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Abstract

The plasticity in the medial Prefrontal Cortex (mPFC) of rodents or lateral prefrontal cortex in non human primates (lPFC),
plays a key role neural circuits involved in learning and memory. Several genes, like brain-derived neurotrophic factor
(BDNF), cAMP response element binding (CREB), Synapsin I, Calcium/calmodulin-dependent protein kinase II (CamKII),
activity-regulated cytoskeleton-associated protein (Arc), c-jun and c-fos have been related to plasticity processes. We
analysed differential expression of related plasticity genes and immediate early genes in the mPFC of rats during learning an
operant conditioning task. Incompletely and completely trained animals were studied because of the distinct events
predicted by our computational model at different learning stages. During learning an operant conditioning task, we
measured changes in the mRNA levels by Real-Time RT-PCR during learning; expression of these markers associated to
plasticity was incremented while learning and such increments began to decline when the task was learned. The plasticity
changes in the lPFC during learning predicted by the model matched up with those of the representative gene BDNF.
Herein, we showed for the first time that plasticity in the mPFC in rats during learning of an operant conditioning is higher
while learning than when the task is learned, using an integrative approach of a computational model and gene expression.
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Introduction

Computational theories have been widely used in order to study

the emergent properties of neural circuits [1–2]. In this sense,

several models have been designed to describe the neuronal

mechanisms underlying visual tasks, feeding behavior, reward

prediction and operant conditioning, among others, integrating

different brain areas [3–6]. In a previous work, we proposed a

computational theory to simulate learning of several tasks [7].

Given that the lateral Prefrontal Cortex (lPFC) in primates or

medial Prefrontal Cortex (mPFC) in rodents, is involved in

cognitive processes such as goal-directed behavior, working

memory, executive control and reward information [8–9]. The

lPFC is a key element in complex behaviors, as for example,

perceptual categorization and matching to sample. For this reason,

we included the lPFC to improving the model for other tasks [7].

One of the predictions of this model is that neural plasticity activity

is higher in the lPFC while animals are actually learning an

operant conditioning task rather than after it has been learned. In

our model, synaptic plasticity modifications are calculated as

hebbian and anti-hebbian law, simulating long term potentiation

(LTP) and long term depression (LTD), respectively. Therefore,

this model is a behavioral and neurophysiological plausible neural

network representation; however, it has not been yet confirmed by

biological evidence. Knowledge of the molecular mechanisms

underlying task learning would be useful to verify and fit plasticity

computations in the model. An accepted approach to indirectly

determine synaptic plasticity in vivo is to measure transcriptional

fluctuations of genes whose expression is deeply associated to

synaptic plasticity. Neural plasticity is required for circuit

formation, depends on bi-directional communication between

pre and post synaptic neurons, dendrite and axonal branching and

remodelling, among others [10]. There are several genes

associated with plasticity, among which the most important are

brain derived neurotrophic factor (BDNF), cAMP Response

Element Binding Protein (CREB), Synapsin I, Calcium/Calmod-

ulin protein kinase II (CamKII), activity-regulated cytoskeleton-

associated protein (Arc), c-fos and c-jun. BDNF is the main protein

in the brain involved in the activity-dependent neuronal plasticity,

synaptic transmission and growth of dendrites and axons [11].

Moreover, regulation of BDNF secretion is related to LTP and

LTD [12]. The transcription factor CREB is another crucial

mediator of these processes that acts by regulating transcription of

effector genes, including BDNF [13]. Synapsin I, a major

component of synaptic vesicles, is known to be up-regulated by

LTP in the dentate gyrus [14], and its transcription, which can be

regulated by BDNF, is also associated to different degrees of

learning [15–16]. In addition, CamKII plays a key role in

neurotransmission, gene expression and plasticity [17]. The

transcripts of CamKII isoforms are tightly influenced by LTP in
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the rat cortex [18] and it was observed that gene transcription and

availability are regulated by BDNF [19]. Besides, immediate early

genes (IEGs), like c-fos, c-jun and Arc, have been proposed as

markers of neuronal activation [20], which are also regulated by

BDNF [13,21,22]. It has been found that Arc expression is

involved in spatial learning, exploration learning and selective

reactivation of networks [23]. The AP-1 subunits c-fos and c-jun

are closely related to learning processes, plasticity and neuronal

activation in rat cortex and hippocampus [24–28].

