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Lower vaccine-acquired immunity in the
elderly population following two-dose
BNT162b2 vaccination is alleviated by a
third vaccine dose
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Understanding the impact of ageon vaccinations is essential for thedesign and
delivery of vaccines against SARS-CoV-2. Here, we present findings from a
comprehensive analysis of multiple compartments of the memory immune
response in 312 individuals vaccinated with the BNT162b2 SARS-CoV-2 mRNA
vaccine. Two vaccine doses induce high antibody and T cell responses in most
individuals. However, antibody recognition of the Spike protein of the Delta
and Omicron variants is less efficient than that of the ancestral Wuhan strain.
Age-stratified analyses identify a group of low antibody responders where
individuals≥60 years areoverrepresented.Waningof the antibody and cellular
responses is observed in 30% of the vaccinees after 6months. However, age
does not influence the waning of these responses. Taken together, while
individuals ≥60 years old take longer to acquire vaccine-induced immunity,
they develop more sustained acquired immunity at 6months post-
vaccination. A third dose strongly boosts the low antibody responses in the
older individuals against the ancestral Wuhan strain, Delta and Omicron
variants.
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By the beginning of September 2021, over 250 million SARS-CoV-2
confirmed cases and five million associated deaths were reported
worldwide (https://covid19.who.int/). https://jamanetwork.com/
journals/jamanetworkopen/fullarticle/2781727?utm_source=silver
chair&utm_medium=email&utm_campaign=article_alert-jama
networkopen&utm_content=wklyforyou&utm_term=070921-zld2101
26r1 Several vaccines developed in record time have shown
high efficacy against symptomatic infection and severe COVID-19.
The Pfizer/BioNTech BNT162b2 mRNA vaccine, one of the most
deployed worldwide, is a two-dose regimen, administered 21 days
apart. Initial phase 3 data showed an efficacy of ~50 % after the first
dose and >90% after the second dose against severe disease caused
by the ancestral SARS-CoV-2 Wuhan strain in naïve individuals1.
This was further supported by real-world vaccination data showing
also high efficacy against2–12. Recent reports have shown that it still
provides significant clinical protection against the emerging
variants13–18. The BNT162b2 vaccine induces anti-Spike antibody,
memory B cells and T cell responses in humans19–25, which are both
required for protection against infection and disease26–35; the for-
mer being considered as the main correlate of protection35–39. Dif-
ferent factors such as age, gender, microbiome, comorbidities
influence the development of effective immune responses40. Since
the elderly are at major risk of COVID-19 severe disease41,42, it is
necessary to assess their immune responsiveness to COVID-19
vaccination. Initial studies reported that antibody responses were
similar to the younger groups43, while others described lower
responses in the older groups43–48. Despite lower immune respon-
siveness, the two-dose BNT162b2 vaccine has demonstrated similar
vaccine efficacy in the elderly49–53. In the early days of vaccination
implementation, there was discussion on delaying the second dose
in order to offer a first dose to more individuals54. It was recently
shown that delaying the second dose provided higher immuno-
genicity and maintained vaccine efficacy55–57. However, the kinetics
of induction and maintenance of the adaptive immune responses in
the elderly, which tend to respond less efficiently to vaccination40,
remain to be fully understood. A suboptimal immune response
could favor breakthrough infections due to the ancestral or variant
viruses58–61.

Here, we compare the kinetics of specific antibodies, B and T cell
memory responses in a cohort of BNT162b2-vaccinated healthcare
workers and elderly individuals in Singapore up to 6months post-
immunization and for a subset of elderly low responders after a third
dose. We specifically investigate longitudinal samples and integrate
data from the same individuals with a variety of quantitative
laboratory antibody, B and T cell assays, allowing a comprehensive
analysis of the establishment and persistence of the vaccine-induced
responses.

Results
A cohort of 312 individuals was vaccinated with the Pfizer/BioNTech
BNT162b2 vaccine from the beginning of January 2021–May 2021 in
Singapore (Supplementary Table 1). The median age was 50.9 years
(range, 22–82) and volunteers were predominantly female (58.3%)
and Chinese (72.4%). Participants’ characteristics differed across the
different vaccination groups, which reflected vaccine prioritization
for healthcare workers and elderly individuals. None of the partici-
pants had known or reported a history of SARS-CoV-2 infection and
were all negative for antibodies against the N protein using the
commercial Roche N serology assay. At the time of vaccination,
Singapore had a low case count, which corroborated with low sero-
prevalence. To monitor immune responses, longitudinal blood
samples were acquired at baseline corresponding to the day of the
first dose, 21 days later at the time of the second dose, up to 180days
post first dose (Fig. 1a) and 1month after a 3rd dose corresponding to
a maximum of 300days.

Antibody response during and following two-dose SARS-CoV-2
mRNA vaccination
All volunteers (n = 312) were analyzed for vaccine-induced anti-Spike
(S) protein-specific antibody levels and neutralizing efficacy using
various assays. The flow cytometry-based assay (SFB) is based on the
recognition of SARS-CoV-2 Spike protein stably expressed on the
surface of HEK293T cells, allowing the detection of antibodies binding
to different epitopes present on the full Spike protein61,62. Themajority
of volunteers seroconverted after the first dose (95% had higher anti-
bodies than the cohort baseline and above their individual baseline)
(Fig. 1b, Supplementary Table 2). After the second dose, all but one of
the participants developed anti-Spike protein antibodies by day 90.
Immunoglobulin isotyping showed that the proportion of vaccinees
with detectable IgM (above both cohort and individual baseline) was
>85% at day 21 but dropped to 12% by day 90 (12%) and was negligible
by day 180 (Supplementary Fig. 1), indicating rapid maturation of the
antibody after vaccination. Interestingly, IgG1 dominated the antibody
response, followed by IgG3 and IgG2, while IgG4 was barely detected
(Supplementary Fig. 1). By day 180, anti-Spike antibody levels had
declined in 95% of the vaccinees (Supplementary Table 3) and on
average by 39% (median binding percentage from 40.5% at day
90–24.1% at day 180). We also observed a sizeable proportion of low
responders (individuals with responses belowmedian cohort response
at consecutive time points (37.2% at day 90 and 22.2% at day 180)
(Supplementary Table 4)).

