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Abstract. In a previous paper (Lee et al., 1992), it 
was shown that normal human mammary epithelial 
cells (NMEC) express two connexin genes, Cx26 and 
Cx43, whereas neither gene is transcribed in a series 
of mammary tumor cell lines (TMEC). In this paper it 
is shown that normal human mammary fibroblasts 
(NMF) communicate and express Cx43 mRNA and 
protein. Transfection of either Cx26 or Cx43 genes 
into a tumor line, 21MT-2, induced the expression of 
the corresponding mRNAs and proteins as well as 
communication via gap junctions (GJs), although im- 
munofluorescence demonstrated that the majority of 
Cx26 and Cx43 proteins present in transfected TMEC 
was largely cytoplasmic. Immunoblotting demonstrated 
that NMEC, NMF, and transfected TMEC each dis- 
played a unique pattern of posttranslationally modified 
forms of Cx43 protein. 

The role of different connexins in regulating gap 
junction intercellular communication (GJIC) was ex- 
amined using a novel two-dye method to assess ho- 
mologous and heterologous communication quantita- 
tively. The recipient cell population was prestained 
with a permanent non-toxic lipophilic dye that binds 

to membranes irreversibly (PKH26, Zynaxis); and the 
donor population is treated with a GJ-permeable dye 
Calcein, a derivative of fluorescein diacetate (Molecu- 
lar Probes). After mixing the two cell populations un- 
der conditions promoting GJ formation, cells were 
analyzed by flow cytometry to determine the percent- 
age of cells containing both dyes. It is shown here that 
Cx26 and Cx43 transfectants display strong homolo- 
gous communication, as do NMEC and NMF. Fur- 
thermore, NMEC mixed with NMF communicate 
efficiently, Cx26 transfectants communicate with 
NMEC but not with NMF, and Cx43 transfectants 
communicate with NMF. Communication between 
Cx26 TMEC transfectants and NMEC was asymetrical 
with preferential movement of calcein from TMEC to 
NMEC. Despite the presence of Cx43 as well as Cx26 
encoded proteins in the GJs of NMEC, few Cx43 
transfectants communicated with NMEC. No heterolo- 
gous GJIC was observed between Cx26- and Cx43- 
transfected TMEC suggesting that heterotypic GJs do 
not form or that Cx26/Cx43 channels do not permit 
dye transfer. 

AP junctions (GJ) 1 are membrane structures that con- 
sist of clusters of channels connecting the cyto- 
plasms of adjacent cells through which small mole- 

cules, less than about 1,000 D, can pass from cell to cell. 
Each channel consists of a ring of six monomeric connexin 
molecules joined end-to-end. Different connexins form GJs 
which display different unitary conductance values and 
channel gating properties. Each connexin exhibits a unique 
pattern of expression and multiple connexins can be ex- 

1. Abbreviations used in this paper: Cx26, connexin 26; Cx43, connexin 43; 
GJ, gap junction; GJIC, gap junction intercellular communication; NMEC, 
normal mammary epithelial cells; NMF, normal mammary fibroblast; 
TMEC, tumor-derived mammary epithelial cells. 

pressed within a single cell (Loewenstein, 1981; Musil and 
Goodenough, 1990; Bennett et al., 1991). 

Early studies of cell-cell communication were carded out 
either by measuring transmembrane electrical conductance 
or by detecting the transfer of [3H]uridine between adjacent 
cells. Subsequently, dye transfer was detected by fluores- 
cence microscopy, using injection of small fluorescent mole- 
cules such as Lucifer yellow into single cells of a monolayer, 
and observing its transfer to adjacent cells (l.x~wenstein, 
1979, 1981). Subsequently, the use of membrane permeant 
dyes, such as carboxyfluorescein diacetate, were introduced 
to study gap junction intercellular communication (GJIC) 
(Goodall and Johnson, 1982). More recently, a simple 
method of scrape loading was developed, in which dye intro- 
duced into damaged cells by scraping or scratching a 
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monolayer with a fine needle, is then transferred to neighbor- 
ing ceils via GJs (El Fouly et al., 1987). Despite the ease 
and qualitative results obtained using scrape loading, this as- 
say is not quantitative (McKarns and Doolittle, 1992). Fur- 
thermore, scrape loading cannot be used for heterologous 
combinations. 

Nonetheless, these methods have played a very important 
role in showing that GJs mediate cell-cell communication, 
and in correlating GJIC with growth control in certain model 
systems, principally rodent cell lines in culture (Mehta et al., 
1986, 1992; Trosko et al., 1990; Yamasaki, 1990). Recent 
transfection studies of C6 glioma cells with Cx43 (Naus et 
al., 1992), human hepatoma SKHepl cells with Cx32 (Egh- 
bali et al., 1991), and transformed mouse fibroblasts with 
Cx43 (Mehta et al., 1991) have all shown that restoration of 
GJIC results in decreased growth rates in culture and in nude 
mice. These results support the hypothesis that GJIC can 
play a role in growth control, thus having tumor suppressor 
functions. 

In previous studies we identified both Cx26 and Cx43 in 
human normal mammary epithelial cells (NMEC), and 
cloned and sequenced human Cx26 (Lee et al., 1992). Cur- 
rently, with the use of low-stringency DNA hybridization and 
PCR technology, a number of new connexins have been 
identified (Bennett et al., 1991; Haefliger et al., 1992), but 
of those tested to date none are expressed in mammary epi- 
thelial cells (Lee et al., 1992). A series of patient-derived tu- 
mor mammary epithelial cell lines (TMEC) expressed nei- 
ther Cx26 nor Cx43 at the mRNA level. Southern analysis 
showed that the Cx26 gene was still present in the tumor 
cells. The hypothesis that the connexin genes were present 
but down regulated in TMEC was confirmed by transiently 
inducing Cx26 mRNA in tumor cells by treatment with PMA 
(Lee et al., 1992). 

In this paper, stable GJIC has been re-established in tumor 
cells by transfection with plasmids containing either rat 
Cx26 or rat Cx43 cDNAs driven by the cytomegalovirus pro- 
moter. It is shown here that stable transfectants expressed be- 
tween 7- and 25-fold more protein than NMEC. For both 
connexins, the excess protein was largely cytoplasmic, mak- 
ing characteristic punctate membrane staining difficult to 
detect. The cells did communicate, but the extent of dye 
transfer was decreased compared to NMEC or normal mam- 
mary fibroblasts (NMF), as judged by scrape loading. These 
results indicated that improved methods of quantifying GJIC 
were highly desirable for further investigations. 

