameters in
order to investigate if they can explain the nature of
the differences between the two groups that the deep
learning algorithm was able to exploit. Immuno-
histochemistry of the skin in diabetic subjects has
shown not only inflammation but also an increased
blood vessel density, even though skin blood flow
was not significantly different compared with non-
diabetic subjects.37 We found, however, that none of
the differences in OCTA-based vessel density, mean
vessel diameter, normalized vessel length, and num-
ber of bifurcations were statistically significant. The
deep learning algorithm thus seems to include other
image features not reflected in OCTA parameters
obtained after postprocessing of the angiograms to
achieve its high classification accuracy.
In order to evaluate the operating mode of the

CNN, we performed several additional analyses.
We calculated gradient saliency maps and found
that the maximum attention occurs not at the loca-
tion of the larger vessels, but rather in the low-
contrast areas in between. This suggests that the
CNN tends not to look at these large vessels, but
rather focuses on the areas that only contain cap-
illaries, and is in agreement with the literature
describing diabetes-related damage to small ves-
sels. For example, in the retina, patients with early
stages of type 2 diabetes, but without any signs of
DR, showed disruptions in the parafoveal capillary
network,38 and patients with DR showed anomalies

in the foveal microvasculature.39 In the skin, cap-
illary circulation in the toes of patients with dia-
betes was severely reduced, even though the total
skin microcirculation was normal,40 and patients
with diabetic foot ulcer had fewer capillaries in
the dermal papillary layer and showed detrimental
remodeling.41
When training and evaluating CNNs on blurred

copies of the angiograms, we found that even amild
blurring already deteriorates the prediction accu-
racy, but performance remained better than average
up to fairly strong blurring with a Gauss kernel of
σ = 8, which effectively eliminates all but the largest
vessels. Thus, both high- and low-frequency spatial
information seem to play an important role in the
prediction of diabetic vascular changes. Finally, we
trained and evaluated CNNs on permuted copies of
the images and obtained an accuracy that was bet-
ter than random, indicating that the CNN is able to
exploit a difference in the intensity distributions in
the angiograms of the two groups. This suggests that
some of the differences between the vascular sys-
tems of healthy anddiabeticmicemight be indepen-
dent of the shape of the vessels, but rather related to
the decorrelated pixels and thus to the perfusion of
the existing vessels, which again corresponds to the
literature cited above.
A few limitations have to be considered when

interpreting the results of our study: First, small
capillaries have a diameter below the resolution
limit of our OCT system. While they might still
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Figure 7. Analysis of the vascular network in the ears of healthy (BL6) and diabetic (db/db) mice. The box plots show (A) vessel
density, (B) normalized vessel length, (C) mean vessel diameter, and (D) bifurcations per vessel length.

appear as nonconnected decorrelated regions in the
angiograms and thus may be considered by the
CNN, they will not be included in the deduced
quantitative parameters. Second, we performed the
analysis of vascular parameters on the same two-
dimensional images that were also used for train-
ing the CNN. As these 2D images are maximum
intensity projections of the volumetric data set, they
do not convey the depth position of the vessels,
possibly leading to extra bifurcations that do not
exist in the proper three-dimensional vascular sys-
tem. A three-dimensional analysis of the volumet-
ric OCT angiograms would avoid this, but since the
main focus of this study is the implementation of a
deep learning algorithm for image classification, we
chose to use the same 2D image for bothmethods in
order to be able to compare the results better. Third,
our data set is limited in size and contains only 24
full ear angiograms. Still, as our approach funda-
mentally works with small image patches instead
of full ear angiograms, we are confident in the sig-
nificance of our results for the evaluation of 3026
patches that showed a cross-validated ROC AUC
of 0.974. Fourth, as a consequence of the disease,
the diabetic mice are obese. Changes in the vascu-
lature observed by the CNN could also be due to
the obesity and thus only indirectly related to dia-
betes. Additional experiments would be needed to
study this issue, for example, comparing obese mice
suffering from diabetes with mice that develop obe-

sity because of a lack of sensation of satiety. Finally,
regarding the applicability in humans, OCT angiog-
raphy in human skin is possible, but its greater
thickness might make the analysis more difficult.
Should analysis of diabetes-induced vascular dam-
ages fromhuman skinOCT angiograms be found to
be impracticable, the human retina may serve as an
alternative window into the state of vascular health
in humans.
Our study demonstrates that a deep learning

algorithm can successfully detect diabetes-induced
changes in the vascular system, warranting further
research in this area. Here, future studies should
compare angiograms of different stages of diabetes.
Deep learning analysis of OCT angiography images
has profound potential to offer new biomarkers that
help with early detection and treatment of the dis-
ease, ultimately preserving quality of life for patients
affected by diabetes.
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