We next profiled antibodies specific to the receptor binding
domain (RBD) of the Sprotein,which is the immunodominant target of
anti-SARS-CoV-2 neutralizing antibodies63 using a commercial assay
(Roche S). The first vaccine dose induced antibodies in all but two
vaccinees (Fig. 1c, Supplementary Table 2). After the second dose, all
individuals seroconverted by day 90. However, 36.5% of individuals
mounted a poor anti-RBD IgG response (Supplementary Table 5). A
significant decline in anti-RBD antibody levels was also observed at day
180 in 77.8% of the vaccinees (Supplementary Table 3), on average by
30% (median value from 1140U/ml at day 90 to 799.8U/ml at day 180).

We next measured the level of neutralizing antibodies in these
vaccinees using a surrogate virus neutralization test (sVNT) for the
Wuhan strain, which has a good concordance with the live-virus neu-
tralization test64. It was observed that >79.1% of the plasma had neu-
tralizing antibodies above individual baseline after the first dose, 99%
after the second dose and ~93% at day 180. However, between day 90
and day 180, serum neutralization efficacy declined in 77.5% of the
participants and on average by 25% (from a median inhibition of
89.9–67.4%) (Fig. 1a, Supplementary Table 3). One-third of the vacci-
nees mounted a poor secondary neutralization response (Supple-
mentary Table 6) and 19 out of 312 (6%) had no neutralizing antibodies
(below baseline inhibition) at day 180 (Fig. 1d).

Notably, when the data from different serological assays were
analyzed according to age, we observed a significant negative corre-
lation of the age of the individuals with the antibody response at day 21
(after the first dose) and also with the antibody response at day 90
(after the second dose) (Supplementary Fig. 2). Sample distribution
showed that low responders tended to cluster by age into two cate-
gories (1) <60 and (2) ≥60 years. Thus, the data were age-stratified and
re-analyzed (<60 versus ≥60). For all assays, vaccinees ≥60 years had a
lower response, compared with younger vaccinees after the first dose
(Fig. 2b). After the second dose, the antibody responses were boosted
in all groups. However, the increase was less pronounced in the older
age group, who displayed lower antibody levels against the whole
spike protein and RBD and had lower serum neutralizing capacity at
day 90 (Fig. 2b). At day 180, while the elderly had more antibodies
against the whole spike protein, the younger population (Fig. 2b, left
panel) had lower levels of anti-RBD antibodies and lower neutralizing
antibody capacity (Fig. 2b, middle and right panel, respectively).
Similarly, the older individuals were among the low responders
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(participants with responses below median cohort response at con-
secutive time points) (Supplementary Tables 4, 5 and 5).

Wenext assessed thewaning of antibodies between agegroupsby
measuring the difference in antibody levels between days 180 and 90
in paired samples (Fig. 2c). Although the antibody levels were lower at
the cohort level, the decline in antibody levels was significantly more
pronounced in the older population than in the younger one (Fig. 2c
left and middle panels, Supplementary Table 3). The waning of neu-
tralization capacity did not differ between both age groups (Fig. 2c
right panel, Supplementary Table 3).

We also examined the binding efficiency of the vaccinated
plasma to the spike protein of the Delta (B.1.617.2) or the Omicron
(B.1.1.529, BA1 substrain) variants using the SFB assay. In a previous

study, we reported that IgG levels against the Wuhan ancestral strain
or its variants were strongly correlated with their capacity to inhibit
pseudovirus and live-virus neutralization expressing the respective
various Spike proteins65,66. Here, we show that at any time points, the
antibody response against the Delta variant was lower than the
Wildtype ancestral strain and extremely low or non-existent against
the Omicron variant (Fig. 3a). However, at day 21 (after the first dose),
the difference in recognition was only significant between the two
age groups for the Wuhan ancestral strain and Delta but not the
Omicron variant, and, at day 90, for the Wuhan strain (Fig. 3a, left
and middle panels). This was not observed at day 180, where the
difference in recognition was similar in both age groups (Fig. 3b,
middle and right panels).
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Memory B cell response during and following two-dose SARS-
CoV-2 mRNA vaccination
To measure the vaccine-induced RBD-specific circulating memory B
cells, B cell ELISPOT assay67,68 was performed on a subset of randomly
selected age-matched individuals (n = 78, fromwhichwehad36 paired
samples for the four time points). There was no significant increase
after the first dose at day 21, even though 47% of the individuals with
paired samples had higher memory B cells than their baseline (Sup-
plementary Table 2). After the seconddose, a significant increase in the
percentage of RBD-specific memory B cells was observed at day 90
(Fig. 4a). Analysis of paired samples confirmed these observations
(Fig. 4b), where 76.5% had positive responses above their baseline
levels. By day 180, the numbers of RBD-specific B cells continued to
increase (Fig. 4a), with 85.3% of individuals having responses above
their baseline levels at day 180 (Supplementary Table 2). Generally, all
individuals had produced RBD-specific circulating B cells in 6months.