This paper describes a quantitative method to measure ho- 
mologous GJIC within a clone or cell line, as well as heterol- 
ogous communication between different cell populations. In 
agreement with previous findings (Fentiman et al., 1976), 
we found excellent GJIC between NMEC and NME In addi- 
tion, we observed communication between CX26 TMEC 
transfectants and NMEC, and between Cx43 TMEC trans- 
fectants and NME Transfer of dye between Cx26 TMEC 
transfectants and NMEC was asymmetrical with preferential 
movement from TMEC to NMEC. Only a few Cx43 TMEC 
transfectant cells were observed to communicate with 
NMEC, and no dye transfer was observed between Cx26- 
and Cx43-transfected TMEC. These results suggest that the 
particular connexin composition of a cell can influence het- 
erologous communication. 

Materials and Methods 

Cell Culture and Cell Growth 

NMEC strains 76N and 8IN derived from reduction mammoplasty tissues 
(Band and Sager, 1989) were cultured in DFCI-1 (called D); TMEC line 
21MT-2 derived from a metastatic breast tumor (Band et al., 1990) was cul- 
tured in D or in ~-MEM plus 10% FCS supplemented with 1 mg/ml of insu- 
lin, 2.8 ~tM hydrocortisone, and 12.5 mg/ml EGF (called c~+H+E); NMF 
strain 56NF (Anisowicz et al., 1991) was cultured in c~+H+E. Transfec- 
tants were selected in ot-MEM plus 5 % FCS, but the TMEC used for dye 
transfer experiments were grown in D medium. NMF were grown in 
c~+H+E and switched to D medium before measuring communication. To 
measure cell growth, cells pre-adapted for three passages in D or c~+H+E, 
were seeded at 5 × 104 cell per 35-ram dish, harvested by trypsin every 
1-2 d, and counted using a Coulter counter (Band et al., 1990). 

Origins of  Probes 

The probes specific for: (a) human Cx26, corresponds to a BamHI fragment 
created by PCR amplification from position -11 to +682 of the human 
Cx26 eDNA (Lee et al., 1992); (b) human Cx43 is an EcoRI fragment of 
partial eDNA clone (Tomasetto, C., and R. Sager, unpublished) corre- 
sponding to the position ~+400  to +1,200 of the human Cx43 eDNA 
(Fishman et al., 1990); (c) rat Cx26 corresponds to the BglII fragment 
released from SP64T-Cx26 (Zhang and Nicholson, 1989); (d) rat Cx43 cor- 
responds to an EcoRI fragment released from clone G-2 (Beyer et al., 
1987); (e) an RNA loading control suitable for human mammary cells is 
an internal (0.7 kb) PstI fragment of 36134 (Masiakowski et al., 1982). 

Plasmid Construction 

pCMV-Neo was generated after removal (BamHI) of p53 sequences from 
pCMV-p53-Neo (Baker et al., 1990) and rellgation, pCMV-Cx26-Neo was 
obtained by excision (BglID of rat Cx26 open reading frame from SP64T- 
Cx26 (Musil et al., 1990; Zhang and Nicholson, 1989) and introduction 
into the BamHI site of pCMV-Neo. Two steps of subcloning were used to 
obtain pCMV-Cx43-Neo. The first step was to subclone the rat Cx43 open 
reading frame from the clone G-2 (Beyer et al., 1987) by EcoRI digestion 
and cloning into the EcoRI site of pPolylH-i (Lathe et al., 1987). In a second 
step, the excision of the Cx43 open reading frame from this construct using 
BamHI and BglII was ligated into the BamHI site of pCMV-Neo. The con- 
structs are shown in Fig. 1. 

Transfection 

21MT-2 mammary tumor cells plated at 106 cells per 100-mm dish in 
o~+H+E were transfected with 10 mg of linearized pCMV-Cx26-Neo or 
pCMV-Neo, by the calcium phosphate co-precipitation procedure (Zaj- 
chowski et al., 1990). Selection of CO,18-resistant clones was begun 48 h 
later with 400 mg/ml of G41& Transfection of Cx43 was performed by elec- 
troporation using 107 2LMT-2 cells and 10 nag of pCMV-Cx43. Killing was 
estimated by trypan blue exclusion and ceils were plated at 106 cells per 
100-mm dish. Selection and cell cloning was performed as described for 
calcium phosphate transfection. 

DNA and RNA Isolation and Analysis 

Total genomic DNA was isolated from 21MT-2 and from stable transfec- 
tants (Lee et al., 1992). DNA samples (10 t~g) were digested with EcoRI, 
fractionated by agerose gel electrophoresis, and transferred to nylon mem- 
branes (Hybond-N; Amersham Corp., Arlington Heights, IL) (Southern, 
1975). Total RNA from cells (80-90% confluent) was purified after 
guanidinium isothiocyanate lysis and centrif~,afion through CsCI (Chirg- 
win et al., 1989). RNAs were fractionated by electrophoresis on a 1% 
agarose, 2.2 M formaldehyde gel (Lehrach et al., 1977), transferred to ny- 
lon membranes (Hybond-N; Amersham Corp.), and immobilized by UV 
cross-linking. 

Filters were prehybridized for 2 h at 37°C in 5x  SSSC, 0.2% SDS, 0.1% 
BSA, 0.1% PVP, 0.1% Ficoll 400, 0.1% sodium pyrophosphate, 100/~g/ml 
of ssDNA. Hybridization was performed for 16 h in the same buffer in pres- 
ence of 32p-labeled probes (,~2--4 × 106 dpm/ml). Probes were labeled by 
random priming (~5 × l0 s dpm/#g) (Feinberg and Vogelstein, 1987). 
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Figure 1. Schematic representation of the plasrnids used. (A) The 
eucaryotic expression vector pCMV-Neo contains: the neomycin 
resistance gene (Neo), the cytomegalovirus promoter (CMV pro- 
moter), the rabbit intron II and polyadenylation sequences (B 
globin, Intron II, and poly A) and Escherichia coli origin of replica- 
tion (On) ,  and the ampicillin resistance gene (/ImpS). (B) The 
Cx26 expression vector pCMV-Cx26-Neo contains the complete 
open reading frame (ORF) of the rat Cx26-cDNA (0.6 kb) inserted 
into the unique BamHI site of pCMV-Neo. (C) The Cx43 expres- 
sion vector pCMV-Cx43-Neo contains the complete open reading 
frame (ORF) of the rat Cx43 eDNA (1.4 kb) inserted into the unique 
BamHI site of pCMV-Neo. 

Filters were washed 30 min in 2x SSC, 0.1% SDS at room temperature and 
l h in 0.1× SSC, 0.1% SDS at 60"C. 