The aim of this work was to confirm predictions of our previous

model using an animal model, studying behavioral parameters and

molecular markers of plasticity. For this purpose, we analyzed

differential expression of genes related to plasticity and IEGs in the

mPFC of rats during learning of an operant conditioning task.

Moreover, these results were used to fit the theoretical model,

indicating how to compute the synaptic weights.

Results

Behavioral Data
We used a skinner box to train animals within an appetitive

operant conditioning, that is, where the animal presses a lever to

receive a palatable pellet as reward. Behavioral parameters

considered for measuring learning were latency response and

number of correct responses. Animal groups were designed in

accordance to the following criteria: 50–65% of correct responses

(50%CR) and 100% of correct responses and latency time lower

than 5 seconds for three consecutive sessions (100%CR). The

trainings and sample extraction was performed as shown in

Figure 1A. In the third session, animals from the 50%CR group

reached 63% of correct responses (Figure 1B) and latency time of

44 seconds (Figure 1C), whereas animals from 100%CR reached

63.5% of responses (Figure 1B) with a latency of 40 seconds

(Figure 1C). Moreover, animals from the 100%CR group reached

100% of correct responses and a latency time of 4 seconds in the

fifth session. Consequently, animals belonging to the 100%CR

group, performed 100% of responses with a latency time lower

than 5 seconds in the 6th and 7th sessions (Figure 1B and 1C).

Control groups were Box Control of 50%CR (BC50%CR), Box

Control of 100%CR (BC100%CR) and naı̈ve (Control).

Plasticity Gene Expression Is Increased during Learning
Aiming at the expression of genes related with neural plasticity

in this learning paradigm, we measured their mRNA levels using

Real Time RT-PCR in the mPFC from animals that reached 50–

65% of responses (50%CR) or 100% of responses and a latency

time lower than 5 seconds (100%CR), as defined in Figure 1, and

compared them to their respective controls (BC50%CR and

Figure 1. Scheme of behavioral procedures and sample extraction. Diagram of how trainings were performed and time of sample extraction
(panel A). Animals from: Control, BC50%CR, 50%CR, BC100%CR and 100%CR groups, were synchronized to be sacrificed 15 minutes after the last session
of 50%CR and 100%CR groups (panel A). Percentage of responses during training session is expressed as the mean 6 S.E.M. number of responses in a
training session of 25 trials (panel B). Latency time is expressed as the mean 6 S.E.M. as the time that elapses between presentation of the conditioned
stimulus and occurrence of the lever pressing (panel C). If no response was performed by the animal, it was the time until the end of the trial.
doi:10.1371/journal.pone.0008656.g001

Plasticity in the PFC
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BC100%CR). All mean differences were evaluated by ANOVA

followed by post hoc Tukey’s Multiple Comparisons Test for

group comparison.

The first plasticity related gene studied was BDNF, which

showed a significant difference between means [F(4, 25, 27.25),

p,0.0001]. Comparisons put into evidence that BDNF expression

levels in the mPFC from 50%CR animals were increased by

31.9% (p,0.001) relative to BC50%CR (Figure 2A). However, no

significant differences were found between 100%CR and

BC100%CR animals, whereas for 100%CR animals, BDNF

expression was decreased by 18.9% (p,0.01) when compared with

50%CR (Figure 2A).

On the other hand, a significant difference was observed for

CREB [F (4, 25, 21.20), p,0.0001]. In this way, a comparison

carried out later between 50%CR and BC50%CR groups resulted

in a 31% increment (p,0.001) in 50%CR group (Figure 2B).

Consequently, statistical analysis showed, that in 100%CR

animals, CREB expression was significantly increased by 14.7%

(p,0.05) with respect to the control group BC100%CR. CREB

mRNA levels in 100%CR animals were reduced in 22.3%

(p,0.05) with respect to 50%CR animals (Figure 2B).

In the case of Synapsin I mRNA levels in mPFC, statistical

analysis resulted in a significant difference between means [F (4,

25, 25.55), p,0.0001]. Thereafter, an increment of 27.4%

(p,0.001) was found between 50%CR and BC50%CR groups

(Figure 2C). In addition, another increase of 16.3% (p,0.05) in

Synapsin I expression was determined when a comparison

between 100%CR and BC100%CR was performed (Figure 2C).