When the data were age-stratified, we observed that the specific
memory B cell responsewas lower in vaccinees ≥60 years after the first
dose at day 21 than vaccinees <60 years (Fig. 4c). However, after the

second dose, the specific memory B cell response increased in vacci-
nees ≥60 years at day 90 and 180 (Fig. 4c), corresponding to an overall
increase in the number of total memory B cells (Fig. 4d). After two
doses, the specific memory B cell response continued to increase for
both age groups over time (Fig. 4c). At day 180, the differencebetween
the two age groups disappeared, with both age groups having similar
levels ofmemory B cell response (Fig. 4c, d). By comparing differences
in thememory B cell response between time points (Fig. 4e), we found
that younger individuals responded faster,with a greater increase right
after the first dose at day 21 (p <0.001, Mann–Whitney test). In con-
trast, the older age group had a substantial increase at day 90, which
was higher than the younger age group (p <0.001, Mann–Whitney
test), demonstrating the importance of the second dose for the older
age group (Fig. 4e).

T cell responses during and following two-dose SARS-CoV-2
mRNA vaccination
T cell stimulation was determined by quantifying cytokines (IL-2 and
IFN-γ) directly secreted by Spike-specific CD4 and CD8 T cells in whole
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blood, following overnight incubation with peptide pools covering
75–80% of Spike protein69. This was done in a subset of volunteers
(n = 160) randomly selected from the cohort but age-matched
(n = 82 < 60 and n = 78 ≥ 60). At baseline, majority (~95%) of the indi-
viduals had very low production of IL-2 or IFN-γ (<10 pg/ml) after
Spike-peptide pool stimulation (Fig. 5a and b). After one dose, most of
the vaccinees had a T cell response that increased further after the
second dose. 98.7% of the vaccinees had a peptide-mediated IL-2
response above individual baseline after the first dose at day 21, days
90 and 180 (Fig. 5a, Supplementary Table 2). A robust IFN-γ response
above baselinewas also observed (~93 to 95% after the first and second
doses) and sustained up to day 180 (Fig. 5b, Supplementary Table 2).

We next performed a detailed analysis of the T cell subsets by
ELISPOT in a smaller subset of the volunteers due to cell availability.
We used peptides covering potential CD8 or CD4 T epitopes (see
materials andmethods). For theCD8 assayusing Spike proteinpeptide
pools covering potential 9mers CD8 epitopes69,70, we showed that, at
baseline, the CD8 T cell response was already high in some vaccinees
(Fig. 5c), suggesting a cross-reactive CD8 T cell response from expo-
sure to other circulating coronaviruses. After the first dose, 54% had an
increase in spots above their individual baseline values at day 21. After

the second dose, 75% of the vaccinees had a response above their
individual baseline at day 90 (Fig. 5c, Supplementary Table 2). By day
180, only 40.3% still had a CD8 T cell response (above their own
baseline values, Supplementary Table 2). Overall, 88.9% (64/72)
mounted a CD8 T cell response during the 6-month follow-up. How-
ever, a comparison between responses at day 180 and 90 showed that
the response waned in 48% of the vaccinees (Supplementary Table 3).

We next stimulated PBMC with a 15 mer peptide pool corre-
sponding to potential CD4 epitopes22 and measured the response by
ELISPOT. CD4 Th1 (IL-2 and/or IFN-γ) responses were low at baseline,
except for a few individuals (Fig. 6d). After one dose, 69% of the vac-
cinees and 84.6% after the second dose had a response higher than
their baseline by day 90 and 83.33% by day 180 (Supplementary
Table 2). Overall, the CD4 Th1 cell response was significantly different
after the first dose and further significantly boosted after two doses.
Over 96.2% (75/78)mounted a response during the 6-month follow-up.
Comparison between responses at day 90 and 180 showed that the
CD4 Th1 response waned in 46.6% of the vaccinees (Supplementary
Table 3). A CD4 Th2 cell response was observed but was not as strong
as the Th1 response (Supplementary Fig. 3). At day 21, 59% of the
vaccinees had values above their own baseline, a percentage which
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variants. a Comparison of antibody response of the vaccinees (n = 35) at days 21,
90 and 180 using the SFB assays with cells expressing either the Wuhan ancestral
virus (W), the delta (D) or Omicron (O) variants of the Spike protein. Median values
of the samples were at day 21, 90 and 180 respectively 39.8%, 37.9% and 20.2 for the
Wuhan strain; 8.45%, 20% and 8.8% for Delta;0.13%, 4.5% and 1.1% for Omicron.
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or Omicron (O) variants of the Spike protein. The median value of each group is
represented by a red line. They were respectively at days 21, 90 and 180: Wuhan
ancestral strain, 39,8%, 45,4% and 19.1% (<60) and 9%, 28.7%, and 23.96% (≥60);
Delta variant: 25.4%, 22.2%and7% (<60) and 5%, 17.4%, and9.5% (≥60); andOmicron
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Friedman test when the three strains were compared together, or two-sided
Mann–Whitney test when the same strain was compared between the two age
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remained constant at day 90 but started to wane by day 180 (Sup-
plemental Tables 2 and 3).

Age-stratified analysis showed that post-vaccination Spike pep-
tide pool-mediated IL-2 response was similar in both age groups at all
time points (Fig. 6a). The IFN-γ response was lower at baseline in the
<60 group. However, after the first dose (day 21), it reached a similar
level to that of ≥60 group. At days 90 and 180, the older age group had
T cells producing significantlymore IFN-γ than the younger individuals
(Fig. 6b). We did not observe any age effect on the CD8 ELISpot
response (Fig.6c). CD4 Th1 was significantly lower at baseline for the
older age group but the responses were similar at days 21, 90 and 180
(Fig. 5d). Post-immunization Th2 cell responses were also similar at the
different times (Supplementary Fig. 3, Supplementary Table 3).