Western Blot Analysis 
Confluent cell cultures (6 h post-plate in D media) were scraped into isola- 
tion buffer containing 4 mM NaHCO3, 2 mM PMSF (Sigma Immuno- 
chemicals, St. Louis, MO), 2 mg/ml aprotinin (Sigma Immunochemicais), 
2 mM EDTA, 5 mM diisopropylfluorophospbate (Sigma Immunochemi- 
cais), and the phospbatase inhibitors 100 mM sodium fluoride, 20 mM so- 
dium phosphate, and 2 mM sodium orthovanadate (Sigma Immunochemi- 
cals) (Kadle et al., 1991; Mnsil et al., 1990). Samples were sonicated for 
30 s at 50% power using a sonifier 250 (Branson Sonic Power Co., Danbury, 
CT) and protein concentrations were determined using DC protein assay 
(Bio-Rad, Richinond, CA). Proteins were solubilized in 2% SDS (Gallard- 
Sehlesinger, Carle Place, NY) buffer containing 62.5 mM Tris-HC1, pH 6.8, 
10% glycerol and 50 mM DTT (Sigma Immunochemicals) for 15 min at 
70"C. Solubilized samples were separated by SDS-PAGE (Laemmli, 1970) 
using 4.5% stacking and 12.5% separating gels (10% for Cx43) cast in a 
minigel apparatus (Bio-Rad). Bio-Rad broad range SDS-PAGE standards 
were used for molecular weight determinations. After electrophoresis, the 
gels were rinsed with modified-Towbin transfer buffer containing 10% 
methanol (Kadie et ai., 1991). Electroblotting of the protein to positively 
charged lmmobilon-P membranes (Millipore Continental Water Systems, 
Bedford, MA) was performed at 300 mA for 90 rain at 4°C. Residual gels 
were stained with Ccomassie blue R-250 (Bio-Rad) to evaluate equal load- 
ing and transfer of proteins. 

After electroblotting, non-specific protein binding of the membranes was 
blocked using faltered Blotto (5% Carnation non-fat dry milk powder in 40 
mM Tris-HC1, pH 7.4, 0.1% Tween 20, 0.05% sodium azide) (Johnson et 
al., 1984). Antibodies against CX26 (rabbit polyclonal against amino acids 
101-119 of rat Cx26 from David Paul, Harvard Medical School, Boston, 
MA) or Cx43 (against amino acids 252-270 of rat Cx43, Zymed Labs, San 
Francisco, CA) were diluted 1/1,000 in Blotto, and then incubated overnight 
at 4°C followed by washing in TBS (50 mM Tris-HCl, pH 7.4, 0.9% NaC1, 
0.05% sodium azide). Antibody-connexin complexes were determined 
using the ECL detection system (Amesham Corp.). The relative amounts 

of the bands were evaluated using an LKB ultrascan XL enhanced laser den- 
sitometer (Biomed Instruments Inc., Fullerton, CA). 

Immunofluorescence Analysis 
Cell cultures were grown on 8-well chamber slides (Nunc, Naperville, IL), 
rinsed twice with PBS, once with double-distilled H20, and then dried. 
Cells were fixed in 100% acetone for 10 min and then extracted with 0.2% 
Triton X-100 in PBS for 10 rain at 20"C. After blocking with 1% BSA/5% 
normal goat serum (Zymed Labs) in PBS for 30 rain, cells were incubated 
with 1/1,000 dilution of rabbit anti-Cx26 (against amino acids 101-119 of rat 
Cx26 from David Paul) or 1/50 dilution of mouse anti-Cx43 (against amino 
acids 252-270 of rat Cx43; Zymed Labs) overnight at 4"C. Antibody-anti- 
gen complexes were visualized using a 1/100 dilution of FITC-conjugated 
goat anti-rabbit IgG or FITC-cunjugated goat anti-mouse IgG (Zymed 
Labs) for 1 h at 20°C. The slides were washed two times with PBS before 
mounting with Fhioromount-G (Fisher Scientific Co. Allied Corp., Pitts- 
burg, PA). Cells were examined and photographed using a Zeiss Axiophot 
microscope (Carl Zeiss, Oberkochen, Germany). 

Scrape Loading 
Media was aspirated from confluent celt cultures grown in 35-ram dishes. 
Plates were washed twice with solution A (PBS 1x supplemented with 10 
mM glucose and 30 mM Hepes) containing 0.1% BSA. A solution of 1% 
Lucifer yellow (Molecular Probes Inc., Eugene, OR) and 1% dextran- 
rhodamine (10,000 tool wt; Molecular Probes Inc.) in solution A was added 
to cells. The dye was introduced into the ceils using a scalpel (EI-Fouly et 
al., 1987). After 1 rain the dye was removed followed by several washes 
with solution A. After 5 min the cells were examined using epifluorescence 
microscopy. Dye transfer was quantified by counting the number of Lucifer 
yellow-positive cells perpendicular to wounded cells (dextran rhodamine 
positive) (MeKarns and Doolittle, 1992). 

Permanent Labeling Using PKH26 
Cell labeling with PKH26 was performed as recommended by the manufac- 
turer (Zynaxis Cell Science Inc., Malvern, PA). Briefly calls were harvested 
in a single cell suspension by trypsinizetiun, washed once with solution A, 
and transferred to a polypropylene tube. After centrifugation the cell pellets 
were gently resuspended in PKH26 diluent (buffer supplied by the manufac- 
turer) at 2 x 106 cells per 100 IA and an equal volume o f2x  PKH26 was 
added. Staining was carried out for 2 rain in a 30 t~M solution of PKH26 
at room temperature with gentle agitation and terminated by addition of 
1 vol of serum and 7 ml of 0.1% BSA. The cell suspensions were transferred 
into fresh tubes by layering on 3 ml of serum. Stained cells were recovered 
after centrifugatiun and three consecutive washes with 10 ml of a 10% 
serum-containing medium (a+H+E).  Cells were repiated at high density 
(,o5 × 104 cells/era 2) for 24--48 h during which time any unbound dye was 
bound or extruded. 

Transferable Labeling Using Calcein 
Staining was performed directly in cell culture dishes. After washing with 
solution A, a solution of 0.5 I~M of Calcein AM (C-1430; Molecular Probes 
Inc.) freshly made up in solution A was added on the top of the cells for 
30 rain at room temperature. Unincorporated dye was eliminated by three 
consecutive washes with medium. Cells were then harvested by a brief tryp- 
sinization. 