Also, we found a decrease of mRNA levels of Synapsin I of 15.9%

(p,0.05) when we contrasted 50%CR and 100%CR animals

(Figure 2C).

Analysis of mRNA levels of CamKII in the mPFC led to a

difference between mean groups [F(4, 25, 18.89), p,0.0001] and

an increase of 18.7% (p,0.05) in 50%CR vs. BC50%CR groups

(Figure 2D). Moreover, testing CamKII in 100%CR animals

produced augmented mRNA levels by 15.2% (p,0.05) with

respect to BC100%CR group (Figure 2D). Nevertheless, no

significant differences were found in CamKII expression in the

mPFC between 50%CR and 100%CR groups. It is worthy to note

that in BDNF, CREB, Synapsin I and CamKII, no significant

differences were found between control groups (Control,

BC50%CR and BC100%CR).

Figure 2. Modification of plasticity related genes levels. Differential expression of BDNF (panel A), CREB (panel B), Synapsin I (panel C) and
CamKII (panel D) in the mPFC due to learning. Values are expressed as a percentage of the cage control value (100%), and represent the mean 6
S.E.M. Control group (n = 6); BC50%CR, Box Control 50%CR (n = 6); 50%CR (n = 6); BC100%CR, Box Control 100%CR (n = 6), 100%CR (n = 6). *P,0.05,
**P,0.01, ***P,0.001. One way ANOVA followed by Tukey’s post hoc test.
doi:10.1371/journal.pone.0008656.g002
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c-fos, c-jun and Arc Profile Expression in an Operant
Conditioning Learning Task

Another interesting group of genes to examine were the IEGs c-fos, c-

jun, and Arc. First, we started analyzing the expression levels of c-fos by

ANOVA and a significant difference between groups means was found

[F(4, 25, 22.93), p,0.0001]. The foregoing results showed an increase

of 26.5% (p,0.001) between 50%CR vs. BC50%CR animals

(Figure 3A) and an increment of 14% (p,0.05) when pairing

100%CR with BC100%CR. However, the comparison between

50%CR and 100%CR resulted in no significant difference (Figure 3A).

The second gene studied was c-jun, for which a difference

between means was found [F (4, 25, 17.35), p,0.0001]. The

mRNA levels were increased by 29.8% (p,0.001) in the 50%CR

as compared with BC50%CR (Figure 3B). Also, an increment of

14.2% (p,0.05) was found between 100%CR and BC100%CR

(Figure 3B). However, the comparison of 100%CR vs 50%CR

resulted in no significant difference (Figure 3B).

The last gene analyzed was Arc and, once again, we found

significant differences between means of experimental groups [F

(4, 25, 19.01), p,0.0001]. In the comparison between BC50%CR

and 50%CR (Figure 3C), we found an increase of 30% (p,0.001).

In addition, for 100%CR vs BC100%CR, an increment of Arc

levels (p,0.01) was observed (Figure 3C). Finally, there was no

significant difference regarding Arc mRNA expression when we

compared 50%CR with 100%CR (Figure 3C). It is remarkable

that in these three genes analyzed, no significant difference was

observed between control groups, BC50%CR and BC100%CR.

Taken together, these results would indicate that plasticity in

the mPFC is higher while animals are learning an operant

conditioning task than once said task is completely learned, as

evidenced by the differential expression of marker genes.

Simulations
The above results confirm one of the predictions of our previous

model: in the lPFC in primates or mPFC in rats, the synaptic

plasticity is higher while learning than once an operant conditioning

task is learned. The first version of the model did not comprise any

biological evidence measured in vivo, indicating how to compute the

synaptic plasticity in the lPFC. Instead, the synaptic changes in

the lPFC were computed by a Hebbian and anti-Hebbian rule

simulating LTP and LTD, respectively. Therefore, we used the

results described above to compute the synaptic changes in the

lPFC. The biological data for BDNF were compared with the model

prediction in order to fit the synaptic changes to the plasticity

Figure 3. Changes in IEGs levels. Gene expression profile of c-fos (panel A), c-jun (panel B) and Arc (panel C) during learning in the mPFC.
Experimental values are expressed as percentage of the cage control value (100%), and represent the mean 6 S.E.M. C, Control group (n = 6); BCIT, Box
Control IT (n = 6); IT (n = 6); BCTr, Box Control Tr (n = 6), Tr (n = 6). *P,0.05, **P,0.01, ***P,0.001. One way ANOVA followed by Tukey’s post hoc test.
doi:10.1371/journal.pone.0008656.g003
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processes proposed by changes in plasticity related gene expression.