We next assessed the waning of T cell responses between age
groups by measuring the difference in response levels between days
180 and 90 in paired samples (Fig. 6e, Supplementary Table 3).
Although T cell responses were lower at the cohort level, the decline
was not significantly different between age groups. On the contrary,
IFN-γ T cell response was even higher in the older age group (Fig. 6e,
middle left panel).

Immune responses in individuals ≥60 years following a booster
vaccination with a third dose of the SARS-CoV-2 mRNA vaccine
Our data above and others45–48 indicated that a significant fraction of
older adults initially mounted a lower response to the two-dose vac-
cination. Thus, in September 2021, individuals ≥60 were identified as a

Fig. 4 | CirculatingRBD-specificmemoryBcellsafter vaccination. aRBD-specific
memoryB cellsweredeterminedby ELISPOTusingaRBDprotein. Determinationof
% RBD-specific memory B cells among IgG+ antibody-secreting cells (ASC) done on
PBMC from vaccinated participants at baseline or day 0 (n = 73), at day 21 (n = 43),
at day 90 (n = 76) and at day 180 (n = 60). The median value of each group is
represented by a red line and were at day 0, 21, 90 and 180, respectively 0,02%,
0.006%, 0.07% and 0.18% of the % RBD-specific memory B cells among IgG+ ASC.
*p <0.01, Dunn’s test after Kruskal–Wallis (p <0.001) on log-transformed data.
Green dotted lines indicate the limit of detection for the assay. b Paired wise
comparison of % RBD-specific memory B cells among IgG+ ASC for the analyzed

aged group at different days post doses is shown (n = 35). Themedian value of each
group is represented by a red line and is the same as in (a). *p <0.01, Friedman test
on log transformed data. c RBD-specific memory B cells comparison between the
analyzed age groups. Samples were from individuals: aged <60: at day 0 (n = 46),
day 21 (n = 18), day 90 (n = 46), andday 180 (n = 37); and aged ≥60, at day 0 (n = 27),
at day 21 (n = 25), at day 90 (n = 30), and day 180 (n = 23). d Total IgG producing
memory B cells comparison between the same analyzed age groups as above in (c).
The median value of each group is represented by a black line. *p <0.01, two-sided
Mann–Whitney test. e Difference in RBD-specific memory B cells between paired
samples and different time points (n = 35). *p <0.01, two-sidedMann–Whitney test.
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priority population and were recommended for a booster vaccination
(a third dose of BNT162b2 ormRNA 1273 [Spikevax,Moderna] vaccine)
in Singapore.Here, we analyzed the effect of the booster vaccination in
a subset of older individuals from our cohort, who received their
booster BNT162b2 vaccination between day 189 to 270 after the first
injection (Fig. 7a). Blood samples were taken ~30 days after booster
injection. We observed that the third dose strongly boosted the anti-
body responses against the total Spike protein or its RBD (Fig. 7b and
c). The boosting injection also induced a strong antibody response
against the spike protein of the Delta and Omicron variants (Fig. 7b).
When the samples were analyzed in the wildtype surrogate virus
neutralization assay, inhibition was boosted to high levels (>80%) fol-
lowing booster vaccination (Fig. 7d). This was also true in a pseudo-
virus neutralization assay using Wuhan, Delta, and Omicron
pseudoviruses (Fig. 7e). In line with the antibody responses,memory B
cell responsewas also strongly boosted in all individuals (Fig. 7f).When
the T cell responses were analyzed, we found that the IL-2 T cell
response was lower but still high (Fig. 7g). The IFN-γ T cell response
remained unchanged (Fig. 7h), matching the levels of CD4 Th 1 cells
detected by ELISPOT (Fig. 7i). The CD8 T cells were boosted by the 3rd

dose (Fig. 7J). Of note, ~10% of the vaccinees mounted poor T cell
responses even after the third dose, despite mounting good antibody
responses (Fig. 7g to i).

Discussion
In this study, we show that the two-dose regimen Pfizer/ BioNTech
BNT162b2 COVID-19 vaccine is highly immunogenic and generates

robust antibody, B andT cell responses against the Spike protein of the
ancestral Wuhan strain in most Singaporean vaccinees (>75%). Despite
the strong immunogenicity, a sizeable proportion of the vaccinees
mounted a low antibody response. Further analysis showed that indi-
viduals ≥60 years developed antibody responses at a slower pace, with
a lower peak, and were more represented in the low responders’
fraction (Fig. 2, Supplementary Tables 3–5). However, the antibody
responses decreased less rapidly in the older age group as seen
6months post-immunization (Fig. 2b, middle and right panel, Fig. 2c).
These data are in line with the memory B cell data, with lower levels of
memory B cell in the older age group after the first dose at day 21, but
eventually were at similar levels at day 90 and continued to increase at
day 180. This indicates the building of equivalently strong B cell
memory in responding older individuals as in younger individuals.
These findings agree with recent studies showing that recall of RBD-
specific memory B cells is stable following the 2 dose-vaccination
regiment 6–9months after the first injection71–75. The over-
representation of older individuals in the low responder groups is
likely a consequence of immunosenescence, which is characterized by
the reduced adaptive immune responses76–79. This has been well
described for influenza vaccines in Caucasian populations80. However,
studies on the Chinese population in Singapore showed no impact of
age on immunogenicity after influenza vaccination81. Here, we showed
that, following COVID-19 vaccination, antibody responses were par-
tially affected by age. Additional genetic, behavioral, nutritional or
environmental factors might account for this phenomenon and
deserve further studies. The low neutralizing antibody response in a
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larger subset of the older age group (20–30%more than in the younger
groups) has important clinical implications. Highneutralizing antibody
levels have been proposed as one of the essential protective
mechanisms against infection with the ancestral Wuhan strains of
SARS-CoV-2. They are also required to protect against, albeit less
efficiently, new emerging variants such as Delta or Omicron that can
escape antibody neutralization65,66,82–98. Our study showed that the
vaccine-induced antibody reactivity against the Delta variant was
lower, and extremely low or non-existent against the Omicron variant,

compared with the Wuhan ancestral strain. This lower response
against the variants was more pronounced for Delta after the first
injection in older individuals. However, at a later time-point, the
responses against both variants were similar across the different age
groups, and the waning was not limited to the older individuals.