Double Dye Transfer Assay 
PKH26- and calcein-stained cells were each harvested by trypsinization, 
counted, and resuspended in D media at 106 cells/ml (with the exception 
of the NMF at 5 x 105 cells/ml). Mixing was performed at an approximate 
1:1 ratio and mixed cells were plated in a 35-mm dish or in a 24-well plate 
at ,'ul0 ~ cells/era 2 for 4 to 5 h at 37"C. After 5 h (t = 5) co-cultured cells 
were harvested by trypsinization to obtain a single cell suspension in solu- 
tion A. Aliquots of each stained population were mixed jnst before the flow 
cytometry to determine the pattern at time 0 (t = 0). In reporting cell mix- 
ture experiments, calcein-stained cells are listed first and PKH26-stained 
cells are listed second. 
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Flow Cytometry and Measurement of GJIC 

Cell samples were measured on an Epics Elite" (Coulter Electronics) flow 
cytometer. Calcein fluorescence was detected by using a 525-am band pass 
filter and pKl-126 was processed in a similar manner except a 610-am-long 
pass interference filter was utilized. A 550- and 626-am dichroic long pass 
filter combination was used to reflect calcein and PKH26 fluorescence, 
respectively. Fluorescent signals were processed over a four decade loga- 
rithmic range. Cell samples that were individually labeled were used to op- 
timize signal detection and to adjust for fluorescence compensation (typi- 
cully 10-15%). PKH26 and Calcein fluorescence were assayed on a gated 
forward vs. side scatter population. Two parameter dot plots were analyzed 
using a Quad-Stat TM statistic program. 

Results 

Selection and Properties of Transfectants 

21MT-2 cells were transfected with pCMV-Cx-26-neo and 
with pCMV-neo controls by the calcium phosphate co- 
precipitation procedure. Four clones expressing Cx26 and 
two pCMV-neo control clones were selected for further 
study. Cx43 transfectants were produced by electroporation 
of 21MT-2 cells with pCMV-Cx43-neo and six clones were 
selected for further study. The yields of neo-resistant colo- 
nies per 106 cells were: neo-alone, 8; Cx26-neo, 7; Cx43- 
neo, 10, using linearized plasmids. Genomic DNA of each 
transfectant was digested with EcoRI excising Cx26 or Cx43 
sequences which were identified by hybridization with the 
plasmid DNA containing rat Cx26 or Cx43. The same pat- 
tern was observed in DNA from control and transfectant 
TMEC (data not shown). 

Two Cx26 transfectants (Cx26-D1 and Cx26-B6) and two 
Cx43 transfectants (Cx43-P1 and Cx43-4) were examined by 
Northern analysis, using total RNA from exponentially 
growing cells. As shown in Fig. 2, the two Cx26 transfec- 
tants expressed similar levels of exogenous (rat) Cx26 
mRNA using the rat Cx26 probe, but human Cx26 tran- 
scripts were not detectable using the same probe. The two 
transcripts of human Cx26 were seen in NMEC (76N) using 
the human probe. Similarly the Cx43 transfectants expressed 
rat but not human Cx43 mRNA. 

Western blotting demonstrated that the antibodies used in 
this study recognize both human (in NMEC/76N and 
NMF/56NF) and rat (transfectants) forms of Cx26 and Cx43 
(Fig. 3). Comparison ofconnexin immunoreactivity in crude 
cell homogenates isolated 6 h postplating demonstrated that 
transfected TMEC overexpressed Cx43 (Fig. 3 A) and Cx26 
(Fig. 3 B) compared with NMEC or NME Note that in Fig. 
3 A (Cx43) transfectant lanes were loaded with only 1.5 #g 
protein, while the 76N lane received 35 #g and 56NF con- 
tained 40 #g. In Fig. 3 B (Cx26) the 76N and 56NF were 
loaded with 70 #g protein, while transfectant lanes received 
20 #g protein. The high molecular weight bands seen in 
56NF were also present in the preimmune control (data not 
shown). Densitometry showed that Cx43-Pl cells expressed 
a 25-fold increase in the level of Cx43 compared with 76N 
(100-fold more than 56NF), while Cx43-4 displayed 15 
times more protein than 76N. In a similar manner, Cx26-D1 
expressed 15 times and Cx26-B6 expressed seven times the 
level of Cx26 in 76N. No Cx43 or Cx26 immunoreactivity 
was observed in TMEC transfected without connexin insert 
(CMV-6). 

In addition to quantitative differences in conncxin 
expression, the abundance of various Cx43 immunoreactivc 

Figure 2. Northern analysis of connexin gene expression among 
mammary cells and transfectants. The exogenous connexin 26 
(Exo. Cx26) and 43 (Exo. Cx43) transcripts are detected using the 
rat probes. Expression of the endogenous Cx26 (End. Cx26) and 
Cx43 (End. Cx43) mRNA are detected using human eDNA probes. 
36B4 is used as an internal loading control. The sizes of the tran- 
scripts are indicated in parenthesis. 

bands was altered in transfected TMEC compared to 76N 
(42, 43, 45, and 46 kD) or 56NF (46 kD). Cx43-P1 ex- 
pressed several strong immunoreactive bands at 43, 45, and 
46 kD, while Cx43-4 exhibited a single 44-kD band. A low 
level of Cx43 was found at 46 kD in Cx43-P1 cells. Differ- 
ences in migration were not due to non-specific protein-pro- 
tein interactions since the pattern of immunoreactive bands 
was not modified when Cx43-P1 and 56NF crude homog- 
enates were mixed prior to electrophoresis. In addition, no 
difference in Cx43 migration was observed if 56NF cells 
were plated in D or ot+H+E (data not shown). Since the mi- 
gration of Cx43 on SDS-PAGE depends upon the extent of 
posttranslational phosphorylation (Musil et al., 1990; Musil 
and Goodenough, 1991; Berthoud et al., 1992), our results 
suggest that each cell type modifies Cx43 in a different 
m a n n e r .  

The cellular localization of Cx26 and Cx43 proteins was 
examined by indirect immtmofluorescence using previously 
characterized antibodies (see Materials and Methods). Fig. 
4, A, C, and E represent phase-contrast images of transfected 
cell cultures 6 h postplating (Fig. 4, A and B; Cx43-P1; C-F, 
Cx26-D1) incubated with either Cx26 antibody (Fig. 4 B), 
Cx43 antibody (Fig. 4 D), or pre-immune serum (Fig. 4 F). 
While occasional punctate fluorescence could be observed at 
cell-cell interfaces, intense granular immunorcactivity was 
observed in the cytoplasm, and of both Cx26- and Cx43- 
transfected TMEC. 