BDNF was chosen among the genes studied herein given that it is by

far the most important molecule related to cognitive processes.

In Figure 4 it can be observed a scheme of the neural networks

model and the areas of the brain included. Statistical analyses were

performed using an ensemble of 100 computational models. Each

model was adjusted in the operant conditioning in the same way

animals were trained. Model parameters were tuned to achieve 65%

and 100% of performance in trials 70 and 120, respectively. Figure 5

shows the average performance for the model ensemble, wherein

the performance obtained in the behavioral experiments of Figure 1

can be appreciated as shadow bars. During learning, neurons in the

lPFC modified their synaptic weights according to the Hebbian or

anti-Hebbian law (Figure 6). Modifications were expressed as the

sum of the absolute value of LTP and LTD as a function of the

training trials. Shadow bars indicate the expected plasticity

increment and posterior decrement observed in Figures 2 and 3.

As basal levels of BDNF were not included as a parameter in the

computational model, the bar at trial 70 was fitted to the simulated

average synaptic modifications, and the bar at trial 120 indicate the

average value of BDNF obtained in Figure 2. As it can be observed,

the dynamic of synaptic weight modifications predicted those values

of BDNF found in the experimental results obtained when

expression levels of marker genes in the rat mPFC were determined.

Discussion

In a first approach run in vivo, we showed that mRNA gene

expression related to plasticity is differentially modified during the

course of learning of an operant conditioning task. At a first stage,

all genes studied herein are up-regulated in the mPFC of animals

that belong to 50%CR. Instead, in animals from 100%CR, these

increments are lower.

We previously described a theoretical model [7] proposing a

behavioral and neurophysiological plausible neural network that

relies on a layer with short term memory (STM) traces, a reward

prediction neural cluster, the PFC layer, and the layer with

possible responses. In this model, the lPFC synaptic modifications

were computed by Hebbian or anti-Hebbian law depending on

the level of released dopamine, simulating LTP and LTD. Using

this approach, we predicted that, in the lPFC, the synaptic

plasticity is higher while learning an operant conditioning task

than after it is learned.

Therefore, the biological evidences shown here support our

previous model that proposed for the first time this prediction.

This hypothesis is further supported by recent findings from our

group, which demonstrated a differential gene expression in the

hippocampus during learning of an operant conditioning task [29].

We observed higher hippocampal levels of plasticity markers while

learning, followed by a decay of the plasticity markers when the

task was learned. Taking together all these results, we propose that

plasticity is higher while learning than when the task is already

learned. Nevertheless, the plasticity predicted by the previous

model qualitatively did not match the plasticity levels proposed by

the experimental results.

A growing body of evidence has proposed BDNF as the leading

neurotrophin that orchestrates learning and memory processes

[30]. Previous articles showed that regulation of BDNF secretion is

Figure 4. Scheme of the neural network model. The first layer generates short-term memories of the stimuli as a result of the interaction
between different structures such as ventromedial PFC, inferotemporal ctx., posterior parietal ctx., hippocampus and amygdala. We used 80 neurons
in the lPFC or mPFC for monkeys and rats respectively, 3 in the BG-PMC and a TD(lTD) model in the VTA/SNc. The Locus Coeruleus block represents a
modulation exerted by the Locus Coeruleus over direct input-output synapses.
doi:10.1371/journal.pone.0008656.g004
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related to LTP and LTD and that BDNF regulates the different

phases of LTP [12,31,19]. Moreover, BDNF increased transcrip-

tion is the cause or the result of LTP induction [30]; therefore, it is

a very important marker for plasticity.

The results presented here for BDNF mRNA levels in the

mPFC suggests that BDNF plays an important role in the plasticity

necessary to induce the modifications in neural circuitry.