Spike-specific T cell responses were induced in most vaccinees
(>95%) and remained high until day 180 (Fig. 4). Unlike the antibody
response, both age groups were equally represented in the low T cell
responder group (Supplementary Tables 7–9). Although around
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stimulation from individuals aged <60: (n = 82), and ≥60 (n = 75). Mean values are
indicated by a dark line. *p <0.01, two-sided Student t-test on normalized log
values. c CD8 T cells comparison between the analyzed age groups. Less than 60
group: day 0 (n = 66), day 21 (n = 66), day 90 (n = 66) and day 180 (n = 85), and ≥60:
day 0 (n = 43), day 21 (n = 44) and day 90 (n = 43) and day 180 (n = 41). Median
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values. dCD4Th1 cells comparison between the analyzed age groups. Less than 60
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day 0 (n = 43), day 21 (n = 44) and day 90 (n = 43 and day 180 (n = 41). Median values
are indicated by a dark line. *p <0.01, two-sided Mann–Whitney test. *p <0.01,
Mann–Whitney test on log values. e Box plots showing difference in T cell
responses measure in the different assays between days 180 and 90 for paired
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<60 and −4 for ≥60 for IL-2; −5.1 for <60 and 10.3 for ≥60 for IFN-γ; −73.8 for <60
and −54.5 for ≥60 for CD8 T cells; and 10.5 for <60 and –53.2 for ≥60 for CD4
Th1 cells; *p =0.003, two-sided Mann–Whitney test.
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Fig. 7 | Anti-SARS-CoV-2 spike protein antibody and T cell response before and
after the third booster dose. a Blood sampling strategy in subsets of the cohort of
Singaporean individualsmentioned in Fig. 1. Kinetics of IgG responsewereanalyzed
using three serological assays on paired samples taken at time T1 (day 90), T2 (day
180), and T3 (day 189–270) post first injection. b SFB assay using the cells
expressing the Wuhan ancestral strain (W, white dots), Delta (D, green dots) or
Omicron variant (O, blue dots). Median of group values at T1 (n = 16), T2 (n = 20),
and T3 (n = 20) were: 19, 16.45, and 50.2% (W); 6.7, 2.56, and 45,73% (D); and 1, 0.18,
and 31.65% (O). p <0.001, Friedman test; c Anti-RBD antibodies using the Roche S
assay. Median of values (n = 20) at T1, T2, and T3 were 277, 246.8 and 7723U/ml;
*p <0.001, Friedman test. d Surrogate virus neutralization test (sVNT). Median
values (n = 20) at T1, T2, and T3 were 71.2, 36,94 and 96.4% of inhibition.
*p <0.0001, Friedman test. e Neutralization assay using pseudoviruses expressing
the SARS-CoV-2 Spike of the Wuhan ancestral strain (W), Delta variant (D) or the
Omicron variant (O) (n = 12). Median of IC50 values at T1, T2, and T3 are 48.9, 10.2,
and 123.2 (W); 12.5, 5.3, and 57.1 (Delta); 5.0, 1.0, and 248.9 (Omicron) respectively.
*p <0.01, Friedman test. f RBD-specific memory B cells. Paired wise comparison of
total RBD-specific memory B cells for the analyzed aged group at different days is

shown (n = 15). Median of values at T1, T2, and T3 are 0.08%, 0.2 and 0.6 % of total
PBMC. **p <0.001, Friedman test. g IL-2 and h IFN-γ secretion profile of whole-
blood cultures stimulated with S protein peptide pool compared at the three time
points of paired samples from vaccinated individuals (n = 31). The limit of detection
for each cytokine (IL‐2 = 5.4 pg/ml; IFN‐γ = 1.7 pg/ml). Values below limit of detec-
tion levels are plotted as 1. Median of values at T1, T2, and T3 are: 81.2, 96.6 and
62.8 pg/ml for IL-2, and 31.2, 52 and 43 pg/ml for IFN-γ and are indicated as red lines.
*p <0.01, two-way ANOVA on log-transformed data, which follow a normal dis-
tribution. Kinetics of Spike-protein-specific CD8 (i) or CD4 Th1 cells (j) over time in
vaccinees. T cells were assayed on a subset of vaccinees (n = 11) by IL-2/ IFN-γ
ELISPOT as in Fig. 5. Data are presented are spot forming units (SFU) per million of
PBMC from paired samples from vaccinated individuals at three time points. Each
data point represents the normalizedmean spot count fromduplicatewells for one
study participant, after subtraction of the medium-only control. Values below limit
of detection levels are plotted as 1. Median of values at T1, T2, and T3 are: 79, 45.3
and 118.9 SFU for CD8T cells, and 173, 105.1 and 295.9 SFU forCD4Th1 cells and are
indicated as red lines. *p <0.01, Dunn’s test after Kruskal–Wallis test.
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30–50%, depending on the assay used, of the vaccinees, experienced a
small (<20%) decrease in response between days 90 and 180 (except
for the IFN-γ T cell responses), waning was not affected by age. This is
particularly important as T cells are thought to protect against severe
disease28–34. They recognize peptide epitopes distributed throughout
the SARS-CoV-2 Spike protein and in other viral proteins68,70,99–101 and
are less susceptible to antibody escape mutations in variant
strains102–109. Our findings showed that the levels and activities of the T
cell response were maintained in both age groups up to 180 days,
suggesting protection in all age groups. This agrees with recent stu-
dies, which have reported strong efficacy of the BNT162b2 vaccine
against severe disease after infection with the Delta (80-95%) or Omi-
cron (70-80%) variants, compared with the Wuhan ancestral
strain13–18,110,111.