Differences in the intracellular localization were apparent 
since the majority of Cx43 was perinuclear in location, while 
Cx26 was mostly restricted to the periphery of the cells. 
Similar staining patterns were observed in confluent mono- 
layers of Cx43- and Cx26-transfected TMEC (data not 
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Figure 3. Western analysis of connexin protein expression in nor- 
mal mammary cells and transfected TMEC. (A) Expression of 
Cx43 in total cell homogenates of 76N (35#g), 56 NF (40/~g), and 
transfected cell lines (CMV-6, Cx43-P1, Cx43-4, Cx26-D1, and 
Cx26-B6; 1.5/~g) using a mAb to amino acids 252-270 of rat Cx43 
(Zymed Labs). Crude homogenates were isolated 6 h postplating 
and separated by SDS-PAGE (see Materials and Methods). The 
abundance of various Cx43 immunoreactive bands on SDS-PAGE 
was different in 76N, 56NF, and Cx43-transfected TMEC. The 
migration of various Cx43 immunoreactive bands was not changed 
after mixing 40/zg of 56NF and 1.5 #g of Cx43-P1 before elec- 
trophoresis. (B) Expression of Cx26 in total cell homogenates in 
76N (70/~g), 56 NF (70 #g) and transfected cell lines (Cx26-D1, 
CMV-6, and Cx26-B6; 20 #g) using a polyclonal antibody to amino 
acids 101-119 of rat Cx26 from David Paul (Harvard Medical 
School). 

shown). In contrast, the majority of Cx26 and Cx43 im- 
munoreactivity in subconfluent NMEC is localized to 
cell-cell interfaces, with only limited cytoplasmic staining 
(Lee et al., 1992). Consistent with immtmoblotting results 
(Fig. 3), weak punctate Cx43 staining was observed in NMF 
(data not shown). Incubation of Cx26-D1 cells with pre- 
immune rabbit serum did not generate punctate fluorescence 
(Fig. 4 F). Immunoreactivity was not observed in 21MT-2 
cells transfected with a vector without a cormexin cDNA in- 
sert (data not shown), although a very low level of Cx26 in 
RNA was expressed in these cells. 

Scrape Loading 

Initially, transfectants were tested for GJIC by scrape loading 
(E1-Fouly et al., 1987; McKarns and Doolittle, 1992). The 
extent of GJIC was clearly less in the transfectants than in 
NMEC or NMF (Table I). Scrape loading showed that ho- 
mologous GJIC was restored by transfection in Cx26-D1, 
Cx26-B6, and Cx43-P1 cells. However, no dye transfer was 
observed in Cx43-4 cells. Heterologous communication be- 

tween transfectants and normal cells could not be determined 
because the morphology of NMEC and TMEC is similar. 
The extent of homologous GJIC was later compared with 
that seen in the novel two-dye method which was developed 
to investigate this problem (Table I). We observed that both 
methods gave similar qualitative results, however, the two- 
dye method was quantitative. 

Double Labeling and Transfer Assay 

We have developed an assay to measure GJIC using two 
differentially stained cell populations, one as donor and the 
other as recipient. The donor cells are loaded with the dye 
calcein and the recipient cells are prelabeled with a perma- 
nent lipophilic dye, PKH26. Communication is measured as 
the percent of the recipient cell population that contains cal- 
cein. Control experiments showed that very little or no de- 
tectable calcein was released from cells within 5 h after the 
dye treatment. 

Calcein was used as the transferable dye for several rea- 
sons. (a) Viable cells can be labeled to a high-fluorescence 
intensity which is suitable for epifluorescence microscopy 
and flow cytometry. (b) Calcein passes readily through gap 
junctions. (c) It is well retained inside the cells without pas- 
sive diffusion for up to 6 h. (d) Calcein is non-cytotoxic at 
the concentrations used (Weston and Parish, 1990). 

PKH26 was chosen as the permanent dye. (a) It labels via- 
ble cells to a high fluorescence. (b) It permanently binds to 
cytoplasmic membranes and does not pass through GJs or 
leak into the medium. (c) It is non-toxic and does not inter- 
fere with communication under the standard assay condi- 
tions used (Horan and Slezak, 1989). No change in growth 
rate of transfected cells was observed following PKH26 
labeling (data not shown). 

In a standard assay, two cell samples are labeled, one with 
calcein and the other with PKH26, equal numbers of cells 
from the two populations are mixed and then replated at high 
cell density to maximize cell-cell contacts. Mixed cells are 
co-cultured for 4 to 6 h. If  GJIC occurs, calcein will be trans- 
ferred from the donor cells to the PKH26-stained recipients, 
and the cells containing both dyes will be detected in the 
flow-cytometric analysis. 

Flow Cytometric Analysis of GJIC 

For the cytometric analysis of GJIC, mixed mammary epi- 
thelial cells are run at t = 0 and after co-culture at t = 5 h, 
as shown in Fig. 5 A. For each independent cell mixture, 
quadrant positions were defined using the cells mixed at time 
zero. The cursor is set with the mixture from t = 0 using 
the two parameter dot plot (log calcein vs. log PKH26) so 
that the calcein and the PKH26 stained cells are located in 
Q1 and Q4, respectively. The same cursor setting is then 
used to run the cell mixture from t = 5 h. Appearance of 
a third subpopulation above the PKH26 cursor (horizontal) 
in Q2 shows that these cells contain both calcein and PKH26 
dyes. The number of communicating cells is measured by the 
distribution of fluorescence emission, that is represented by 
a two-parameter dot plot. The horizontal axis is the log emis- 
sion of the fluorescent dye PKH26 and the vertical axis is the 
log emission of the fluorescent dye calcein. Two-dimen- 
sional analysis of log calcein vs. log PKH26 fluorescence 
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Figure 4. Localization of gap 
junction proteins in Cx26-D1 
and Cx43-P1 transfected 
TMEC (21MT2) by indirect 
immunofluorescence. Cells 6 h 
postplatin~ (D media) were 
fixed in acetone, permeabi- 
lized with 0.2% Triton X-100, 
and incubated with previously 
characterized antibodies to 
(B) Cx43 (monoclonal; amino 
acids 252-270 of rat Cx43), 
(D) Cx26 (polyclonal; amino 
acids 101-119 of rat Cx26), or 
(F) pre-immune rabbit serum. 
A, C, and E represent phase- 
contrast images, n, nuclei; ar- 
row, areas of cell apposition. 
Bar, 10/~m. 

profiles allows for the identification of  three subpopulations 
in a given sample. 

Thus, the fraction of  cells in Q2 at t = 5 is a direct measure 
of  dye transfer, which is calculated as: 

Percent of communication = ([Q2/Q2 + Q4],=5 x 100). 

Table L Comparison of Scrape Loading and the 
Calcein/PKH26 2-Dye Methods to Quantitate GJIC 

Cell type Media Scrape load Two-dye method 

NMEC D 5 + 1 87 + 8% 
56NF a + H + E  6 4- 2 95 4- 3% 
Cx43-P1 D 3 4- 2 64 4- 8% 
Cx43-4 D negative ND 
Cx26-D1 D 4 4- 1 51 4- 9% 
Cx26-B6 D 3 4- 2 22 4- 4% 
CMV-2 D negative 4 4- 2% 

Cell monolayers were immersed in a 1% solution of Lacifer Yellow and dextran 
rhodamine, wounded with a scalpel, and then monitored 5 minutes later for dye 
transfer (see Materials and Methods). Homologous communication was also 
measured using the two-dye method 5 hours after plating a i:1 mixture of 
PKH26-1abeled and calcein-loaded cells. ND, not determined. Values are pre- 
sented as the mean (n > 3 experiments) :t: standard error. 