However, BDNF is not the only responsible factor for plasticity in

neuronal circuitry; it exerts control over several genes related to

plasticity that help to promote it. For this reason, we decided to

study other genes also linked to plasticity. Incremented levels of

CREB and c-fos found during training are remarkable observations,

not only because of the effects that both have per se, but also for the

fluctuations in the transcription levels that qualitatively matched up

with the BDNF. Moreover, because CREB promotes transcription

of BDNF and c-fos [13] and BDNF feedbacks over CREB [32],

these results reinforce the idea of higher plasticity while animals are

learning and a role of BDNF regulating the process.

On the other hand, another two important genes related to

plasticity, Synapsin I and CamKII, were incremented during

Figure 5. Averaged performance of the ensemble in operant conditioning learning. Error bars indicate the standard error to the mean
performance and shadow bars shows the experimental performances obtained in Figure 1B.
doi:10.1371/journal.pone.0008656.g005

Figure 6. Averaged synaptic weights modifications during learning. Learning induces an increment of synaptic modifications that reach a
maximum value near trial 80 and then the amount of change in synaptic weights decrease. At trial 120, the rate of change predicts the experimental
result found in Figure 2A. Error bars indicate the standard error to the mean. Shadow bars shows the experimental values of BDNF obtained in
Figure 2A.
doi:10.1371/journal.pone.0008656.g006

Plasticity in the PFC
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learning. In the case of Synapsin I and CamKII, we propose that

increments represent that plasticity is occurring in both learning

groups, since both mRNAs are actively transcribed and regulated

during LTP [14,18]. Moreover, because it is known that both

genes can be under the influence of BDNF [19,15] and these levels

coincided qualitatively with BDNF levels found in the present

work, we propose that BDNF could be regulating both genes to

allow plasticity.

A growing body of evidence indicates that Arc is a key player for

long term depression (LTD) and LTP consolidation through

BDNF signaling [21]. Here, we observed strong increments of Arc

at different stages of learning that correlate with the incremented

levels of BDNF. In this way, Arc could be intensively expressed by

the influence that BDNF exerts over it. However, this result does

not discard Arc as an important factor for plasticity, since that

knock-out mice for Arc failed to consolidate synaptic plasticity and

memories [33]. On the other hand, the increments of c-fos and c-

jun in animals that learned the task and those that were learning

the task, suggests a potential role for the transcription factor AP-1,

as it was previously described for another paradigm [28]. Indeed,

c-fos is under transcriptional control of CREB, which is under

influence of BDNF; consequentially, BDNF is participating in c-fos

enhanced transcription. Moreover, transient increments of c-jun

mRNA were associated with early and late LTP [34]. Thus, the

present results further confirmed that plasticity is higher while the

animals are learning than when the animals learned the task.

These increments in the different mRNAs suggest that there was

major plasticity modifications while learning and begun to decline

after learning; besides, cellular activation is higher during learning.

Thus, we propose that in the beginning of learning there are major

plasticity changes due to massive modifications of the pre-existent

neural circuits and that when the task is learned, the remaining

plasticity is more related with a late establishing and refinishing of

neural circuits. In fact, functional magnetic resonance imaging

studies in humans have shown that during brain processing of goal

directed behaviors and other tasks that involves reward, the lPFC

regions are more activated during learning and one of these studies

went even further by showing that the lPFC has a hierarchical

organization for controlling emotions and cognitive control in

decision making [35,36,37].

The previous in silico model simulated a similar pattern of

plasticity changes during learning, but did not matched up with

the gene increment values measured in the mPFC. Therefore, we

decided to change and to improve how the model computes the

plasticity. Taking together previous findings described above [11]

and the results presented here, we chose BDNF as the

representative gene for plasticity to compared with the computed

plasticity. It is important to remark that all genes measured here

are reliable markers for measuring plasticity and that here we are

not measuring synaptic plasticity per se. Instead, here we showed

that plasticity processes are occurring differentially during

learning.

In the previous version of the model, the plasticity in

dopaminergic neurons was computed by the TD model. It

reproduces dopamine neuron activity in many behavioral

situations, but in that version we lacked experimental data

supporting how to compute the synaptic plasticity in the lPFC of

primates or mPFC in rats. Knowing that there is LTP and LTD,

we computed the synapses plasticity by the Hebbian and anti-

Hebbian, respectively. Based on previous data of BDNF gene

expression, we have verified in the model how to compute the

synaptic changes and fit the parameter of the synaptic weight of

the lPFC. Herein, we showed that Hebbian and anti-Hebbian

rules are suitable to simulate the synaptic plasticity in the lPFC.