Our findings show that although the antibody responses have
started to wane, recall T cell responses remain stable. This confirmed
recent findings obtained in vaccinees in different vaccinated
populations25,112–115. It is widely accepted that high antibody levels are
essential for protection against infection and T cells against severe
disease27,28. This is supported by real-world data that have demon-
strated a gradual decline in or limited vaccine efficacy against infection
with the ancestral strain and with Delta or Omicron, respectively, but
sustained high protection against hospitalization and death up to
6months after the second dose9,116–118.

To prevent waning or increase immune responses in poor
responders, the Singapore health authorities opted for an additional
booster vaccine doses with the same mRNA vaccine platforms. We
demonstrated here that a booster vaccination in our elderly low
responders significantly increased both antibody and T cells responses
against theWuhan strain, theDelta andOmicron variants (Fig. 7).Many
countries have also initiated additional booster vaccine doses with
same or different platforms, showing similar effects of the booster
doses in terms of improved antibody and T cell responses against the
Wuhan strains and variants109–111,119–130, protection against infection and
severe disease in individuals across all age groups131–137.

Lastly, the longevity of the immune response after a third dose is
unknown. However, waning antibody levels and protection against
infection has been recently reported in patients who have received
three doses of the BNT162b2 vaccine138,139. In addition, we have also
shown in this study that a small fraction of the vaccinees (~10%)
(depending on the assays) mounted poor T cell responses even after
the third dose, despite mounting good antibody responses. It has also
been shown that cancer patients or individuals under immunosup-
pressive drug treatments alsomount poor vaccine response even after
a third dose140. Countries, like Israel, have implemented a 4th dose for
the low responders. However, although the fourth vaccination raises
antibody levels, the increase in protection against SARS-CoV-2 infec-
tion was modest141. Short-term repeated vaccinations may not be
logistically feasible and may induce vaccine fatigue. Thus, second
generation vaccines with new platforms, better immunogens or
adjuvants142 that induce a more rapid and efficient helper T cell and
potent CD8 T responses are needed143.

Methods
Cohorts and ethics
A cohort of 312 individuals was recruited (Supplementary Table 1)
comprising healthcare workers and older individuals. Our study
complies with all the relevant ethical regulations. The study design and
protocol for the COVID-19 PROTECT study group were assessed by
National Healthcare Group (NHG) Domain Specific Review Board
(DSRB) and approved under study number 2012/00917. Collection of
healthy donor samples was approved by SingHealth Centralized
Institutional Review Board (CIRB) under study number 2017/2806 and
NUS IRB04-140.Written informed consentwas obtained fromall study
participants in accordance with the Declaration of Helsinki for Human

Research. The experiments adhered to the principles set out in the
Department of Health and Human Services Belmont Report.

Sample collection
Blood was collected in VACUETTE EDTA tubes (Greiner Bio, #455036)
or in Cell Preparation Tubes (CPT) (BD, #362761) for volunteers at
various time points (day 0, 21, 90 and 180 post first-dose and ~1month
post the booster dose, whichwas administered between days 189–270
post first-dose144).

Serological assays for the detection of anti-SARS-CoV-2
antibodies
Serum specimens were stored at −25 °C and equilibrated at room
temperature before time of analysis. Samples were analyzed using two
commercial assays, in accordance with the manufacturer’s protocol.
The anti-SARS-CoV-2 S (Roche S) and anti-SARS-CoV-2 (Roche N)
immunoassays using the Roche Cobas e411 Analyzer (Roche) allow the
quantitative detectionof total antibodies against the SARS-CoV-2 spike
(S) protein receptor binding domain (RBD) and the qualitative detec-
tion of total antibodies against the SARS-CoV-2 nucleocapsid (N)
antigen respectively. Plasma were incubated with either a mix of bio-
tinylated and ruthenylated SARS-CoV-2 S-RBD antigens or N antigens
to form immune complexes. Complexeswere attached to streptavidin-
coated microparticles upon incubation and then transferred to a
measuring cell. For the Roche S assay, the electro-chemiluminescent
signal representing the level of antibodies was measured and samples
within the linear range of quantitation (0.4–250U/mL) were assigned a
value. Samples with antibody levels ≥0.8U/mL were considered posi-
tive. For the Roche N assay, the cut-off index (COI) was derived from
the measured signal, where samples with COI ≥ 1.0 were considered
reactive.

Spike protein flow cytometry-based assay (SFB assay) for anti-
body detection
Cells expressing the S-protein of the ancestral Wuhan strain, or of the
Delta (B.1.617.2) or the Omicron (B1.1.529, BA.1 substrain) variants on
the cell surfaces were used in this study61,62. Expression of the various S
protein was verified with a serum from a vaccinated individual who
recovered from a previous COVID-19 infection before vaccination
(Supplementary Fig. 4). Cells were seeded at 1.5 × 105 cells per well in
96 well V-bottom plates. Cells were incubated with human serum
(diluted 1:100 in 10% FBS) followed by a secondary incubation with a
double stain, comprising Alexa Fluor 647-conjugated anti-human IgG
(1:500 dilution) and propidium iodide (PI; 1:2500 dilution). Cells were
acquired using a BD Biosciences LSR4 laser and analyzed using FlowJo
(version 10, Tree Star). Gating strategies to determine spike-specific
antibody response is described in Supplementary Fig. 5. The assay was
performed as two independent experiments within technical dupli-
cates each time.