To show that this dye transfer assay is GJ dependent,  we 
examined a pair  of  reciprocally labeled cell lines: communi-  
cation-competent NMEC and communication-incompetent  
TMEC. We also examined NMEC alone as positive control. 
Fig. 5 B shows that when NMEC and TMEC are mixed no 
third subpopulation appears in Q2. However, when NMEC 
are mixed to examine homologous GJIC, a third subpopula- 
tion of  double dye containing cells appears in Q2. Communi-  
cation occurred in 85 % of  the NMEC in this part icular ex- 
periment.  

Assays of GJIC in Various Mammary Cell Populations 

Four cell populations exhibiting GJIC were examined in both 
homologous and heterologous combinations (Fig. 6). The 
cell types used were: (a) NMEC including two different iso- 
lates, 76N and 81N, which showed no differences in these 
studies; (b) N M F  recovered from a reduction mammoplasty;  
(c) a clone of  the TMEC line 21MT-2 transfected with the 
rat Cx26 cDNA (Cx26-D1); and (d) a 21MT-2 transfectant 
containing the rat  Cx43 cDNA (Cx43-P1). Three selected 
pairs of  cells which demonstrate heterologous GJIC are 
shown in Fig. 6. Donor cells treated with calcein are listed 
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Figure 5. Double parameter dot plot analysis, log Calcein (Y axis) 
log PKH26 (X axis) of GJIC. (A) Setting the cursors. The cursors 
are set for the quantification using an aliquot of calcein-labeled cells 
and PKH26-1abeled cells without co-culture (mixed cells at time 0). 
The same cursor setting is used for the quantification of the different 
cell subpopulations using a mixture of calcein and PKH26-1abeled 
cells 5 h after co-culture. The percentage of cells present in each 
quadrant is indicated as Q values. (B) Analysis of GJIC in different 
ceils mixtures after 5 h of co-culture. (NMEC+TMEC) Calcein- 
stained NMEC (communication competent) are mixed with TMEC 
(communication incompetent) PHK26 stained cells. (TMEC+ 
NMEC) Reciprocal labeling experiment, TMEC are stained with 
calcein and NMEC are stained with PKH26. (NMEC+NMEC) 
NMEC are stained with calcein mixed with NMEC stained 
PKH26. The three combinations were each co-cultured in D media 
for 5 h, trypsinized and analyzed by flow cytometry. The percent- 
age of cells in each quadrant is indicated. 

first and the pre-stained PKH26 recipients are listed second. 
Each cell line was tested independently as donor and as re- 
cipient. 

Fig. 6 A shows the result of mixing NMEC with NME 
High levels of heterologous GJIC were found for this mixed 
pair in reciprocal labeling experiments summarized in the 
histogram. This experiment shows that epithelial cells and 
fibroblasts are capable of efficient heterologous communica- 
tion in both directions. Fig. 6 B shows the result of a GJIC 
experiment between NMF and the TMEC Cx43 transfectant 
(Cx43-P1). Both cell types express Ex43 and exhibit strong 
heterologous GJIC higher than homologous GJIC of the 
Cx43-P1 cells alone. 

In Fig. 6 C, NMEC were mixed with TMEC Cx26 trans- 
fectants (Cx26-D1). In homologous GJIC, Cx26-D1 did not 
exhibit a high level of GJIC, only ,060% in this experiment, 
and 40, 46, and 55 % in three other experiments listed in Ta- 
ble I. In heterologous GJIC, when Cx26-D1 was donor, and 
normal epithelial ceils were recipients, the results were simi- 
lar: 54 % in the experiment shown, and 57 and 72 % in two 
other experiments. However, in the reciprocal experiment, 
when the Cx26-D1 cells were recipients, the extent of tom- 

munication was lower (25 and 33%). The coupled cells ap- 
pear to be more efficient as donors of calcein than as 
recipients. The reasons why one direction may be preferen- 
tial to the other in a reciprocal labeling experiment (compare 
in Fig. 6, B-3 and B-4) are not clear. One factor may be 
differential retention of calcein by one of the two cell types. 
None of the other cell mixtures examined showed preferen- 
tial transfer. 

The results of two-dye quantitation experiments are sum- 
marized in Table II. Most combinations were repeated more 
than twice in different experiments, and the reproducibility 
was excellent. A clear distinction was seen between the high 
levels of homologous GJIC of the NMEC (containing Cx26 
and Cx43) and NMF (containing only Cx43). Both Cx26- 
and Cx43-transfected TMEC exhibited 50-60% homolo- 
gous GJIC. Most noteworthy is the high level of heterologous 
GJIC between NMEC and NMF, and between the NMF and 
Cx43 transfectants in which the GJIC was higher than that 
of the Cx43-P1 cells themselves. No GJIC was seen with the 
TMEC, which lack Cx26 and Cx43 mRNAs and proteins, 
or between Cx26 and Cx43 transfectants. Additional unlisted 
controls, such as between mixtures of Cx26-transfected 
TMEC with NMF, were all negative. 

The NMEC showed weak GJIC with Cx43-P1 cells in both 
directions, a surprising result since both NMEC and the 
Cx43-P1 cells communicate strongly with NMF, using Cx43 
channels (Fig. 3). These results suggest that there must be 
at least one other parameter involved in heterologous GJIC 
between NMEC and Cx43-P1. We designed an experiment: 
"Menage a trois; to examine this question. In this experi- 
ment we mixed three cell types, Cx43-P1, NMF, NMEC, and 
co-cultured them for 5 h in D medium. Initially, the Cx43-P1 
cells were loaded with calcein, the NMF were unstained, 
and the NMEC were pre-stained with PKH26. As shown in 
Fig. 7 A, calcein is expected to move from the Cx43-P1 cells 
into the PKH26-1abeled NMEC by traversing two kinds of 
junctions in the fibroblasts: junctions between NMF and 
NMEC, and junctions between NMF and Cx43-P1. The per- 
centage of communication obtained in parallel mixed cells 
is summarized in Fig. 7 B. As controls we measured homol- 
ogous communication in Cx43-P1 (Fig. 7 B, Cx43-P1+Cx43- 
P/) and NMEC (Fig. 7 B, NMEC+NMEC). The level of ho- 
mologous communication of 53 and 90%, respectively, is 
comparable to the values found in other experiments (Table 
II). Measurement of heterologous communication between 
Cx43-P1 as dye donor and NMEC as a dye recipient was per- 
formed in the absence (Fig. 7 B, Cx43-P1+NMEC) and in 
the presence of fibroblasts (Fig. 7 B, Cx43-P1+NMF+NMEC). 
The level of heterologous GJIC of the NMEC between Cx43- 
P1 and NMEC was <15% (see Table I). However in the pres- 
ence of NMF, heterologous communication was induced to 
70%. 