Interestingly, experimental results give us important information

about these results to the model and to made even more reliable

the plasticity predicted by the model. On the other hand, we

showed the molecular mechanisms underlying learning an operant

conditioning task in the mPFC and the control that exerts BDNF

over other genes related to plasticity.

Finally, in a holistic integration, we have demonstrated that

plasticity in the mPFC is higher during learning an operant

conditioning task than once it is learned, by two completely

different approaches: computational and experimental, obtaining

concordant results. These results demonstrates for the first time

that learning an operant conditioning task requires while learning

massive modification of the neural circuits, whereas when the task

is already learned, process decreases and is more related to late

establishing of the neural circuitry.

Materials and Methods

Experimental Procedures
All experimental procedures were approved by the ethics

committee of the Instituto de Biologı́a y Medicina Experimental-Consejo

Nacional de Investigaciones Cientı́ficas y Técnicas (IByME-CONICET)

and were conducted according to the NIH Guide for Care and Use of

Laboratory Animals.

Animals
Two month old male Long Evans rats (300–325 g) were provided

by the IBYME-CONICET, maintained on a 12 h light/dark cycle

with food and tap water available ad libitum.

Gene Expression during Operant Conditioning
Operant conditioning task. All behavioral procedures were

performed during the light cycle and the operant conditioning task

was performed in a standard operant chamber (MED Associates

Inc, St. Albans, Vermont, USA) equipped with an input (DIG

710/711) and output (DIG 720/721/722) card for data

acquisition and processing, one automated retractable lever,

white light house, context red light, white noise and automated

feeder. All animals included here were single housed and handled

every day for at least 12 days. At the beginning of the experiments,

rats were then food restricted for 3 days before training and

throughout the experiment to maintain ,80% of their ad libitum

body weight. Three days of habituation followed. Rats were first

placed in the training room for 15 min followed by a 20 min

exposure in the operant chamber. During the habituation process,

rats in the operant chamber were only exposed to context red light

and white noise, and fed with 25 pellets (45 mg, BioServe) given

randomly by the automated feeder. Two daily sessions of 25 trials

were performed. To avoid changes in animal performance due to

light cycle, the first session was performed between 8am–10am

and the second between 3pm–5pm. A session started with the lever

retracted, a house white light on and a red context light that

remained on during all the session. Each trial begun when the

lever came out for 60 seconds and white light turned off, if the

animal pressed the lever received a pellet as a reward. The action

of pressing the lever was considered as a response. When the trial

ends, the white light turns on and the lever retracts for 20 seconds.

If the animal did not push the lever during trial, no reward was

given. Control animals remained in the bioterium during

experimental procedures. BC50%CR and BC100%CR sessions

started with the house white light on and a red context light on,

thereafter, the white light turned off and the animal remained in

the box with the lever retracted until 50%CR and 100%CR

finished their training sessions. One experimental group criteria

Plasticity in the PFC
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was to reach 50–65% of responses (50%CR) and the other one was

to reach 100% of responses and a latency time below 5 seconds for

three consecutive sessions (100%CR). Latency is calculated as the

amount of time that elapses between presentation of the

conditioned stimulus and occurrence of the lever pressing. If no

response was performed, latency was the time until the end of trial

(in our case 60 sec). Experimental groups were as follows: 50%CR

(50%CR, n = 6), Box Control of 50%CR (BC50%CR, n = 6),

100%CR (100%CR, n = 6), Box Control of 100%CR

(BC100%CR, n = 6) and Control (Control, n = 6).

Quantitative real-time reverse transcription polymerase

chain reaction (RT-PCRs). Fifteen minutes after completion of

the last training session, all experimental and control rats were

simultaneously killed by cervical dislocation and the brains were

immediately removed. The mPFC was dissected and stored at

270uC. Frozen tissues were homogenized in Trizol Reagent

(Invitrogen) and total RNA was purified. First strand comple-

mentary DNA (cDNA) was synthesized by retrotranscription us-

ing oligodT primers and SuperScriptTMII Reverse Transcriptase

(Invitrogen). Real-time RT-PCRs were conducted in a GeneAmp

7500 Sequence Detection System (Applied Biosystems, Foster City,

California, USA) and cDNA amounts per sample were determined

using SYBR Green PCR Core Reagents kit (Applied Biosystems).