Pseudovirus neutralization assay
Pseudoviruses were produced as previously described145,146 and the
pseudotyped lentivirus neutralization assay was performed as pre-
viously described147,148. Briefly, a stable cell line expressing human
ACE2, CHO-ACE2 (a kind gift from Professor Yee-Joo Tan, Department
of Microbiology, NUS and IMCB, A*STAR, Singapore)149 were used for
the assay. CHO-ACE2 cells were seeded at 1.8 × 104 per well in a 96‐well
black microplate (Corning) in culture medium without Geneticin
overnight. Serially diluted heat‐inactivated plasma samples (n = 29
vaccine breakthrough, n = 86 close contact) at 1:5 to 1:5120 in four-fold
serial dilutions were incubated with equal volume of pseudovirus
expressing SARS‐CoV‐2 S proteins of either ancestral wildtype, Delta
variant, or Omicron variant (5 ng p24 per well) at 37 °C for 1 h, before
being added to pre‐seeded CHO‐ACE2 cells in duplicate. Cells were
refreshedwith culturemedia after 1 h incubation. After 48 h, cells were
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washed with PBS and lysed with 1× Passive Lysis Buffer (Promega) with
gentle shaking at 125 rpm for 30min at 37 °C. Luciferase activity was
subsequently quantified with Luciferase Assay System (Promega) on a
GloMax Luminometer (Promega).

Determination of SARS-CoV-2 neutralizing antibody level
using sVNT
Neutralizing antibodies against SARS-CoV-2 was measured using the
surrogate virus neutralization (sVNT) platform41 and conducted
according to manufacturer’s protocol (cPass, GenScript). HRP-
conjugated RBD (RBD-HRP) provided was diluted with HRP Dilution
Buffer to 1:1000. Test plasma was diluted with the Sample Dilution
Buffer to 1:10. The diluted plasma were then mixed with the diluted
RBD-HRP in 1:1 ratio (e.g., 60 µL diluted plasmawith 60 µL diluted RBD-
HRP). The mixtures were incubated at 37 °C for 30min. After first
incubation, 100 µL of the mixtures was added into each well of the
ACE2-coatedplate provided. Theplatewas coveredwith a plate sealant
and incubated at 37 °C for 15min. After second incubation, the plate
was washed four times with 260 µL 1× wash buffer to remove the
unbound RBD-HRP. For measurement of RBD-HRP bound onto the
plate, 100 µL of 3,3',5,5'-tetramethylbenzidine (TMB) was added into
eachwell. The chromogenic signalwas allowed to develop for 15min in
the darkbefore 50 µL of the TMB stop solutionwas added into thewell.
Absorbance at 450nm was acquired using Cytation 5 microplate
reader (BioTek). cPass percentage inhibition was calculated according
to the manual, and a 30% cut-off was used to determine a positive
result.

Memory B cell ELISpot
SARS-CoV-2 RBD-specific memory B cell numbers were counted using
the ELISpot Path: Human IgG (SARS-CoV-2, RBD) ALP kit (Mabtech),
following manufacturer’s instructions. Fresh PBMCs (1,000,000) were
resuspended in 1ml RPMI + 10% FBS + 1μg/ml R848 + 10 ng/ml IL-2,
and incubated at 37 °C, 5% CO2 for 4–5 days to differentiate memory B
cells into antibody-secreting cells. After incubation, cells were coun-
ted, and 100,000 or 400,000 live cells were taken for ELISpot plating
to determine RBD-specificmemory B cell numbers. Total IgG secreting
cells were detected by plating 1500 or 3000 live cells to normalize the
results. Plates were then read on an IRIS ELISpot reader (Mabtech).
Spots were calculated based on the average of two wells using the
MabTech IRIS Immunospot reader Apex software.

Whole-blood culture with SARS-CoV-2 peptide pools
This was performed as described previously69. Whole blood (320 µl)
drawn on the same daywasmixedwith 80 µl RPMI and stimulatedwith
pools of spike protein peptides (2 µg/ml) (Supplementary Table 11) or a
DMSO control. After 15 h of culture, the culture supernatant (plasma)
was collected and stored at −80 °C until quantification of cytokines.
Cytokine concentrations in the plasma were quantified using an Ella
machinewithmicrofluidicmultiplex cartridgesmeasuring IFN-γ and IL-
2 following the manufacturer’s instructions (ProteinSimple). The
positivity threshold was set at 10 x times the lower limit of quantifi-
cation of each cytokine (IFN‐γ = 1.7 pg/ml; IL‐2 = 5.4pg/ml) after DMSO
background subtraction.