Discussion 

In prior studies, we showed that NMEC express Cx26 and 
Cx43, and that each connexin is present in the GJs of these 
cells, as shown by immunostaining (Lee et al., 1992). In this 
paper, we have continued this investigation by examining the 
effects of transfecting each connexin gene into mammary tu- 
mor cells, which do not express either of these genes. We 
show that transfection of TMEC with either Cx26 or Cx43 
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Figure 6. Double parameter dot plot analysis of homologous and heterologous communication in mixed cells after 5 h of co-culture and 
quantification. (A) Comparative study of homologous GJIC in NMEC (A-/) in NMF (A-2) and heterologous GJIC between NMEC and 
NMF by reciprocal labeling (A-3 and A-4) within the same experiment. Histogram A summarizes the level of communication. (B) Compara- 
tive study of homologous GJIC in NMF (B-/) in Cx43-P1 (8-2) and heterologous GJIC between NMF and Cx43-P1 by reciprocal labeling 
(B-3 and B-4) within the same experiment. Histogram B summarizes the level of communication. (C) Comparative study of homologous 
GJIC in NMEC (C-/) in Cx26-D1 (C-2) and heterologous GJIC between NMEC and Cx26-D1 in reciprocal labeling (C-3 and C-4) within 
the same experiment. Histogram C summarizes the level of communication. Calcein-stained cells are listed first and PKH26-stained cells 
are listed second. The same scale was used for the double parameter dot plots (see in C-/). Numbers in each quadrant are percentage of cells. 

can restore mRNA (Fig. 2) and protein (Figs. 3 and 4) ex- 
pression and most significantly, restore GJIC (Figs. 5 and 6). 
Western blot studies demonstrated that TMEC transfectants 
overexpress 7 to 25 times the level of the Cx26 and Cx43 
compared to NMEC (Fig. 3). Immunofluorescence (Fig. 4) 
revealed that the majority of Cx43 and Cx26 protein in trans- 
fected TMEC is not present in GJs, but localized intraceUu- 
larly. Similar results were obtained using several other 
preparations of Cx26 and Cx43 antibodies (data not shown). 

Consistent with the observed intracellular accumulation of 
connexin protein in TMEC, scrape loading demonstrated 
that Cx43 and CX26 transfectants were less efficient in dye 
transfer than NMEC (Table I). Unexpectedly, we found that 
it was easier to re-establish GJIC in TMEC using constructs 
harboring Cx26 (5/5 communicated) rather than Cx43 (1/5 
communicated) (Table I; R. Sager, unpublished observa- 
tion). For example, Cx43-P1 which transfers Lucifer yellow 
and calcein (Table I) expresses posttranslationally modified 
forms of Cx43 (>43 kD) (Fig. 2 A), however, Cx43-4 failed 
to communicate and expressed only the 44-kD form of Cx43 

(Fig. 2 A). The mechanisms responsible for altered post- 
translational processing of Cx43 in TMEC is currently under 
investigation in our laboratory. 

To facilitate studies of heterologous communication, we 
found it necessary to develop a quantitative assay using two 
dyes. Similar assays of double staining using fluorescent 
beads (Zidell and Loch-Caruso, 1990) or a different fluores- 
cent dye (Mehta et al., 1992) to prestain the recipient cells 
have been reported, both using microscopic analysis. Our as- 
say uses flow cytometry to determine the fraction of cells 
containing two dyes as a result of GJIC between pairs of cells 
each containing a different fluorochrome, one transferable 
and the other fixed as a marker of the recipient cell popula- 
tion. The advantages of this methodology include: (a) Heter- 
ologous transfer can be measured with morphologically 
similar populations of cells, since one permanent dye is used 
to distinguish them. This is particularly important with 
mammary epithelial cells because normal and primary tu- 
mor cells are difficult to distinguish by morphology when 
mixed in culture. (b) Small sub-populations with poor GJIC 
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Table II. Measurement of Homologous and Heterologous 
Cell-Cell Communication A 

Mixed cells stained with Percent of communication 
(experiment number) 

Calcein PKH26 Average 
(dye donor) (dye recipient) 1 2 3 4 5 6 + 1 

NMEC NMEC 86 - 95 86 82 - 87 
NMF NMF - 93 93 - 94 98 94 
Cx26-D1 Cx26-D1 46 55 60 40 50 
Cx43-P1 Cx43-P1 56 56 73 68 63 
NMF NMEC 85 - 76 - 80 
NMEC NMF - 72 93 - 94 - 86 
N M E C  Cx26-D1 33 9 25 - 22 
Cx26-D1 NMEC 57 72 54 - 61 
N M E C  Cx43-P1 18 15 - 16 
Cx43-P1 NMEC 13 20 - 16 D 
Cx43-P1 NMF 85 95 90 

NMF Cx43-P1 68 81 74 .,~ 

Cx26-D1 Cx43-P1 0.5 - 1 l 
N M E C  TMEC 2 2 ~ 

TMEC NMEC 2 2 
8 

NMEC are normal mammary epithelial cells. "~ 
NMF are normal mammary fibroblasts. 
TMEC are tumor mammary epithelial cells. 
Cx26-DI are TMEC transfected with a eDNA encoding the rat Cx26 protein, ct_ 
Cx43-PI are TMEC transfeeted with a eDNA encoding the rat Cx43 protein. 
- ,  not tested. 

can be detected because large cell populations are analyzed 
and the sensitivity of detection is high. (c) The relative fre- 
quencies of donor, potential recipient, and actual recipient 
populations can be determined simultaneously. It should be 
noted that this method does not measure the amount of dye 
transferred, but does quantitate the number of recipient 
cells. (d) Since the method measures one way transfer from 
donor to recipient, each cell line can be examined both as 
donor and as recipient in paired assays. 