All RT-PCR quantification procedure was performed in duplicates

and was subjected to a heat dissociation protocol following the

final cycle of the PCR to diminish unspecific products. Progression

of PCR products and reaction were assessed by changes of the

SYBR green dye fluorescence attached to double strand DNA.

All values were normalized to b–actin as no significant differences

were observed among groups of treatment when using other

housekeeping genes [38].

Primer sequences (Invitrogen) were designed using Primer

Express software (Applied Biosystems). Oligonucleotide sequences

were: Arc forward: 59-ACCGTCCCCTCCTCTCTTGA-39; Arc

reverse: 59-GGCACCTCCTCTTTGTAATCCTATT-39; b-actin

forward: 59-CAACTTGATGTATGAAGGCTTTGGT-39; b–ac-

tin reverse: 59-ACTTTTATTGGTCTCAAGTCAGTGTACAG-

39; BDNF forward: 59-AAAACCATAAGGACGCGGACTT-39;

BDNF reverse: 59-AAAGAGCAGAGGAGGCTCCAA-39; Cam-

KII forward: 59-CATCCTGAACCCTCACA TCCA-39; CamKII

reverse: 59- CCGCATCCAGGTACTGAGTGAT-39; c-fos re-

verse: 59-CGCAGCGATCTTCATCAAAC-39; c-fos forward 59-

TCCACTGCCTGGGACAGAA-39; c-jun forward: 59-CGGC-

CCCGAAACTTCTG-39; c-jun reverse: 59-GTCGTTTCCAT-

CTTTGCAGTCA-39, CREB reverse: 59-GGGAGGACGCCA-

TAACAACTC-39; CREB forward: 59-GCCTCTGGTGATGTA-

CAAA CATACC-39; Synapsin Iforward: 59-GCAAGTGTTGT-

GGCACTGACTAAG-39, Synapsin I reverse: 59-CTTCTGGA-

CACGCACATCGT-39. All results in BC50%CR, 50%CR,

BC100%CR and 100%CR for each gene are expressed as a

normalized percentage of the control group.

Statistics
All the statistical analysis was performed using GraphPad Prism

4.00 (GraphPad Software, San Diego California USA). Values

were expressed as means 6 SEM and compared using repeated

measures ANOVA and post hoc comparisons with Tukey’s

Multiple Comparisons Test, differences among experimental

conditions were considered statistically significant when P,0.05.

Model
A brief explanation about the computational model is described

below, a detailed version of it can be found in [7].

Briefly, the activity of each neuron in the model represents the

activity of a certain functional cluster of neurons. The time is

discretized in steps representing 100 ms each. The input layer is

constituted by a set of cue selective neurons that compute short

term memories (STM) of input stimuli. Each time that CSi or USt

are present, they are set to one, otherwise zero.

The output layer of the model contains 3 units, each of them is

responsible of the execution of a behavioral response (R1, R2 and

R3). If throughout a trial the activity of these output neurons does

not exceed the activation threshold, a random response is executed

with probability 1/3.

When a response is executed, the activity of its associated

neuron is set to 1 along a period of 5 time steps, while the others

are forced to 0 along the same time period.

In the simple task presented here, these responses represent

pressing a key (R1) or doing any other response non-related with

the task (R2, R3). All of them are codified at the motor-related

structures layer.

Dopamine neurons have been shown to respond to unpredicted

rewards [2]. Moreover, after repeated paired presentation of CS-

US, neurons in midbrain dopaminergic structures as the Ventro

Tegmental Area (VTA) and the Sustantia Nigra Pars Compacta

(SNc), change their firing pattern codifying the prediction error of

being rewarded. Time difference models (TD) [39] predict the

firing of dopamine neurons for different paradigms (classical and

operant) employing one or multiple conditioned stimuli.

In Figure 4, the VTA/SNc block is a TD model whose inputs

are the CS’s and the US.

A prediction of reward is calculated out from the set of stimuli

present in each trial and the association between conditioned stimuli

and reward is learned and coded in synaptic weights VCSi [1,7].