IFN-γ IL-2 FluoroSpot assays
Donor PBMCs were first thawed in RPMI-1640 with 10% Fetal Bovine
Serum (R10 medium) and incubated overnight for recovery in high
density (10 million PBMCs per 2mL) in AB medium (RPMI-1640 + 10%
Human AB Serum+ 1% Penicillin Streptomycin + 1% 200g/mL D-glu-
cose). PBMCs were then used for FluoroSpot assays to measure CD8,
CD4 Th1 and Th2 responses. CD8 and CD4 Th1 responses were mea-
sured using Human IFN-γ/IL-2 FluoroSpot PLUS kits as per manu-
facturer’s protocol (Mabtech, Sweden). In brief, PVDF plates pre-
coated with IFN-γ mAb (1-D1K) and IL-2 mAb (MT2A91/2C95) were

washed with sterile phosphate buffered saline (PBS) and blocked with
R10 medium for at least 30min at room temperature (RT). After
overnight rest, PBMCs were harvested and suspended in AB medium.
PBMCs were seeded at 250,000 cells per well and stimulated in
duplicates with SARS-CoV-2 spike glycoprotein peptide pool (JPT
Peptide Technologies, Germany) (Supplementary Tables 12 and 13)
with 0.1μg/mL co-stimulator anti-CD28 (mAb CD28A as per MabTech
protocol). Medium containing 1% DMSO was used as negative control,
while 0.02μg/mL anti-CD3 mAb (CD3-2) was used as positive control.
Cells were incubated overnight at 37 ˚C and 5% CO2. Following over-
night incubation, plates were washed with PBS and incubated with
detection antibodies anti-IFN-γ mAb (7-B6-1-BAM) and anti-IL-2 mAb
(MT8G10, biotinylated) diluted in PBS with 0.1% BSA for 2 h at RT.
Plates were then washed with PBS and incubated with fluorophore
conjugates for IFN-γ (anti-BAM-490) and IL-2 (SA-550) in PBS with 0.1%
BSA for 1 h at RT. Plates were washed and incubated with ready-to-use
fluorescent enhancer II for 15min at RT. All incubations were per-
formed in the dark. Plates were emptied and dried overnight at RT and
analysed the next day with MabTech IRIS FluoroSpot and ELISpot
reader using FITC filter (excitation 490 nm/emission 510 nm) for IFN-γ
and Cy3 filter (excitation 550 nm/ emission 570 nm) for IL-2. Spots
were calculated based on the average of two wells using the MabTech
IRIS Immunospot reader Apex software.

IL-4 IL-5 IL-13 FluoroSpot assays
CD4 Th2 responses were measured using custom Human IL-4/IL-5/IL-
13 FluoroSpot FLEX kits as per manufacturer’s protocol (MabTech). In
brief, PVDF plates were activated with 15 µL 35% EtOH per well for a
maximum of 1min. Plates were washed with cell culture water and
incubated with IL-4 mAb (IL4-I), IL-5 mAb (TRFK5) and IL-13 mAb
(MT1318) in PBS at 4 °C overnight, protected from light. After over-
night incubation, plateswerewashedwith sterile PBS and blockedwith
R10medium for at least 30min atRT.After overnight rest, PBMCswere
harvested and suspended in AB medium. Stimuli were prepared in AB
media with 0.1μg/mL co-stimulator anti-CD28 (mAb CD28A). PBMCs
were seeded at 250,000 cells per well and stimulated with peptide
pool from the Spike protein (JPT Peptide Technologies) (Supplemen-
tary Table 13). 1% DMSO only medium was used as negative control.
Cells and stimuli were incubated overnight at 37 ˚C and 5% CO2. Fol-
lowing overnight incubation, plates were washed with PBS and incu-
bated with detection antibodies anti-IL4 mAb (IL4-II), anti-IL5 mAb
(5A10) and anti-IL13 mAb (25K2) diluted in PBS with 0.1% BSA for 2 h at
RT. Plates were then washed with PBS and incubated with fluorophore
conjugates for IL-4 (SA-550), IL-5 (anti-WASP-640) and IL-13 (anti-BAM-
490) in PBS with 0.1% BSA for 1 h at RT. Plates were washed and
incubated with ready-to-use fluorescent enhancer II for 15min at RT.
All incubations were performed in the dark. Plates were emptied and
dried overnight at RT and analysed the next day with Mabtech IRIS
FluoroSpot and ELISpot reader using Cy3 filter (excitation 550 nm/
emission 570 nm) for IL-4, Cy5 filter (excitation 640nm/ emission
660 nm) for IL-5 and FITC filter (excitation 490 nm/emission 510 nm)
for IL-13. Spotswere calculated basedon the average of twowells using
the MabTech IRIS Immunospot reader Apex software.

Low responder population definition
Low responders were defined as fully vaccinated individuals with
antibody response below cohort’s median response at consecutive
timepoints (%). As an example, the low responders, at day 90, had
responses below cohort’smedian response at both day 21, 90 and 180.

Statistical analysis
To assess immune positivity after the vaccine doses, we used two
methods to define baseline values. In method 1, we define a cohort
baseline using the upper range of the data set (for data which did not
follow a normal distribution). For data which follow a normal
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distribution, a cohort mean ± 3 SD was used to define a cut-off. In
method 2, positivity was defined when values were above individual
baseline values. Statistical analysis was performed using GraphPad
Prism 9 software. Paired comparisons for samples taken at different
times or unmatched pairwise comparisons (when comparing between
age group) were performed using the Mann–Whitney U test, while
matched pairwise comparisons were performed using the Wilcoxon
matched pairs signed rank test. To compare betweenmultiple groups,
Kruskal–Wallis tests and post hoc tests using Dunn’s multiple com-
parison tests were used to identify significant differences. Spearman’s
correlation analyses were performed to calculate correlation coeffi-
cient rho and P-value. P-values < 0.05 were considered significant.
Statistical analysis was performed using GraphPad Prism 9.1.2.
FluoroSpot results were analyzed with Welch’s t-test for parametric
unpaired comparisons. All tests were two-tailed and p < 0.05 was
considered statistically significant.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All other data are available in the article and its Supplementary files or
from the corresponding author upon reasonable request. The source
data for all figures are provided as a Source Data file. Raw data for the
flow cytometry or ELISPOT can be obtained upon request to the cor-
responding author. Source data are provided with this paper.
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