The results of the two-dye method show that the homolo- 
gous GJIC of two TMEC transfectants, Cx26-D1 and Cx43-PI 
is only about 2/3 as effective as that of NMEC. Furthermore, 
the heterologous GJIC results indicate that transfectants are 
poor partners with NMEC. As dye donor, Cx26-D1 is as 
effective with NMEC as recipient as with itself, but is a very 
poor recipient when NMEC are dye donor cells. Similar 
nonreciprocal transfer was observed between Cx26-B6 cells 
with two different NMEC populations (76N and 81N) (data 
not shown). Since the behavior is asymmetrical it suggests 
a structural effect of the heterotypic connexons. Differences 
in the amount of calcein loaded into the cell populations 
could not account for preferential transfer since equivalent 
amounts were loaded into both cell populations (Fig. 6 C). 
Since calcein has a relatively high molecular weight (623 D), 
the asymmetrical GJIC between NMEC and Cx26 TMEC 
transfectants may not be seen using smaller dyes or electric 
coupling. Previous studies show that asymmetrical GJIC in 
mammalian cell lines can be dependent on the molecular 
weight of the GJ permeable dye (Flagg-Newton and Loewen- 
stein, 1980). Using Xenopus oocytes to express connexin 
cRNAs, heterotypic connexons can form GJs which are elec- 
trically coupled (Swenson et al., 1989; Werner et al., 1989; 
Barrio et al., 1991; Hennemann et al., 1992). However, the 
channel conductances of some heterotypic junctions exhibit 
asymmetry (Barrio et al., 1991; Hennemann et al., 1992). 
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Figure 7. "Menage a troisY (A) Schematic representation of a mix- 
ture of three different cell types. At t = 0, Cx43-P1 cells stained 
with calcein are mixed with unstained NMF and with PKH26 la- 
beled NMEC, in equal amounts. (B) Histogram representing the 
percentage of communication in different cell mixtures within the 
same experiment. After 5 h of co-culture the mixed cells are ana- 
lyzed by flow cytometry, the percentage of communication is calcu- 
lated as the percentage of PKH26 cells taking up caicein fluores- 
cence. 

The physiological role(s) of asymmetric GJIC may be in 
establishing communication domains within tissues. Through- 
out insect and mammalian development, comparmaents of 
cell communication are formed which allow electric cou- 
pling but are restrictive to the passage of Lucifer yellow 
(Warner et al., 1992). The boundaries are formed by a row 
of cells which exhibit GJs which are less permeable than the 
junctions between homologous cells (Blennerhassett and 
Caveney, 1984). We found that Cx26- and Cx43-transfected 
TMEC could transfer calcein homologously, but failed to 
transfer calcein in a heterologous manner. These results 
demonstrate that at least some communication compart- 
ments may be regulated by differential expression of con- 
nexin proteins. 

Heterologous communication can also be modulated by 
differential expression of cell adhesion molecules. Transfec- 
tion of S180 ceils with either L-CAM or E-cadherin was 
sufficient to restore homologous GJIC, but no heterologous 
communication was observed (Matsuzaki et al., 1990). The 
calcium-dependent cell adhesion molecule E-cadherin has 
also been found to control GJIC in mouse epidermal cells 
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(Jongen et al., 1991). Both normal and tumor mammary epi- 
thelial cells used in this study express E-cadherin mRNA (R. 
Sager, unpublished observation). 

An important finding is the high level of communication 
between mammary-derived epithelial cells and NMF which 
are normal fibroblasts of breast origin (Anisowicz et al., 
1991). Both NMEC containing Cx26 and Cx43 as well as 
Cx43 TMEC-transfectants communicated with NME Weak 
heterologous communication was observed in both direc- 
tions between Cx43-P1 transfectant and NMEC. This result 
is particularly surprising because of the high level of heterol- 
ogous GJIC of the same Cx43-transfectant with NME These 
results suggest that there must be at least one other parameter 
involved in heterologous GJIC between NMEC and Cx43- 
P1. Heterologous GJs may form between NMEC and Cx43- 
P1 cells, but the intercellular channel may be closed due to 
altered conformation or posttranslational modification(s) of 
Cx43. It is noteworthy that Cx26 transfected TMEC exhibit 
heterologous GJIC with NMEC. Cx43 channels can be 
modulated by phosphorylation, but no such evidence exists 
for Cx26 (Bennett et al., 1991). 

It is tempting to speculate that the different modified forms 
of Cx43 in NMEC, NMF and Cx43 transfected TMEC ob- 
served in Figure 3 may modulate heterologous communica- 
tion. Our results are consistent with tissue specific differ- 
ences in the migration of Cx43 on SDS PAGE (Kadle et al., 
1991). Posttranslational modifications which alter the mobil- 
ity of Cx43 have been extensively studied (Crow et al., 1990; 
Musil et al., 1990; Musil and Goodenough, 1991; Berthoud 
et al., 1992). The non-phosphorylated form of Cx43 was 
shown to accumulate in the cytoplasm of communication in- 
competent S180 cells. In contrast, transfection of the same 
cells with eDNA for L-CAM-restored GJIC and formation 
of the mature serine phosphorylated forms of Cx43 which 
localized to GJ plaques (Musil et al., 1990; Musil and Good- 
enough, 1991). 

While the posttranslational modification(s) responsible for 
shifting the mobility of Cx43 in NMEC and NMF are not 
known, we observed that the presence of posttranslationally 
modified forms of Cx43 (Fig. 3) correlated with communi- 
cation competence in Cx43-transfected TMEC. Cx43-P1 
which expressed low levels of the higher molecular weight 
forms of Cx43 communicated via homologous and heterolo- 
gous communication with NMF, however, Cx43-4 failed to 
transfer Lucifer yellow (Table I). Factors other than serine 
phosphorylation may also participate in the gating and turn- 
over of Cx43 since the presence of the mature phos- 
phorylated form of Cx43 does not always correlate with 
functional coupling (Berthoud et al., 1992). For example, 
the src oncogene can phosphorylate Cx43 on tyrosine 
residues resulting in closure of GJs (Crow et al., 1990; Fil- 
son et al., 1990). 

Since Cx43-P1 TMECs did not communicate with 
NMEC, we designed an experiment to test whether NMF 
could mediate communication between two non-communi- 
cating cell types. We found that NMF dramatically facilitate 
heterologous GJIC between NMEC and Cx43-PI cells (Fig. 
7). These results are especially illuminating given previous 
observations that metastatic rodent mammary epithelial cells 
lose their ability to communicate with NMF (Nicholson et 
al.,  1988; Hamada et al., 1988; Nicholson et al., 1990). 
Furthermore, highly metastatic rat mammary tumor cells 

lines were found to communicate with endothelial cells bet- 
erologously, while weakly metastatic clones lacked this 
property (E1-Sabban and Pauli, 1991). We are currently in- 
vestigating what factors present in NMF allow for heterolo- 
gous communication between NMEC or Cx43-P1 cells. 

Applications of the assay procedure described in this pa- 
per are being directed towards determining the effects of 
drugs and other treatments on the efficiency of GJIC to iden- 
tify cellular factors that regulate GJIC especially in channels 
composed of Cx26 protein, in which no effect of posttransla- 
tional modification such as phosphorylation has been 
reported. The long-range goal of our studies is to determine 
what role GJIC plays in regulating or inhibiting growth of hu- 
man mammary tumor cells in vivo. 
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