Based on the reward and its predictions for each CSi, the

prediction error d(t) at time step t is computed. This prediction

error is then used to update the synaptic weight vector VCSi and to

initiate a gating window W d
t for learning mechanisms in PFC and

BG-PMC.

When DA bursts occur, if d(t). .hhebb, W d
t ~1 for the following T

steps. The duration of this window (T) depends on the amplitude

of d(t) [7], in accordance with the experimental results obtained in

[40–41].

When the predicted reward is omitted, DA firing goes below

baseline. If d(t), .hant̃ihebb, W d
t ~0 for the following 15 time steps.

When the DA firing is close to baseline, i.e. .hant̃ihebb,d(t), .hhebb,

W d
t ~0:5.

Dopamine effects on neuron excitability had been widely

shown. Dopamine decreases the spontaneous firing of PFC

pyramidal neurons, mainly by exciting fast spiking inhibitory

interneurons [42]. In the model, this inhibition is represented by

clamped negative synaptic weight ut W d
t

� �
from the VTA to the

PFC. On the other hand, the synergism between NMDA and D1

receptors could differentially change pyramidal neuron excitability

based on the amount of extracellular dopamine [43]. In this sense,

initially inhibited PFC pyramidal neurons will fire strongly when

afferent inputs release large amounts of glutamate.

Neurons in the PFC respond according to the following,

Ok
t ~
X
VCSi

uk
t CSi
� �

:tt CSi
� �

zut W d
t

� �
:W d

t zBwinner
:W d

t zbasalPFC

if Ok
t w0; else Ok

t ~0

ð1Þ

where k�~ arg max
k

Ok
t represents the index of the winner

neuron, Bwinner stands for the synergism between D1 dopamine
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receptors and NMDA receptors, and basalPFC is the baseline firing

rate of PFC neurons.

A winner-takes-all mechanisms is simulated as follow

Mk
t ~

Ok
t if k~k�

0 otherwise

(
ð2Þ

As in the PFC, the released DA inhibits the motor area through

clamped negative synaptic weight wt W d
t

� �
and, in contrast to this

general inhibition, the winner neuron is excited proportionally to

the released DA [44]. In this way, a ‘‘brake’’ is applied over all

possible motor programmes and this motor program that surpasses

a fixed threshold is released. The output of the response neurons is

computed as,

R
j
t~
X
VCSi

w
j
t CSi
� �

:tt CSi
� �

:lctz
X
VMk

w
j
t Mk
� �

:Mk
t

zwt W d
t

� �
:W d

t zBwinner
:W d

t zbasalBG{PMC

ð3Þ

where basalPFC is the baseline firing rate of BG-PMC neurons and

lct represents a modulation exerted by noradrenergic neurons of

the Locus Coeruleus (LC) over visual and somatosensory cortical

neurons [45,7]. We model the tonic firing of LC neurons as a

function of the received reward in a time window that includes

many trials.

tlong
t USð Þ~ 1{alcð Þ:tlong

t{1 USð Þzalc
:USt, lct~1{5:tlong

t USð Þ ð4Þ

Short term memories for the response neurons are computed

according to

tt Rj
� �

~ 1{að Þ:tt{1 Rj
� �

za:Rj
t, ð5Þ

and as in (8) for the PFC area, a winner-take-all rule is applied.

Dopamine effects on PFC pyramidal neurons are also related to

modifications of synaptic efficacy via LTP and LTD. Previous

models have used the DA signal in the modulation of synaptic

weights modifications [46,47,7]. In our model, when W d
t ~1,

Hebbian learning is applied to both PFC and BG-PMC neurons.

The opposite occurs when W d
t ~0.

uk
t CSi
� �

~mPFC
:uk

t{1 CSi
� �

{ {1ð ÞW
d
t 1{mPFCð Þ:tt CSi

� �:Ok
t if k~k� ð6Þ

w
j

t (CSi)~mBG{PMC
:w j

t{1(CSi) { ({1)W d
t nBG{PMC

:tt(CSi):tt(R
j):lct

w
j

t (Mk)~mBG{PMC
:w j

t{1(Mk) { ({1)W d
t nBG{PMC

:Mk
t
:tt(R

j)
ð7Þ

where mPFC and mBG-PMC are first order momentum constants while

nPFC and nGB-PMC are learning rates for the PFC and BG-PMC,

respectively.
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